[go: up one dir, main page]

JPH04302145A - Cleaning method - Google Patents

Cleaning method

Info

Publication number
JPH04302145A
JPH04302145A JP6597691A JP6597691A JPH04302145A JP H04302145 A JPH04302145 A JP H04302145A JP 6597691 A JP6597691 A JP 6597691A JP 6597691 A JP6597691 A JP 6597691A JP H04302145 A JPH04302145 A JP H04302145A
Authority
JP
Japan
Prior art keywords
ozone
steam
water
fed
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6597691A
Other languages
Japanese (ja)
Inventor
Kenichi Kawasumi
川澄 建一
Yoshio Uno
宇野 良男
Akiisa Inada
稲田 暁勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6597691A priority Critical patent/JPH04302145A/en
Publication of JPH04302145A publication Critical patent/JPH04302145A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To improve the ashing removal performance of an organic matter such as resist used as a mask for augmenting the throughput by a method wherein steam is sufficiently mixed with the ozone at a specific volume ratio, and the mixture is fed onto the surface of the object to be processed. CONSTITUTION:The ozone produced by an ozone producer 1 is led in a steam feed vessel 3 through an A-piping 2. This steam feed vessel 3 is fed with pure water or hydrogen peroxide by a constant quantity feeder 4 with a heater A5 built therein to maintain the constant water temperature inside the vessel 3. This steam 6 evaporated from the water in the vessel 3 are carried by the ozone stream 7 is fed to multiple gas feed nozzles 9. At this time, the volume of the steam 6 added to the ozone is specified to exceed about 0.7 times of the ozone volume, and they are sufficiently mixed. Through these procedures, the removing rate can be accelerated up to the level exceeding 120% compared with the case not fed with the steam.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】本発明は、ガラスやシリコンウェハの洗浄
、マスクとして使用したホトレジストなど有機物をガス
状にして洗浄、除去する方法に係る。
The present invention relates to a method for cleaning glass or silicon wafers and cleaning and removing organic substances such as photoresist used as a mask by converting them into a gas.

【0002】0002

【産業上の利用分野】本発明の方法は、光学ガラスや液
晶用ガラスの洗浄、半導体装置製造等における加工表面
の有機物の汚れや、マスクとして使用した後のレジスト
の除去に利用される。
INDUSTRIAL APPLICATION FIELD The method of the present invention is used for cleaning optical glass and liquid crystal glass, removing organic stains from processed surfaces in semiconductor device manufacturing, etc., and removing resist after use as a mask.

【0003】0003

【従来の技術】オゾンの分解により生成された活性酸素
原子によって有機物を灰化除去することは、たとえば特
開昭58−15939号に示されているように古くから
知られている。
BACKGROUND OF THE INVENTION The ashing and removal of organic substances using active oxygen atoms produced by the decomposition of ozone has been known for a long time, as disclosed in, for example, Japanese Patent Laid-Open No. 15939/1983.

【0004】近年洗浄、或いは有機物除去処理温度は、
低温化が望まれている。すなわち、超微細化半導体装置
においても、クロム膜を使用した液晶基板等に対しても
ダメージを与えないようにするために処理温度の低温化
が不可欠である。しかしオゾンの分解によってできる活
性酸素原子を利用した有機物の灰化処理方法に於いては
、その性能の温度律則が強く、例えば半導体装置の製造
課程でマスクとして使用した後のレジスト膜の除去速度
は、処理温度が300℃から250℃,200℃と低下
するに従いほぼ二分の一、四分の一に低下する。このよ
うな状況にあって低温処理において除去性能を向上する
方法として例えば、特公平1−179329号に示すよ
うにオゾンと共に水を供給することが知られている。 しかしながら上記公知例においては供給する蒸気の量を
増した場合の効果について配慮されていない。また、単
に水槽にオゾンを通して水蒸気をオゾンとともに供給す
る場合においては、水中から水の蒸発潜熱が奪われ水温
が低下し水蒸気の量が減少すること及びオゾンガスの冷
却が生じていることについて配慮がされていなかった。 このような点は、特に低温処理においては被処理物表面
の部分的な冷却を生じ除去速度の低下および除去速度分
布におおきな不均一が生ずるという問題があった。
[0004] In recent years, the cleaning or organic matter removal treatment temperature has been
Lower temperatures are desired. That is, even in ultra-fine semiconductor devices, it is essential to lower the processing temperature in order to prevent damage to liquid crystal substrates and the like using chromium films. However, in the ashing treatment method for organic matter that utilizes active oxygen atoms produced by the decomposition of ozone, there are strong temperature restrictions on its performance, such as the removal rate of resist films after they are used as masks in the manufacturing process of semiconductor devices. As the processing temperature decreases from 300°C to 250°C to 200°C, it decreases to approximately one-half or one-fourth. Under such circumstances, as a method for improving removal performance in low-temperature treatment, it is known to supply water together with ozone, as shown in Japanese Patent Publication No. 1-179329, for example. However, in the above-mentioned known examples, no consideration is given to the effect of increasing the amount of steam supplied. In addition, when supplying water vapor together with ozone by simply passing ozone into the aquarium, consideration must be given to the fact that the latent heat of vaporization of the water is taken away from the water, lowering the water temperature and reducing the amount of water vapor, and that the ozone gas is being cooled. It wasn't. In particular, in low-temperature processing, there is a problem in that the surface of the object to be treated is partially cooled, resulting in a reduction in the removal rate and a large non-uniformity in the removal rate distribution.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、供給
水分の量を一定値以上に保つことによって除去性能を改
善することである。すなわち供給水分の量を常に一定に
供給することと、供給ガスの冷却によって被処理物の表
面の温度分布に大きな差が生じることを防止することよ
って、とくに低温処理において除去性能を向上すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the removal performance by keeping the amount of water supplied above a certain value. In other words, by always supplying a constant amount of water and by preventing large differences in temperature distribution on the surface of the workpiece due to cooling of the supplied gas, removal performance can be improved, especially in low-temperature processing. be.

【0006】[0006]

【課題を解決するための手段】オゾンに添加する水分の
量をオゾンの体積に対してほぼ0.7倍以上としオゾン
と十分混合して被処理物の表面に供給する。
[Means for Solving the Problems] The amount of water added to ozone is approximately 0.7 times or more the volume of ozone, and the water is sufficiently mixed with the ozone before being supplied to the surface of the object to be treated.

【0007】原料酸素をオゾン発生機に通して放電によ
ってオゾンを生成しこれを水蒸気発生容器に導入する。 水蒸気発生容器には供給水分の量を蒸発させるに必要な
熱量を外部から供給する。この蒸発した水蒸気をオゾン
の気流にのせ十分に混合させて被処理物の表面に供給す
る。水蒸気発生容器からでた水蒸気が途中で結露しない
ように被処理物の表面に供給するまでの配管を保温する
[0007] Raw material oxygen is passed through an ozone generator to generate ozone by electric discharge, and the ozone is introduced into a steam generating container. The amount of heat necessary to evaporate the amount of supplied water is supplied to the steam generating container from the outside. This evaporated water vapor is placed on an ozone stream, thoroughly mixed, and then supplied to the surface of the object to be treated. Insulate the piping until it is supplied to the surface of the object to be treated so that the steam emitted from the steam generating container does not condense on the way.

【0008】[0008]

【作用】オゾンは、紫外線254nmの光を吸収して分
解し高いエネルギー状態の活性酸素原子を生成する。水
分の添加はこの活性酸素原子生成の量子効率を高くする
働きを有していると思われる。該活性酸素原子は、有機
物と反応してCO2、H2O等のガスに変えて気化除去
する。また、紫外線254nm,185nmは有機物の
化学結合を切断作用があり上記反応を起こりやすくする
働きがある。処理温度の熱は、オゾンを熱分解する働き
と反応を促進する働きがある。
[Operation] Ozone absorbs ultraviolet light of 254 nm and decomposes to produce active oxygen atoms in a high energy state. Addition of water seems to have the effect of increasing the quantum efficiency of active oxygen atom generation. The active oxygen atoms react with organic substances and are converted into gases such as CO2 and H2O, which are vaporized and removed. In addition, ultraviolet rays of 254 nm and 185 nm have the effect of breaking the chemical bonds of organic substances and have the effect of making the above reaction more likely to occur. The heat at the treatment temperature has the function of thermally decomposing ozone and promoting the reaction.

【0009】供給する水蒸気は、予め蒸発潜熱を持って
いるので被処理物から蒸発潜熱を奪って被処理物の温度
を過度に低下させることはない。また、オゾンも蒸発潜
熱を奪われて冷えた水によって冷却されないので被処理
物の表面温度分布を過度に乱さず処理速度分布を大きく
しないので均一処理ができる。。
[0009] Since the supplied water vapor already has latent heat of evaporation, it does not remove the latent heat of evaporation from the object to be treated, thereby preventing the temperature of the object to be excessively lowered. Further, ozone is also deprived of its latent heat of vaporization and is not cooled by the cold water, so that the surface temperature distribution of the object to be treated is not excessively disturbed and the treatment speed distribution is not increased, so that uniform treatment can be achieved. .

【0010】0010

【実施例】半導体装置の製造においてウェハ上でマスク
として使用した後のレジストの膜を除去する方法として
、大気圧中でレジストに紫外線とオゾンとを作用させて
有機物であるレジストをCO2、H2O等のガスに分解
して除去する例について説明する。図1は、上記一実施
例を説明するための装置の概念図である。
[Example] As a method for removing a resist film after being used as a mask on a wafer in the manufacture of semiconductor devices, ultraviolet rays and ozone are applied to the resist at atmospheric pressure to remove organic resist such as CO2, H2O, etc. An example of decomposing and removing the gas into gas will be explained. FIG. 1 is a conceptual diagram of an apparatus for explaining the above embodiment.

【0011】原料酸素ガスを石英製の円筒を2重にして
その間の狭い空間に流し、2重の筒の間で放電させオゾ
ン発生機1によりオゾンを生成する。該オゾンをA配管
2によって水蒸気供給槽3に導入する。該水蒸気供給槽
には、定量補給装置4によって純水、或いは過酸化水素
が供給され、さらに該水蒸気供給槽4は内部の水温を一
定に保持するようにヒータA5を内臓している。該水蒸
気供給槽4の水面より蒸発した水蒸気6は、該水蒸気供
給槽4に導入されたオゾンの気流7に乗ってB配管8に
よって複数のガス供給ノズル9に供給する。該B配管8
は、供給した水蒸気が結露しない温度に保温する。
[0011] Raw material oxygen gas is made to flow through a narrow space between two quartz cylinders, and is discharged between the two cylinders to generate ozone by the ozone generator 1. The ozone is introduced into the steam supply tank 3 through the A pipe 2. Pure water or hydrogen peroxide is supplied to the water vapor supply tank by a quantitative replenishment device 4, and the water vapor supply tank 4 has a built-in heater A5 to keep the internal water temperature constant. The water vapor 6 evaporated from the water surface of the water vapor supply tank 4 rides on the ozone airflow 7 introduced into the water vapor supply tank 4 and is supplied to the plurality of gas supply nozzles 9 through the B pipe 8. Said B piping 8
is maintained at a temperature at which the supplied water vapor does not condense.

【0012】前記の複数のガス供給ノズル9は、合成石
英の平板10に貫通溶接してあり、各ノズル9は、回転
中心を避け且つ、それぞれが同一回転半径上にないよう
に配置する。
The plurality of gas supply nozzles 9 are welded through a synthetic quartz flat plate 10, and each nozzle 9 is arranged so as to avoid the center of rotation and not on the same radius of rotation.

【0013】前記合成石英の平板10のノズル配置側に
平面上で折り曲げて平面照射出来るようにした合成石英
管を発光管とした低圧水銀放電灯11を配置する。該低
圧水銀放電灯11は、アルマイト仕上げを施したアリミ
ニウム製のランプハウス12に収納する。該ランプハウ
ス12の中に窒素ガス等の不活性ガスを導入置換して発
光管の周りでオゾンが発生することを防止する。
A low-pressure mercury discharge lamp 11 whose arc tube is a synthetic quartz tube that is bent on a flat surface so as to be able to irradiate a flat surface is arranged on the nozzle arrangement side of the synthetic quartz flat plate 10. The low-pressure mercury discharge lamp 11 is housed in an alumite-finished aluminum lamp house 12. Inert gas such as nitrogen gas is introduced into the lamp house 12 to prevent ozone from being generated around the arc tube.

【0014】前記合成石英の平板10のノズル配置側と
は反対の面13(研磨面)は、研磨により精密な平面度
に仕上げする。該精密な研磨面13の前方に回転、上下
可能な加熱ヒータ内臓のステージ14を配置する。該ス
テージ14のウェハ搭載部分は、石英製の薄い平板15
を配置しウェハと金属ステージ14とが直接接触するこ
とを避けている。ステージへのウェハの密着性を良くす
るためにウェハは、前記石英製の薄い平板15を介して
真空吸着する。
The surface 13 (polished surface) of the synthetic quartz flat plate 10 opposite to the nozzle arrangement side is polished to a precise flatness. A stage 14 with a built-in heater that can rotate and move up and down is arranged in front of the precision polishing surface 13. The wafer mounting portion of the stage 14 is a thin flat plate 15 made of quartz.
is arranged to avoid direct contact between the wafer and the metal stage 14. In order to improve the adhesion of the wafer to the stage, the wafer is vacuum-adsorbed via the thin flat plate 15 made of quartz.

【0015】該ステージ14へのウェハ21のローディ
ング、アンローディングは、ステージを包囲する処理室
16の一方向に設けた開閉可能な搬送窓17を介して搬
送ロボット(図示しない)により行う。この時ステージ
は、ロボットのウェハ吸着面がウェハの裏面に入るよう
に上下駆動する。また、前記複数のガス供給ノズルから
供給する反応ガスをウェハ面上に均一に且つ高速で通過
させると同時に、ライフタイムの短い活性酸素原子を有
効にウェハ面に与えるために、ウェハ面と前記合成石英
の平板の精密な面とのあいだの前記反応ガスを流すガス
フローギャップ22を処理中極めて小さく制御する。処
理中ウェハ21はステージの回転によって回転しながら
紫外線の照射および反応ガスの供給を全面にほぼ均等に
受けることができる。
The loading and unloading of the wafer 21 onto the stage 14 is performed by a transport robot (not shown) through an openable and closable transport window 17 provided in one direction of the processing chamber 16 surrounding the stage. At this time, the stage is driven up and down so that the wafer suction surface of the robot enters the back surface of the wafer. In addition, in order to cause the reaction gas supplied from the plurality of gas supply nozzles to pass uniformly and at high speed over the wafer surface, and at the same time to effectively provide active oxygen atoms with a short lifetime to the wafer surface, the wafer surface and the The gas flow gap 22 through which the reactant gases flow between the precision surfaces of the quartz plates is controlled to be extremely small during the process. During processing, the wafer 21 is rotated by the rotation of the stage and can be irradiated with ultraviolet rays and supplied with reactive gas almost uniformly over its entire surface.

【0016】前記処理室16には、残存するオゾンを排
気するダクト18を配置しさらに該残存オゾンを分解器
19により酸素に変えて空気とともに大気に放出する。
A duct 18 for exhausting remaining ozone is arranged in the processing chamber 16, and the remaining ozone is converted into oxygen by a decomposer 19 and released into the atmosphere together with air.

【0017】以上の方法で6インチ径のシリコンウェハ
にポジティブレジスト(OFPR−800)を塗布した
ものを試料として、処理温度200℃、ガスフローギャ
ップ0.2mmとし、体積比4.7%のオゾンを含む酸
素ガス10l/minに種々の量の水蒸気を添加してレ
ジストの除去実験を行った結果を図2に示す。
A 6-inch diameter silicon wafer coated with a positive resist (OFPR-800) using the above method was used as a sample, the processing temperature was 200°C, the gas flow gap was 0.2 mm, and ozone was applied at a volume ratio of 4.7%. FIG. 2 shows the results of resist removal experiments in which various amounts of water vapor were added to oxygen gas containing 10 l/min of oxygen gas.

【0018】[0018]

【発明の効果】本発明により、添加する水蒸気の量がオ
ゾンの体積に対してほぼ1.5倍になるまで除去速度が
増加することが判明した。本実施例の場合で水蒸気を供
給しない場合に比べ水蒸気の量をオゾンの体積の0.7
倍以上としたとき除去速度が120%以上,水蒸気供給
水槽を加熱制御しないで蒸発潜熱を奪われたままとした
場合に比べ116%以上の除去速度がえられた。また、
蒸発潜熱を奪われた水によって冷却されることがないの
でこれら反応ガスの供給によってウェハ表面の温度が部
分的に極端に冷却されることがないので均一なレジスト
除去処理ができスループットの改善ができる効果があっ
た。
It has been found that the present invention increases the removal rate until the amount of water vapor added becomes approximately 1.5 times the volume of ozone. In the case of this example, the amount of water vapor is reduced to 0.7 of the volume of ozone compared to the case where no water vapor is supplied.
When the temperature was doubled, a removal rate of 120% or more was obtained, and a removal rate of 116% or more was obtained compared to the case where the steam supply water tank was not heated and the latent heat of vaporization was left as it was. Also,
Since the wafer is not cooled by water that has had its latent heat of vaporization removed, the temperature of the wafer surface will not be excessively cooled locally due to the supply of these reactive gases, allowing for uniform resist removal processing and improved throughput. It worked.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1は、本発明の一実施例を説明するための概
略図
FIG. 1 is a schematic diagram for explaining one embodiment of the present invention.

【図2】図2は、本発明の一実施例の結果を示す図[Fig. 2] Fig. 2 is a diagram showing the results of one example of the present invention.

【符号の説明】[Explanation of symbols]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】オゾンと紫外線の作用によって有機物を分
解し、気化して除去する洗浄方法であって、オゾンとと
もにガスの状態の水または、過酸化水素の蒸気を混合し
て被処理物の表面に供給し該蒸気のオゾンに対する圧力
比をほぼ0.7以上としたことを特徴とした洗浄方法
Claim 1: A cleaning method in which organic matter is decomposed and vaporized and removed by the action of ozone and ultraviolet rays, in which water in a gas state or hydrogen peroxide vapor is mixed with ozone to remove the A cleaning method characterized in that the pressure ratio of the steam to ozone is approximately 0.7 or more.
JP6597691A 1991-03-29 1991-03-29 Cleaning method Pending JPH04302145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6597691A JPH04302145A (en) 1991-03-29 1991-03-29 Cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6597691A JPH04302145A (en) 1991-03-29 1991-03-29 Cleaning method

Publications (1)

Publication Number Publication Date
JPH04302145A true JPH04302145A (en) 1992-10-26

Family

ID=13302546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6597691A Pending JPH04302145A (en) 1991-03-29 1991-03-29 Cleaning method

Country Status (1)

Country Link
JP (1) JPH04302145A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503708A (en) * 1992-11-27 1996-04-02 Hitachi, Ltd. Method of and apparatus for removing an organic film
US5511569A (en) * 1993-07-20 1996-04-30 Mitsubishi Denki Kabushiki Kaisha Cleaning apparatus
US5753046A (en) * 1995-11-30 1998-05-19 Samsung Electronics Co., Ltd. Vertical diffusion furnace and cap therefor
EP0959390A1 (en) * 1998-05-20 1999-11-24 STMicroelectronics S.r.l. Photoresist removal process.
EP1100630A4 (en) * 1998-04-16 2001-07-04 Semitool Inc Process and apparatus for treating a workpiece such as a semiconductor wafer
US6701941B1 (en) 1997-05-09 2004-03-09 Semitool, Inc. Method for treating the surface of a workpiece
US6830628B2 (en) 1997-05-09 2004-12-14 Semitool, Inc. Methods for cleaning semiconductor surfaces
US6869487B1 (en) 1997-05-09 2005-03-22 Semitool, Inc. Process and apparatus for treating a workpiece such as a semiconductor wafer
US7163588B2 (en) 1997-05-09 2007-01-16 Semitool, Inc. Processing a workpiece using water, a base, and ozone
US7264680B2 (en) 1997-05-09 2007-09-04 Semitool, Inc. Process and apparatus for treating a workpiece using ozone
US7378355B2 (en) 1997-05-09 2008-05-27 Semitool, Inc. System and methods for polishing a wafer
US7404863B2 (en) 1997-05-09 2008-07-29 Semitool, Inc. Methods of thinning a silicon wafer using HF and ozone
US7416611B2 (en) 1997-05-09 2008-08-26 Semitool, Inc. Process and apparatus for treating a workpiece with gases
WO2015190263A1 (en) * 2014-06-13 2015-12-17 ウシオ電機株式会社 Desmearing apparatus and desmearing method
JP2016165014A (en) * 2016-06-01 2016-09-08 ウシオ電機株式会社 Desmear processing apparatus and desmear processing method
WO2018173525A1 (en) * 2017-03-24 2018-09-27 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2021146231A (en) * 2020-03-16 2021-09-27 ウシオ電機株式会社 Gas supplying device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503708A (en) * 1992-11-27 1996-04-02 Hitachi, Ltd. Method of and apparatus for removing an organic film
US5511569A (en) * 1993-07-20 1996-04-30 Mitsubishi Denki Kabushiki Kaisha Cleaning apparatus
US5753046A (en) * 1995-11-30 1998-05-19 Samsung Electronics Co., Ltd. Vertical diffusion furnace and cap therefor
US7378355B2 (en) 1997-05-09 2008-05-27 Semitool, Inc. System and methods for polishing a wafer
US7416611B2 (en) 1997-05-09 2008-08-26 Semitool, Inc. Process and apparatus for treating a workpiece with gases
US6701941B1 (en) 1997-05-09 2004-03-09 Semitool, Inc. Method for treating the surface of a workpiece
US6817370B2 (en) 1997-05-09 2004-11-16 Semitool, Inc. Method for processing the surface of a workpiece
US6830628B2 (en) 1997-05-09 2004-12-14 Semitool, Inc. Methods for cleaning semiconductor surfaces
US6843857B2 (en) 1997-05-09 2005-01-18 Semitool, Inc. Methods for cleaning semiconductor surfaces
US6869487B1 (en) 1997-05-09 2005-03-22 Semitool, Inc. Process and apparatus for treating a workpiece such as a semiconductor wafer
US7163588B2 (en) 1997-05-09 2007-01-16 Semitool, Inc. Processing a workpiece using water, a base, and ozone
US7264680B2 (en) 1997-05-09 2007-09-04 Semitool, Inc. Process and apparatus for treating a workpiece using ozone
US7404863B2 (en) 1997-05-09 2008-07-29 Semitool, Inc. Methods of thinning a silicon wafer using HF and ozone
EP1100630A4 (en) * 1998-04-16 2001-07-04 Semitool Inc Process and apparatus for treating a workpiece such as a semiconductor wafer
EP0959390A1 (en) * 1998-05-20 1999-11-24 STMicroelectronics S.r.l. Photoresist removal process.
WO2015190263A1 (en) * 2014-06-13 2015-12-17 ウシオ電機株式会社 Desmearing apparatus and desmearing method
JP2016004802A (en) * 2014-06-13 2016-01-12 ウシオ電機株式会社 Desmearing device and desmearing method
US9859131B2 (en) 2014-06-13 2018-01-02 Ushio Denki Kabushiki Kaisha Desmear treatment device and desmear treatment method
TWI620479B (en) * 2014-06-13 2018-04-01 Ushio Electric Inc Desmear treatment device and desmear treatment method
JP2016165014A (en) * 2016-06-01 2016-09-08 ウシオ電機株式会社 Desmear processing apparatus and desmear processing method
WO2018173525A1 (en) * 2017-03-24 2018-09-27 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2018163980A (en) * 2017-03-24 2018-10-18 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
CN110366769A (en) * 2017-03-24 2019-10-22 株式会社斯库林集团 Substrate processing method using same and substrate board treatment
TWI686867B (en) * 2017-03-24 2020-03-01 日商斯庫林集團股份有限公司 Substrate processing method and substrate processing apparatus
JP2021146231A (en) * 2020-03-16 2021-09-27 ウシオ電機株式会社 Gas supplying device

Similar Documents

Publication Publication Date Title
JPH04302145A (en) Cleaning method
US5326406A (en) Method of cleaning semiconductor substrate and apparatus for carrying out the same
US5503708A (en) Method of and apparatus for removing an organic film
JP2001118818A (en) Ultraviolet ray-treating device and method
JPS62502930A (en) Method and device for removing a film from a substrate using a vapor phase method
JPH05259139A (en) Cleaning apparatus
KR100442869B1 (en) Equipment for cleaning process of the semiconductor wafer using vaporizing chemicals and cleaning process using the same equipment
JPH04302144A (en) Cleaning method
WO2008097462A1 (en) Plenum reactor system
JP3150509B2 (en) Organic matter removal method and apparatus for using the method
JP3653735B2 (en) Surface treatment method and apparatus
US5554257A (en) Method of treating surfaces with atomic or molecular beam
JPH09306892A (en) Cleaning method and semiconductor manufacturing apparatus
JP4059216B2 (en) Surface treatment method and apparatus
JP3392789B2 (en) Thermal oxidation method and apparatus
JP3255998B2 (en) Surface treatment method and surface treatment device
JPH04338629A (en) Transforming apparatus
JPH01233728A (en) Surface treatment method and device
JPH0547735A (en) Cleaning apparatus
JP3176349B2 (en) UV processing equipment
JPH0529291A (en) Ozone treatment equipment
JPH09283502A (en) Ultraviolet treating device
JPH09281716A (en) Ultraviolet-ray processor
WO1995006900A1 (en) Method and apparatus for pattern formation
JPH0684843A (en) Surface treatment equipment