JPH04296724A - Printing method for fine pattern - Google Patents
Printing method for fine patternInfo
- Publication number
- JPH04296724A JPH04296724A JP3086064A JP8606491A JPH04296724A JP H04296724 A JPH04296724 A JP H04296724A JP 3086064 A JP3086064 A JP 3086064A JP 8606491 A JP8606491 A JP 8606491A JP H04296724 A JPH04296724 A JP H04296724A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- printing
- printing plate
- pattern
- printed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Liquid Crystal (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、薄膜トランジスタ回路
の製造などの分野で用いられ、詳しくは、被印刷体基板
上への微細なレジストパターンの形成を印刷により行う
微細パターンの印刷方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in the field of manufacturing thin film transistor circuits, and more particularly relates to a fine pattern printing method for forming a fine resist pattern on a substrate to be printed by printing.
【0002】0002
【従来の技術】最近、薄膜トランジスタ製造の際のレジ
ストパターンの形成や、液晶テレビに使用されるカラー
フィルタのパターン形成に印刷技術を用いたパターン形
成方法が盛んに用いられている。2. Description of the Related Art Recently, pattern forming methods using printing technology have been widely used for forming resist patterns in the manufacture of thin film transistors and for pattern forming color filters used in liquid crystal televisions.
【0003】例えば、本発明者らは先に、レジストパタ
ーンの形成を印刷技術を用いて行う薄膜トランジスタ回
路の製造方法を特願平2−212324号として特許出
願している。For example, the present inventors have previously filed a patent application in Japanese Patent Application No. 2-212324 for a method of manufacturing a thin film transistor circuit in which a resist pattern is formed using printing technology.
【0004】この方法は、例えば凹版印刷版を用いた場
合では、以下のようにして行う。まず、印刷版基板上に
インキを残すべきパターンを周囲より凹ませた凹部とし
て形成して、パターンが製版された印刷版基板(以下、
印刷版という)を作製する。なお、この凹部の形成には
通常エッチング等の手法を用いている。次に、この印刷
版の凹部にインクを塗布し、この印刷版のインクを塗布
した面に被印刷体基板上の被加工薄膜面を接触させて凹
部内のインキを被加工薄膜面上に転写する。その後、イ
ンキを乾燥してウェットあるいはドライのエッチングに
よって上記被加工薄膜を加工する。[0004] This method, for example when an intaglio printing plate is used, is carried out as follows. First, a pattern on which ink is to be left is formed as a concave portion recessed from the surrounding area on the printing plate substrate, and the printing plate substrate on which the pattern is made (hereinafter referred to as
(referred to as a printing plate). Note that a technique such as etching is normally used to form this recess. Next, ink is applied to the recesses of this printing plate, and the surface of the thin film to be processed on the substrate to be printed is brought into contact with the ink-applied surface of this printing plate, and the ink in the recesses is transferred onto the surface of the thin film to be processed. do. Thereafter, the ink is dried and the thin film to be processed is processed by wet or dry etching.
【0005】また、例えば図7に示されるような工程で
薄膜トランジスタ回路を製造する際においては4回のパ
ターニングが行われるが、これらのパターニングも全て
上記した印刷を用いてパターニングすることができる。Furthermore, when manufacturing a thin film transistor circuit using the process shown in FIG. 7, for example, patterning is performed four times, and all of these patterning can be performed using the above-described printing.
【0006】このように、薄膜トランジスタ回路製造の
際のレジストパターンの形成に印刷を用いると、一回の
印刷で大面積にレジストパターンを形成できる等の大き
な利点がある。[0006] As described above, when printing is used to form a resist pattern when manufacturing a thin film transistor circuit, there are great advantages such as being able to form a resist pattern over a large area with one printing.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記薄
膜トランジスタ回路の製造方法におけるレジストパター
ンの印刷方法にあっては、被印刷体基板上に形成された
第1層目の膜上のパターン上に第2層の膜を形成し、そ
れを第2層のためのパターンに加工する際、元の設計寸
法通りにパターニングを行うと、第1層のパターンと第
2層のパターンとの間にズレが生ずることが知られてい
る。このズレが大きくなると薄膜トランジスタの構造が
維持できなくなってしまう。なお、上記ズレがある程度
大きくても動作する薄膜トランジスタを設計することが
できるが回路上の制約が大きくなり、充分な特性を発揮
させる事は困難であった。[Problems to be Solved by the Invention] However, in the method of printing a resist pattern in the above method for manufacturing a thin film transistor circuit, a second layer is printed on a pattern on a first layer film formed on a substrate to be printed. When forming a layer film and processing it into a pattern for the second layer, if the patterning is performed according to the original design dimensions, a misalignment will occur between the pattern of the first layer and the pattern of the second layer. It is known. If this deviation becomes large, the structure of the thin film transistor cannot be maintained. Note that although it is possible to design a thin film transistor that operates even if the above-mentioned deviation is large to some extent, the restrictions on the circuit become large and it is difficult to exhibit sufficient characteristics.
【0008】上記ズレが生ずる原因としては、第1に被
印刷体基板の伸縮がある。これは、第2層の膜を形成す
る際において被印刷体基板に熱処理が施され、この時被
印刷体基板が伸縮を起こし冷却された後も元の設計寸法
には戻らないことから、被印刷体基板上に形成された第
1層目の膜上のパターン上に第2層の膜を形成し、それ
を第2層のためのパターンに加工する際、元の設計寸法
通りにパターニングを行うと、第1層のパターンと第2
層のパターンが第1層に施された熱処理で伸縮した分ズ
レが生ずることに起因している。また、当然のことなが
らこのようなズレは、第3層目、あるいは第4層目のパ
ターニングの際も発生する。なお、ここで熱処理または
熱処理工程と記した工程は熱処理自体を目的とする場合
だけでなく膜を形成する際その膜の特性を好ましいもの
にする目的で加熱冷却する場合も含む。The first cause of the above-mentioned deviation is expansion and contraction of the substrate to be printed. This is because the substrate to be printed is subjected to heat treatment when forming the second layer film, and at this time the substrate to be printed expands and contracts and does not return to its original design dimensions even after being cooled. When forming a second layer film on the pattern on the first layer film formed on the print substrate and processing it into a pattern for the second layer, patterning is performed according to the original design dimensions. When done, the pattern of the first layer and the second layer
This is due to the fact that the layer pattern expands and contracts due to the heat treatment applied to the first layer, causing misalignment. Further, as a matter of course, such a shift also occurs during patterning of the third layer or the fourth layer. Note that the step described as heat treatment or heat treatment step herein includes not only the case where the purpose is heat treatment itself but also the case where heating and cooling is performed for the purpose of making the film desirable in its characteristics when forming a film.
【0009】また、第2に印刷版基板の伸縮である。現
在、平板印刷版、凹版印刷版、凸版印刷版に用いられる
印刷版基板は、一般にアルミニウム、鉄、銅、亜鉛等の
金属が用いられており、このものは線膨張率が10〜3
0ppm/℃であるため、1℃の温度変化で10μm程
度の伸縮を起こしてしまう。このため、原版のパターン
を設計の寸法通り正確に形成しておいても製版工程およ
び印刷工程時の温度管理を極めて厳密にしておかないと
かなり大きな位置ズレが発生してしまうこととなる。さ
らに、印刷版基板と被印刷体基板の線膨張率が異なれば
印刷時の温度の変化が位置ズレの発生原因となる。The second problem is the expansion and contraction of the printing plate substrate. Currently, printing plate substrates used for lithographic printing plates, intaglio printing plates, and letterpress printing plates are generally made of metals such as aluminum, iron, copper, and zinc, which have linear expansion coefficients of 10 to 3.
Since it is 0 ppm/°C, a temperature change of 1°C causes expansion and contraction of about 10 μm. For this reason, even if the pattern on the original plate is formed accurately according to the designed dimensions, a fairly large positional shift will occur unless temperature control during the plate making process and the printing process is extremely strict. Furthermore, if the linear expansion coefficients of the printing plate substrate and the printing target substrate are different, a change in temperature during printing will cause positional deviation.
【0010】一方、以上述べたような位置ズレの発生を
防止するために容易に考えられる方法としては、例えば
、(1)各層のパターン寸法を被印刷体基板あるいは印
刷版基板の伸縮に合わせて設計する、(2)被印刷体基
板の加熱後の冷却条件等を検討して伸縮が極力生じない
ようにする、(3)印刷時において被印刷体基板または
パターンが製版された印刷版基板(以下、印刷版という
)を加熱または冷却して、伸縮を生じせしめるなどの方
法が考えられた。しかしながら、(1)の方法に関して
は、製造工程を変える度にパターンの設計をやり直す必
要が生じるため非常に非能率的であり、(2)の方法に
関してはスループットが低下するという問題があり、(
4)の方法に関しては、例えば被印刷体基板がガラス製
である場合ガラス板の収縮が等方的でないことや、温度
コントロールの幅が狭くコントロールそのものが困難で
あるという問題があった。On the other hand, methods that can be easily considered to prevent the occurrence of positional deviations as described above include (1) adjusting the pattern dimensions of each layer to match the expansion and contraction of the substrate to be printed or the printing plate substrate; (2) Examine the cooling conditions after heating the printing substrate to avoid expansion and contraction as much as possible; (3) At the time of printing, the printing plate substrate on which the printing substrate or pattern has been made ( Methods such as heating or cooling the printing plate (hereinafter referred to as a printing plate) to cause expansion and contraction have been considered. However, method (1) is extremely inefficient as it is necessary to re-design the pattern every time the manufacturing process is changed, and method (2) has the problem of reduced throughput.
Regarding method 4), for example, when the substrate to be printed is made of glass, the shrinkage of the glass plate is not isotropic, and the temperature control range is narrow, making control itself difficult.
【0011】なお、上記パターンの伸縮を図7に基づい
て説明する。(b)工程においてポリシリコン薄膜がパ
ターニングされる。次に(c)工程で薄膜(SiO2と
ポリシリコン)が成膜されているが、その際基板は加熱
→冷却工程を経る。するとガラス基板が冷却後も元の大
きさにならず、その上のパターンも伸縮する。次に(d
)工程でゲートパターニングを行うが、その位置は上記
ポリシリコン薄膜のパターンと一定の位置関係になけれ
ばならない。しかし上記したごとく上記ポリシリコン薄
膜のパターンが伸縮していれば、ゲートパターンを設計
寸法通り形成すると、双方のパターンの位置関係は設計
通りでなくなり薄膜トランジスタとして作動しなくなる
。The expansion and contraction of the above pattern will be explained based on FIG. 7. In step (b), the polysilicon thin film is patterned. Next, in step (c), a thin film (SiO2 and polysilicon) is formed, and at this time the substrate undergoes a heating->cooling step. As a result, the glass substrate does not return to its original size even after cooling, and the pattern on it also expands and contracts. Then (d
) In the process, gate patterning is performed, but its position must be in a certain positional relationship with the pattern of the polysilicon thin film. However, if the pattern of the polysilicon thin film expands and contracts as described above, even if the gate pattern is formed according to the designed dimensions, the positional relationship between the two patterns will not be as designed, and the thin film transistor will no longer function.
【0012】本発明は上記事情に鑑みなされたもので、
印刷によるパターン形成法を用いて薄膜トランジスタ回
路を製造する際、被印刷体基板上に微細なパターンを複
数層にわたってパターニングする時に発生する各層間の
位置ズレを極めて小さな程度にすることを目的とする。The present invention was made in view of the above circumstances, and
When manufacturing a thin film transistor circuit using a pattern forming method by printing, the purpose is to minimize the positional misalignment between each layer that occurs when patterning a fine pattern over multiple layers on a printed substrate.
【0013】[0013]
【課題を解決するための手段】上記課題は、印刷版基板
上に印刷パターンを製版する製版工程と、この製版工程
後の印刷版基板上の印刷パターンを被印刷体基板上に転
写するパターン印刷工程とを有する微細パターンの製造
方法において、上記印刷版基板として、線膨張率および
熱処理工程を通した時の基板の伸縮挙動が被印刷体基板
と等しくなるような材料で作製された印刷版基板を用い
、かつパターン印刷工程に至る前までの工程で該被印刷
体基板に施された熱処理工程と同じ熱処理工程を製版工
程前後の該印刷版基板に対して行うことにより解決され
る。[Means for Solving the Problems] The above-mentioned problems are a plate-making process for making a printing pattern on a printing plate substrate, and a pattern printing process for transferring the printing pattern on the printing plate substrate after this plate-making process onto a printing target substrate. In the method for producing a fine pattern, the printing plate substrate is made of a material such that the linear expansion coefficient and expansion/contraction behavior of the substrate when subjected to a heat treatment process are equal to that of the substrate to be printed. This can be solved by applying the same heat treatment process to the printing plate substrate before and after the plate making process as that applied to the printing target substrate in the process up to the pattern printing process.
【0014】また、上記印刷版基板と被印刷体基板とを
構成する材料がガラスであり、かつ上記印刷版基板上を
製版する工程において、印刷パターンが印刷版基板の凹
部に形成されるようにする工程、または凸部に形成され
るようにする工程、または平坦部に形成されるようにす
る工程のうちの何れか1つの工程を含むことが望ましい
。[0014] Further, the material constituting the printing plate substrate and the substrate to be printed is glass, and in the step of plate making on the printing plate substrate, the printing pattern is formed in the recesses of the printing plate substrate. It is desirable to include any one of the following steps: forming a convex portion, or forming a flat portion.
【0015】また、請求項2記載の微細パターンの印刷
方法において、ガラス製の印刷版基板上に形成されたイ
ンキ受容層およびインキ反ぱつ層がいずれも金属層であ
り熱処理温度が高くても耐えられるものである印刷版を
用いるのが望ましい。In the method for printing a fine pattern according to claim 2, the ink receiving layer and the ink repellent layer formed on the glass printing plate substrate are both metal layers and can withstand high heat treatment temperatures. It is preferable to use a printing plate that can be used.
【0016】[0016]
【作用】本発明にかかる微細パターンの印刷方法にあっ
ては、印刷版基板として、線膨張率および熱処理工程を
通した時の基板の伸縮挙動が被印刷体基板と同程度とな
るような材料で作製された印刷版基板を用い、かつパタ
ーン印刷工程に至る前までの工程において該被印刷体基
板に施された熱処理工程と同様の熱処理工程を製版工程
前後の該印刷版基板に対し施す構成としたので、熱処理
工程を施された際において該被印刷体基板に発生した伸
縮と、印刷版基板に発生する伸縮の程度が一致する。ま
た、印刷時の温度が変化しても印刷版基板と被印刷体基
板とが同じように伸縮するので、位置ズレは生じない。
従って、被印刷板上に微細なパターンを複数層にわたっ
てパターニングする際の各層間の位置ズレを許容範囲内
に抑えることができる。例えば、低膨張ガラスを使用し
た液晶ディスプレイの表示パネル面に形成した場合、対
角20インチサイズにおいて、ガラス基板および刷版の
伸縮による薄膜トランジスタのパターンの位置ズレを2
μm以下に納めることができる。[Operation] In the method for printing a fine pattern according to the present invention, the printing plate substrate is made of a material whose coefficient of linear expansion and expansion/contraction behavior during the heat treatment process are comparable to those of the substrate to be printed. A configuration in which a printing plate substrate produced in the above is used, and a heat treatment process similar to the heat treatment process applied to the printing substrate in the process before the pattern printing process is applied to the printing plate substrate before and after the plate making process. Therefore, the degree of expansion and contraction that occurs in the printing target substrate when subjected to the heat treatment process matches the degree of expansion and contraction that occurs in the printing plate substrate. Further, even if the temperature during printing changes, the printing plate substrate and the printing target substrate expand and contract in the same way, so no positional shift occurs. Therefore, when patterning a fine pattern over a plurality of layers on a printing plate, misalignment between each layer can be suppressed within an allowable range. For example, when formed on the display panel surface of a liquid crystal display using low-expansion glass, the positional shift of the thin film transistor pattern due to the expansion and contraction of the glass substrate and printing plate at a diagonal size of 20 inches is reduced by 2.
It can be kept within μm or less.
【0017】以下、本発明の微細パターンの印刷方法を
例を挙げて詳細に説明する。まず、第1の例として凹版
印刷版を用いた例を示す。本例の微細パターンの印刷方
法は、図1に示すように印刷版基板に第1の熱処理を施
す熱処理工程Aと、その印刷版基板の印刷面にパターン
を製版するパターン形成工程と、パターンが製版された
印刷版基板(印刷版)に第2の熱処理を施す熱処理工程
Bとからなる印刷版作製のためのプロセス■、および被
印刷体基板に被加工薄膜を成膜する被加工薄膜形成工程
よりなる被印刷板作製のためのプロセス■、およびプロ
セス■を経て製作された印刷版上の凹部に、インキを供
給するとともにプロセス■を経て作製された被印刷板の
被印刷体基板上の被加工薄膜上にフォトレジストをコー
トし、このフォトレジストコートが半乾燥状態の時点で
先に用意しておいた印刷版の印刷面と重ね合わせ、80
℃程度に加熱してインキを軟化させ、印刷版の印刷面上
のパターンを被印刷体基板面のフォトレジストに転写す
るパターン印刷プロセス■、以上3つのプロセスより構
成されている。The fine pattern printing method of the present invention will be explained in detail below by way of example. First, as a first example, an example using an intaglio printing plate will be shown. As shown in FIG. 1, the fine pattern printing method of this example includes a heat treatment step A in which a printing plate substrate is subjected to a first heat treatment, a pattern forming step in which a pattern is made on the printing surface of the printing plate substrate, and a pattern forming process. A process for producing a printing plate consisting of a heat treatment step B in which the plate-made printing plate substrate (printing plate) is subjected to a second heat treatment, and a process thin film forming process in which a thin film to be processed is formed on the substrate to be printed. Process (2) for producing a printing plate consisting of the following steps: Supplying ink to the recesses on the printing plate produced through process (2) and applying the coating on the printing plate substrate of the printing plate produced through process (2). A photoresist is coated on the processed thin film, and when this photoresist coat is in a semi-dry state, it is overlapped with the printing surface of the printing plate prepared earlier, and
It consists of the above three processes: pattern printing process (2), in which the ink is softened by heating to about 0.degree. C. and the pattern on the printing surface of the printing plate is transferred to the photoresist on the surface of the substrate to be printed;
【0018】上記プロセス■においては、印刷版を作製
する。この時用いる印刷版基板の材質を選択する際最も
重要なことは、材料の線膨張率及び熱処理工程を通した
時の印刷版基板の伸縮挙動が被印刷体基板と同程度とな
るような材料を選択することである。従って、印刷版と
被印刷体基板とを全く同一材質で作製するのが最も好ま
しく、例えば、液晶ディスプレイの表示パネル上に薄膜
トランジスタ回路を形成する場合に被印刷体基板として
ノンアルカリ低膨張ガラスを用いたときは、印刷版基板
もまたノンアルカリ低膨張ガラスを用いると良い。In the above process (2), a printing plate is prepared. When selecting the material for the printing plate substrate used at this time, the most important thing is to select a material whose coefficient of linear expansion and expansion/contraction behavior of the printing plate substrate during the heat treatment process are comparable to those of the substrate to be printed. is to choose. Therefore, it is most preferable to make the printing plate and the substrate to be printed using the same material. For example, when forming a thin film transistor circuit on the display panel of a liquid crystal display, non-alkaline low expansion glass is used as the substrate to be printed. If the printing plate substrate is also made of non-alkali low expansion glass, it is advisable to use a non-alkali low expansion glass.
【0019】また、本プロセスにおいては、例えば、以
下のようなエッチング等の手段を用いて印刷版基板上に
パターンを形成する。まず、図1中プロセス■の熱処理
工程Aを施した印刷版基板11に、図2(a)に示すよ
うに印刷版基板11の表面にクロム等の金属をスパッタ
リング法などを用いて成膜し薄膜層12を形成する。さ
らにこの薄膜層12上にフォトレジスト13を積層し、
続いてこのフォトレジストに原版13aを露光・現像す
る。次に、図2(b)に示すようにクロムエッチング液
を用いて上記印刷版基板11上のフォトレジスト13の
形成されていない部分の薄膜層12をエッチングし、続
いて図2(c)に示すようにフッ酸系のガラスエッチン
グ液等を用いて上記薄膜層12のエッチング操作におい
てエッチングされガラス層が露呈した部分を、所定の深
さまでエッチングする。また、この後図2(d)に示す
ように印刷版基板11上のレジスト13並びに薄膜層1
2を剥離除去した後、被印刷板作製プロセス■において
、被印刷体基板上に被加工薄膜を成膜する操作における
熱処理条件と同様の条件で熱処理を行う。Furthermore, in this process, a pattern is formed on the printing plate substrate using, for example, the following etching method. First, as shown in FIG. 2(a), a film of metal such as chromium is formed on the surface of the printing plate substrate 11 using a sputtering method or the like on the printing plate substrate 11 which has been subjected to the heat treatment step A of process (2) in FIG. A thin film layer 12 is formed. Furthermore, a photoresist 13 is laminated on this thin film layer 12,
Subsequently, the original plate 13a is exposed and developed on this photoresist. Next, as shown in FIG. 2(b), the thin film layer 12 on the printing plate substrate 11 where the photoresist 13 is not formed is etched using a chrome etching solution, and then as shown in FIG. 2(c). As shown, the exposed portion of the glass layer that was etched in the etching operation of the thin film layer 12 is etched to a predetermined depth using a hydrofluoric acid-based glass etching solution or the like. After this, as shown in FIG. 2(d), the resist 13 and thin film layer 1 on the printing plate substrate 11 are removed.
After peeling off and removing 2, heat treatment is performed under the same conditions as the heat treatment conditions in the operation of forming a thin film to be processed on the substrate to be printed in the printing plate manufacturing process (2).
【0020】なお、この熱処理方法を図7に基づいて説
明する。図7(d)工程であるゲートパターニングを行
うための印刷版を作製する場合には、まず印刷版基板1
1を図7(a)工程と同一の熱処理工程に通す。次にそ
れぞれの版式に適合した製版方法でゲートパターンを形
成する。その後図7(c)工程と同一の熱処理工程に通
す。また、図7(h)の電極パターニングを行うための
印刷版を作製する際には印刷版基板11を図7(a)工
程と同一の熱処理工程を通し、次に電極パターンを形成
し、その後図7(c)、(e)、(g)、と同一の熱処
理を順次施す。これにより印刷版基板11上にパターン
14が凹状に形成されてなる印刷版11aを作製する。Note that this heat treatment method will be explained based on FIG. 7. When producing a printing plate for performing gate patterning, which is the step (d) in FIG. 7, first the printing plate substrate 1 is
1 is subjected to the same heat treatment process as the process in FIG. 7(a). Next, a gate pattern is formed using a plate making method suitable for each plate type. Thereafter, it is subjected to the same heat treatment process as the process in FIG. 7(c). In addition, when producing a printing plate for performing electrode patterning in FIG. 7(h), the printing plate substrate 11 is subjected to the same heat treatment process as in the step of FIG. 7(a), then an electrode pattern is formed, and then The same heat treatment as in FIGS. 7(c), (e), and (g) is sequentially performed. As a result, a printing plate 11a having a concave pattern 14 formed on the printing plate substrate 11 is manufactured.
【0021】上記プロセス■においてはパターン14を
形成するための被印刷板を作製する。上記プロセス■に
おいて用いた印刷版基板11と同様の材料を用い、かつ
同様の大きさに作製された被印刷体基板15に対し、例
えば図7(c)工程において、まずSiO2薄膜を成膜
し、次にアモルファスシリコン(以下、a−Siと略記
する)を成膜する。さらにこれを580〜620℃程度
,約10時間程度処理してa−Siをポリシリコン(以
下、p−Siと略記する)に固相成長させるなどの操作
を行い、図3に示すような被加工薄膜層15aを形成さ
せる。In the above process (2), a printing plate on which the pattern 14 is to be formed is prepared. For example, in the process shown in FIG. 7(c), a SiO2 thin film is first formed on a printing substrate 15 made of the same material and having the same size as the printing plate substrate 11 used in the above process (1). Next, a film of amorphous silicon (hereinafter abbreviated as a-Si) is formed. This was further processed at about 580 to 620°C for about 10 hours to cause solid phase growth of a-Si onto polysilicon (hereinafter abbreviated as p-Si), resulting in a covered film as shown in Figure 3. A processed thin film layer 15a is formed.
【0022】上記プロセス■では、図4(a)に示すよ
うにプロセス■で作製した印刷版11a上の凹部Aに、
インキ16を供給する。一方、プロセス■で作製した被
印刷板の被加工薄膜層15a上には、フォトレジスト1
7をコートし、このフォトレジストコート17が半乾燥
状態の時点で、先に用意しておいた印刷版11aのイン
キ塗布面と重ね合わせる(図4(b))。さらに重ね合
わされた印刷版11aと被印刷板とを加熱してインキ1
6を軟化させるとともに被印刷板の印刷版基板11との
重ね合わせ面の反対の面を圧し(図4(c))、印刷版
11aの凹部A内のインキ(パターン14)を被印刷板
のフォトレジスト17に転写する(図4(d))。なお
、この時使用するインキは、例えばカーボンブラックを
メラミン系熱硬化性樹脂に混入させ、紫外線遮断特性を
有する印刷インキやUV硬化型アクリル系樹脂を主成分
とする印刷インキ等が好適である。In the above process (2), as shown in FIG.
Ink 16 is supplied. On the other hand, on the thin film layer 15a to be processed of the printing plate produced in process (2), there is a photoresist 1
7, and when this photoresist coat 17 is semi-dry, it is overlapped with the ink-coated surface of the printing plate 11a prepared previously (FIG. 4(b)). Furthermore, the overlapping printing plate 11a and printing plate are heated to ink 1.
6 is softened and the surface opposite to the surface of the printing plate substrate 11 of the printing plate is pressed (FIG. 4(c)), and the ink (pattern 14) in the recesses A of the printing plate 11a is transferred to the printing plate. It is transferred onto a photoresist 17 (FIG. 4(d)). The ink used at this time is preferably, for example, a printing ink in which carbon black is mixed into a melamine-based thermosetting resin and has ultraviolet blocking properties, or a printing ink whose main component is a UV-curable acrylic resin.
【0023】上記紫外線遮断特性を有する印刷インキを
用いた場合は、フォトレジスト17にパターンを転写さ
れた被印刷板のインキ層側から超高圧水銀ランプ等を用
いて紫外線によりフォトレジストを露光・現像し、図5
(a)のようにする。次に、被加工薄膜層15aをエッ
チングし(図5(b))、さらにインキおよびフォトレ
ジストを剥離除去する(図5(c))。このようにして
被加工薄膜層15aのパターニングを終了する。When the above-mentioned printing ink having ultraviolet blocking properties is used, the photoresist is exposed to ultraviolet light and developed using an ultra-high pressure mercury lamp or the like from the ink layer side of the printing plate on which the pattern has been transferred to the photoresist 17. Figure 5
Do as in (a). Next, the thin film layer 15a to be processed is etched (FIG. 5(b)), and the ink and photoresist are further peeled off (FIG. 5(c)). In this way, patterning of the thin film layer 15a to be processed is completed.
【0024】以上の説明では、一種の薄膜をエッチング
によりパターニングする方法を説明したが、薄膜トラン
ジスタ回路などの回路素子は、通常4回から多いときは
10回程度のパターニングが必要である。なお、この複
数のパターニングを行う際に、被印刷体基板に熱処理が
施された場合は、上述したように印刷版基板に対しても
同様の条件で熱処理を行う。In the above explanation, a method of patterning a type of thin film by etching has been described, but circuit elements such as thin film transistor circuits usually require patterning from 4 times to about 10 times. In addition, when carrying out this plurality of patterning, if a heat treatment is performed on the substrate to be printed, the heat treatment is also performed on the printing plate substrate under the same conditions as described above.
【0025】なお、本例はレジストパターンの形成に凹
版印刷版を用いた例を示したものであるが、このレジス
トパターンの形成のための印刷版が凸版印刷版あるいは
平板印刷版であってもよい。また、フォトレジストは、
印刷版が凹版である場合は好適であるが、印刷版が凸版
および平版である場合はなくても良い。その時は印刷イ
ンキ自体がエッチングレジスト材となる。[0025] Although this example shows an example in which an intaglio printing plate is used to form a resist pattern, even if the printing plate for forming this resist pattern is a letterpress printing plate or a planographic printing plate. good. In addition, photoresist
It is suitable when the printing plate is an intaglio plate, but it is not necessary when the printing plate is a letterpress plate or a planographic plate. In that case, the printing ink itself becomes the etching resist material.
【0026】本例の微細パターンの印刷方法にあっては
、印刷版基板の材質を選択する際、熱処理工程を通した
時の印刷版基板の伸縮挙動が被印刷体基板と同程度とな
るような材料を選択し、かつ被印刷体基板に対しパター
ンを形成する前後において、被印刷体基板上に被加工薄
膜を成膜する操作における熱処理条件と同様の条件で印
刷版基板に対し熱処理を施す熱処理工程を行う構成とし
たので、この熱処理工程を施した際に被印刷体基板に発
生した伸縮と同じ挙動を示す伸縮が印刷版基板にも発生
する。また、印刷時の温度変化に対しても印刷版基板と
被印刷体基板の伸縮が同一である。従って、被印刷体基
板上に微細なパターンを複数層にわたってパターニング
する時に発生する各層間の位置ズレを極めて小さな程度
にすることが可能となった。In the fine pattern printing method of this example, when selecting the material of the printing plate substrate, it is selected so that the expansion and contraction behavior of the printing plate substrate during the heat treatment process is similar to that of the substrate to be printed. Select a suitable material, and before and after forming a pattern on the printing substrate, heat-treat the printing plate substrate under the same conditions as the heat treatment conditions used in the operation of forming a thin film on the printing substrate. Since the configuration is such that a heat treatment step is performed, the printing plate substrate also undergoes expansion and contraction that exhibits the same behavior as the expansion and contraction that occurs in the printing substrate when this heat treatment step is performed. Furthermore, the expansion and contraction of the printing plate substrate and the substrate to be printed are the same with respect to temperature changes during printing. Therefore, it has become possible to minimize the positional deviation between layers that occurs when fine patterns are patterned over a plurality of layers on a substrate to be printed.
【0027】次に、凹版印刷版を用いる第2の例を示す
。図6は、本例の微細パターンの印刷方法を説明するた
めの図である。印刷版基板21は、先に述べた第1の例
と同様、線膨張率と熱処理工程を通した時の印刷版基板
21の伸縮挙動が被印刷体基板15と同程度となるよう
な材料を選択することが必要である。従って、印刷版基
板21と被印刷体基板15とが全く同一材質であること
が最も好ましい。Next, a second example using an intaglio printing plate will be shown. FIG. 6 is a diagram for explaining the fine pattern printing method of this example. The printing plate substrate 21 is made of a material whose linear expansion coefficient and the expansion/contraction behavior of the printing plate substrate 21 during the heat treatment process are similar to those of the printing target substrate 15, as in the first example described above. It is necessary to choose. Therefore, it is most preferable that the printing plate substrate 21 and the printing target substrate 15 are made of exactly the same material.
【0028】本例の先の第1の例との相違点は、この印
刷版基板21の表面に複数のメッキ層を形成するメッキ
層形成工程を設けて印刷の際のインキ受容層およびイン
キ反ぱつ層がいずれも金属層となるようにしたことであ
る。具体的に言うと、まず無電解メッキ法等を用いて層
厚約3μm程度のニッケル層22を形成し(図6(a)
)、さらに印刷版基板21とニッケル層22との密着性
を向上させるため230〜270℃でおよそ1時間程度
加熱する。次に、ニッケル層22の上に硫酸銅メッキ液
等を用いて層厚約5μm程度の銅層23を形成し(図6
(b))、さらに電気メッキ法等を用いて銅層23上に
層厚約1μm程度のクロム層24を形成する(図6(c
))。The difference between this example and the first example is that a plating layer forming step is provided to form a plurality of plating layers on the surface of the printing plate substrate 21, and the ink receiving layer and ink repellent layer during printing are All of the layers are metal layers. Specifically, first, a nickel layer 22 with a thickness of about 3 μm is formed using an electroless plating method or the like (see FIG. 6(a)).
), and further heated at 230 to 270° C. for about one hour in order to improve the adhesion between the printing plate substrate 21 and the nickel layer 22. Next, a copper layer 23 with a thickness of approximately 5 μm is formed on the nickel layer 22 using a copper sulfate plating solution or the like (Fig. 6
(b)), and further, a chromium layer 24 with a thickness of approximately 1 μm is formed on the copper layer 23 using electroplating or the like (FIG. 6(c)).
)).
【0029】次に、上記クロム層24上にフォトレジス
ト25をコーティングし、これにパターン26を露光・
現像する。次に、セリウム系のクロムエッチング液を用
いて上記印刷版基板21上のフォトレジスト25の形成
されていない部分のクロム層24をその下層の銅層23
が露呈する程度までエッチングし(図6(d))、さら
に印刷版基板21上のフォトレジスト25を剥離除去し
た後、熱処理を行う。なお、この熱処理方法を図7に基
づいて説明する。図7(d)工程であるゲートパターニ
ングを行うための印刷版を作製する場合には、まず印刷
版基板21を図7(a)工程と同一の熱処理工程に通す
。
次にそれぞれの版式に適合した製版方法でゲートパター
ンを形成する。その後図7(c)工程と同一の熱処理工
程に通す。また、図7(h)の電極パターニングを行う
ための印刷版を作製する際には印刷版基板21を図7(
a)工程と同一の熱処理工程を通し、次に電極パターン
を形成し、その後図7(c)、(e)、(g)、と同一
の熱処理を順次施す。このようにして印刷版基板21上
にパターン26が形成された印刷版21Aを作製する(
図6(e))。なお、この印刷版21Aは、希硫酸で洗
浄しさらに乾燥した後、チンクターを処して銅表面のイ
ンキ受容性を向上させておくのが望ましい。上記操作に
より、印刷版21Aのインキ受容層は銅で形成され、イ
ンキ反ぱつ層はクロムで形成される。Next, a photoresist 25 is coated on the chromium layer 24, and a pattern 26 is exposed to light on the photoresist 25.
develop. Next, using a cerium-based chromium etching solution, the chromium layer 24 in the portion of the printing plate substrate 21 where the photoresist 25 is not formed is removed from the copper layer 23 below.
After etching is carried out to the extent that is exposed (FIG. 6(d)), and the photoresist 25 on the printing plate substrate 21 is peeled off, heat treatment is performed. Note that this heat treatment method will be explained based on FIG. 7. When producing a printing plate for performing gate patterning in the step of FIG. 7(d), the printing plate substrate 21 is first subjected to the same heat treatment step as the step of FIG. 7(a). Next, a gate pattern is formed using a plate making method suitable for each plate type. Thereafter, it is subjected to the same heat treatment process as the process in FIG. 7(c). In addition, when preparing a printing plate for performing electrode patterning as shown in FIG. 7(h), the printing plate substrate 21 is
Next, an electrode pattern is formed through the same heat treatment process as in step a), and then the same heat treatment as shown in FIGS. 7(c), (e), and (g) is sequentially performed. In this way, the printing plate 21A with the pattern 26 formed on the printing plate substrate 21 is produced (
Figure 6(e)). The printing plate 21A is preferably washed with dilute sulfuric acid, further dried, and then treated with a tinctor to improve the ink receptivity of the copper surface. By the above operation, the ink receiving layer of the printing plate 21A is formed of copper, and the ink repellent layer is formed of chromium.
【0030】次に、上述した操作により作製した印刷版
21Aを用いて、先の第1の例で用いたのと同じ被印刷
体基板にパターンを印刷するパターン印刷プロセス■を
行うが、このプロセスは先に述べた第1の例と同じであ
る。Next, using the printing plate 21A produced by the above-described operation, a pattern printing process (2) is performed in which a pattern is printed on the same printing substrate as used in the first example. is the same as the first example described above.
【0031】本例の微細パターンの印刷方法にあっては
、印刷版基板の材質を選択する際、線膨張率及び熱処理
工程を通した時の印刷版基板の伸縮挙動が被印刷体基板
と同程度となるような材料を選択し、かつ凹版基板に対
し薄膜トランジスタ基板作製の際、被印刷体基板上に被
加工薄膜を成膜する操作における熱処理条件と同様の条
件で熱処理を施す熱処理工程を行う構成としたので、先
の例と同様の効果が得られる。また、印刷版21Aのイ
ンキ受容層を銅で形成し、インキ反ぱつ層をクロムで形
成したので、その後の熱処理に耐えられる構成となった
。In the fine pattern printing method of this example, when selecting the material for the printing plate substrate, the linear expansion coefficient and expansion/contraction behavior of the printing plate substrate during the heat treatment process are the same as those of the substrate to be printed. A heat treatment process is performed in which the intaglio substrate is heat-treated under the same conditions as the heat treatment conditions used in the operation of forming a thin film to be processed on the substrate to be printed when producing a thin film transistor substrate. With this configuration, the same effect as the previous example can be obtained. Furthermore, since the ink receiving layer of the printing plate 21A was made of copper and the ink repellent layer was made of chromium, the printing plate 21A had a structure that could withstand subsequent heat treatment.
【0032】[0032]
(実施例1)上述した2例のうち、第1の例について実
施した。印刷版基板として表面が研磨されている厚さ×
縦×横=1.1×400×600mmのコーニング社製
低膨張ガラス(品番7059)を用い、図7(a)工程
の熱処理を施した。この印刷版基板の表面に層厚100
0オングストロームのクロム層をスパッタリング法で形
成した。次に、このクロム層上にフォトレジスト(東京
応化、OMR−85)をコーティングし、これにテスト
パターンを露光現像した。(Example 1) Of the two examples mentioned above, the first example was carried out. Thickness of surface polished as printing plate substrate ×
A low expansion glass manufactured by Corning (product number 7059) with length x width = 1.1 x 400 x 600 mm was used and subjected to the heat treatment in the step of FIG. 7(a). A layer thickness of 100 mm is applied to the surface of this printing plate substrate.
A 0 angstrom thick chromium layer was formed by sputtering. Next, a photoresist (TOKYO OHKA, OMR-85) was coated on this chromium layer, and a test pattern was exposed and developed thereon.
【0033】次に、セリウム系のクロムエッチング液を
用いて上記印刷版基板上のレジストの形成されていない
部分のクロム層をエッチングした。さらに、この印刷版
基板を水洗乾燥し、フッ酸系のガラスエッチング液を用
いて上記クロム層のエッチング操作においてエッチング
されガラス層が露呈した部分を、ガラス層の深さ2μm
までエッチングした。この後、印刷版基板上のレジスト
並びにクロム層を剥離除去した後、図7(c)工程と同
一の熱処理を施し印刷版基板上にパターンがエッチング
されてなる印刷版を作製した。また、さらにこの印刷版
の全表面にシリコーン系離型材を塗布した。Next, the chromium layer on the printing plate substrate where the resist was not formed was etched using a cerium-based chromium etching solution. Further, this printing plate substrate was washed with water and dried, and the portion where the glass layer was exposed by etching in the etching operation of the chromium layer was etched using a hydrofluoric acid-based glass etching solution to a depth of 2 μm.
It was etched up to. Thereafter, the resist and chromium layer on the printing plate substrate were peeled off, and then the same heat treatment as in the step of FIG. 7(c) was performed to produce a printing plate in which a pattern was etched on the printing plate substrate. Furthermore, a silicone-based mold release agent was applied to the entire surface of this printing plate.
【0034】次に、印刷版上の上記エッチング操作によ
り形成された凹部に、カーボンブラックをメラミン系熱
硬化性樹脂に混入させて製した、紫外線遮断特性を有す
る印刷インキを供給した。[0034] Next, a printing ink having ultraviolet blocking properties and made by mixing carbon black with a melamine-based thermosetting resin was supplied to the recesses formed by the above etching operation on the printing plate.
【0035】一方、薄膜トランジスタを形成する被印刷
体基板としては、上記印刷版基板と同様、厚さ1.1m
mのコーニング社製低膨張ガラス(品番7059)を用
いた。図7(b)工程まで終了している被印刷体基板に
ついて、図7(c)工程を通しSiO2およびp−Si
薄膜を形成し被印刷板を作製した。次に、この被印刷板
のp−Si上にフォトレジストをコートし、このフォト
レジストコートが半乾燥状態の時点で先に用意しておい
た印刷版のインキ塗布面と重ね合わせ、80℃に加熱し
てインキを軟化させるとともに被印刷板の印刷版との重
ね合わせ面の反対の面をロールで万遍なく圧し、印刷版
上のインキ(パターン)を被印刷板のフォトレジストに
転写した。次に、上記フォトレジストにパターンを転写
された被印刷板のインキ層側から超高圧水銀ランプを用
いて紫外線を照射し、これによりフォトレジストを露光
・現像した。次に、この被印刷体基板上のp−Si膜を
CF4+3%O2ガスを用いてエッチングし、インキお
よびフォトレジストを剥離除去した。On the other hand, the substrate to be printed on which the thin film transistor is formed has a thickness of 1.1 m, similar to the above-mentioned printing plate substrate.
A low expansion glass manufactured by Corning Co., Ltd. (product number 7059) was used. Regarding the printing substrate that has been completed up to the step of FIG. 7(b), SiO2 and p-Si are
A thin film was formed to prepare a printing plate. Next, a photoresist is coated on the p-Si of this printing plate, and when this photoresist coat is in a semi-dry state, it is overlapped with the ink-coated surface of the printing plate prepared earlier, and heated to 80°C. The ink was softened by heating, and the surface of the printing plate opposite to the overlapping surface with the printing plate was evenly pressed with a roll to transfer the ink (pattern) on the printing plate to the photoresist of the printing plate. Next, an ultra-high pressure mercury lamp was used to irradiate ultraviolet rays from the ink layer side of the printing plate with the pattern transferred to the photoresist, thereby exposing and developing the photoresist. Next, the p-Si film on the printing target substrate was etched using CF4+3% O2 gas, and the ink and photoresist were peeled off.
【0036】以上述べた本実施例による微細パターンの
印刷方法を用い被印刷体基板上のp−Si膜上にゲート
パターンをパターニングした。図7(b)工程で形成し
たパターンとの位置ズレは、最大で2μmであった。A gate pattern was patterned on the p-Si film on the substrate to be printed using the fine pattern printing method according to the present embodiment described above. The positional deviation with respect to the pattern formed in the step of FIG. 7(b) was 2 μm at most.
【0037】(実施例2)上述した2例のうち、第2の
例について実施した。先に述べた第1の例と同様、印刷
版基板として表面が研磨されている厚さ×縦×横=1.
1×400×600mmのコーニング社製低膨張ガラス
(品番7059)を用い、この印刷版基板の表面に無電
解メッキ法を用いて層厚3μmのニッケル層を形成した
。次に、ニッケル層の上に硫酸銅メッキ液を用いて層厚
約5μmの銅層を形成し、さらに電気メッキ法を用いて
銅層上に層厚1μmのクロム層を形成した。次に、上記
クロム層上にフォトレジスト(東京応化、OMR−85
)をコーティングし、これにパターンを露光・現像した
。次に、セリウム系のクロムエッチング液を用いて上記
印刷版基板上のレジストの形成されていない部分のクロ
ム層をその下層の銅層が露呈する程度までエッチングし
た。次に、実施例1と同様の方法で熱処理を行った。
このようにして作製された印刷版を希硫酸で洗浄、さら
に乾燥した後チンクターを処して銅表面のインキ受容性
を向上させた。(Example 2) Of the two examples mentioned above, the second example was carried out. As in the first example described above, the thickness of the printing plate substrate whose surface is polished x length x width = 1.
A 3 μm thick nickel layer was formed on the surface of the printing plate substrate using an electroless plating method using a 1×400×600 mm low-expansion glass manufactured by Corning (product number 7059). Next, a copper layer with a thickness of about 5 μm was formed on the nickel layer using a copper sulfate plating solution, and a chromium layer with a thickness of 1 μm was further formed on the copper layer using an electroplating method. Next, a photoresist (Tokyo Ohka, OMR-85) was applied on the chromium layer.
), and a pattern was exposed and developed. Next, using a cerium-based chromium etching solution, the chromium layer on the printing plate substrate where no resist was formed was etched to the extent that the underlying copper layer was exposed. Next, heat treatment was performed in the same manner as in Example 1. The printing plate thus prepared was washed with dilute sulfuric acid, further dried, and treated with tinctor to improve the ink receptivity of the copper surface.
【0038】次に、上述した操作により作製した印刷版
を用いて、被印刷板にパターンを先の実施例1と同様の
操作により印刷した。Next, using the printing plate prepared by the above-described operation, a pattern was printed on the printing plate in the same manner as in Example 1 above.
【0039】また、実施例1と同様に被印刷体基板上の
p−Si膜上にゲートパターンをパターニングし、図7
(b)工程で形成したパターンとの位置ズレを測定した
ところ、最大で2μmであった。Further, in the same manner as in Example 1, a gate pattern was patterned on the p-Si film on the substrate to be printed, and as shown in FIG.
When the positional deviation with respect to the pattern formed in step (b) was measured, it was 2 μm at most.
【0040】[0040]
【発明の効果】以上述べたように、本例の微細パターン
の印刷方法にあっては、印刷版基板として、線膨張率お
よび熱処理工程を通した時の印刷版基板の伸縮挙動が被
印刷体基板と同程度となるような材料で作製された印刷
版基板を用い、かつパターン印刷工程に至る前の工程に
おいて該被印刷体基板に施された熱処理工程と同様の熱
処理工程を製版工程前後の該印刷版基板に対して施す構
成としたので、この熱処理工程を施した際において被印
刷体基板に発生した伸縮と同程度かつ同様の挙動を示す
伸縮が印刷版基板においても発生するため、印刷版基板
と被印刷体基板との位置ズレを極めて小さくすることが
できる。また、印刷版基板および被印刷体基板の材料と
して、線膨張率および熱処理工程を通した時の伸縮挙動
がそれぞれ同程度となるような材料を各々用いたことに
より、印刷時の温度変化においても伸縮の挙動が同じよ
うになる。従って、大きな位置ズレに起因する薄膜トラ
ンジスタ回路設計上の種々の制約がなくなり回路特性を
向上させることができる。As described above, in the fine pattern printing method of this example, the linear expansion coefficient and expansion/contraction behavior of the printing plate substrate during the heat treatment process are different from those of the printing plate substrate. A printing plate substrate made of the same material as the substrate is used, and the same heat treatment process as that applied to the printing substrate in the process before the pattern printing process is applied before and after the plate making process. Since this heat treatment process is applied to the printing plate substrate, the printing plate substrate undergoes expansion and contraction to the same extent and with the same behavior as the expansion and contraction that occurs in the printing substrate when this heat treatment process is applied. Misalignment between the plate substrate and the substrate to be printed can be made extremely small. In addition, by using materials for the printing plate substrate and the printing material substrate that have the same coefficient of linear expansion and similar expansion and contraction behavior during the heat treatment process, they can withstand temperature changes during printing. The expansion and contraction behavior will be the same. Therefore, various constraints on thin film transistor circuit design due to large positional deviations are eliminated, and circuit characteristics can be improved.
【図1】本発明にかかる微細パターンの印刷方法の第1
の例における製造工程の概要を示す図である。FIG. 1: A first method of printing a fine pattern according to the present invention.
It is a figure showing an outline of a manufacturing process in an example.
【図2】本発明にかかる微細パターンの印刷方法の第1
の例におけるプロセス■を説明するための図である。FIG. 2: First method of printing a fine pattern according to the present invention.
FIG. 2 is a diagram for explaining process (2) in the example of FIG.
【図3】本発明にかかる微細パターンの印刷方法の第1
の例におけるプロセス■により作製される被印刷板を示
す図である。FIG. 3: First method of printing a fine pattern according to the present invention.
FIG. 2 is a diagram showing a printing plate produced by process (2) in the example of FIG.
【図4】本発明にかかる微細パターンの印刷方法の第1
の例におけるプロセス■を説明するための図である。FIG. 4: First method of printing a fine pattern according to the present invention.
FIG. 2 is a diagram for explaining process (2) in the example of FIG.
【図5】プロセス■のエッチング工程を説明するための
図である。FIG. 5 is a diagram for explaining the etching step of process (2).
【図6】本発明にかかる微細パターンの印刷方法の第2
の例を説明するための図である。FIG. 6: Second fine pattern printing method according to the present invention.
FIG. 2 is a diagram for explaining an example.
【図7】薄膜トランジスタ回路の作製工程の1例を示す
図である。FIG. 7 is a diagram showing an example of a manufacturing process of a thin film transistor circuit.
11 印刷版基板 11a印刷版 14 パターン 15 被印刷体基板 16 インキパターン 21 印刷版基板 21A印刷版 23 銅層 24 クロム層 11 Printing plate substrate 11a printing version 14 Pattern 15 Printed substrate 16 Ink pattern 21 Printing plate substrate 21A printing version 23 Copper layer 24 Chromium layer
Claims (3)
る製版工程と、この製版工程後の印刷版基板上の印刷パ
ターンを被印刷体基板上に転写するパターン印刷工程と
を有する微細パターンの製造方法において、上記印刷版
基板として、線膨張率および熱処理工程を通した時の基
板の伸縮挙動が被印刷体基板と等しくなるような材料で
作製された印刷版基板を用い、かつパターン印刷工程に
至る前までの工程で該被印刷体基板に施された熱処理工
程と同じ熱処理工程を製版工程前後の該印刷版基板に対
して行うことを特徴とする微細パターンの印刷方法。1. Manufacturing of a fine pattern, comprising a plate making process of making a printing pattern on a printing plate substrate, and a pattern printing process of transferring the printed pattern on the printing plate substrate after this plate making process onto a printing target substrate. In the method, as the printing plate substrate, a printing plate substrate made of a material whose linear expansion coefficient and expansion/contraction behavior during the heat treatment process are equal to that of the substrate to be printed, and the pattern printing process is performed. A method for printing fine patterns, characterized in that the same heat treatment process as that applied to the substrate to be printed in the previous steps is performed on the printing plate substrate before and after the plate making process.
成する材料がガラスであり、かつ上記印刷版基板を製版
する工程において、印刷パターンが印刷版基板の凹部に
形成されるようにする工程、または凸部に形成されるよ
うにする工程、または平坦部に形成されるようにする工
程のうちの何れか1つの工程を含むことを特徴とする請
求項1記載の微細パターンの印刷方法。2. The material constituting the printing plate substrate and the substrate to be printed is glass, and in the step of plate making the printing plate substrate, the printing pattern is formed in the recessed portion of the printing plate substrate. 2. The method for printing a fine pattern according to claim 1, further comprising one of the following steps: forming a micropattern on a convex portion, or forming on a flat portion. .
法において、ガラス製の印刷版基板上に形成されたイン
キ受容層およびインキ反ぱつ層がいずれも金属層である
印刷版を用いることを特徴とする微細パターンの印刷方
法。3. The method for printing fine patterns according to claim 2, characterized in that a printing plate is used in which the ink receiving layer and the ink repellent layer formed on the glass printing plate substrate are both metal layers. A method for printing fine patterns.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8606491A JP2556937B2 (en) | 1991-03-26 | 1991-03-26 | Fine pattern printing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8606491A JP2556937B2 (en) | 1991-03-26 | 1991-03-26 | Fine pattern printing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04296724A true JPH04296724A (en) | 1992-10-21 |
JP2556937B2 JP2556937B2 (en) | 1996-11-27 |
Family
ID=13876272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8606491A Expired - Lifetime JP2556937B2 (en) | 1991-03-26 | 1991-03-26 | Fine pattern printing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2556937B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6732643B2 (en) | 2001-11-07 | 2004-05-11 | Lg. Philips Lcd Co., Ltd. | Method for forming pattern using printing process |
US6875704B2 (en) | 2002-12-18 | 2005-04-05 | Lg.Philips Lcd Co., Ltd. | Method for forming pattern using printing process |
US6924872B2 (en) | 1999-12-02 | 2005-08-02 | Sharp Kabushiki Kaisha | Flexible LCD panel fabrication method and flexible LCD panel fabrication system used for the same |
US6940578B2 (en) | 2002-12-18 | 2005-09-06 | Lg.Philips Lcd Co., Ltd. | Method for fabricating liquid crystal display device |
US7098988B2 (en) | 2002-12-27 | 2006-08-29 | Lg.Philips Lcd Co., Ltd. | Method of fabricating liquid crystal display device |
US7140296B2 (en) | 2002-12-27 | 2006-11-28 | Lg.Philips Lcd Co., Ltd. | Method for forming pattern of liquid crystal display device |
US7169517B2 (en) | 2002-12-27 | 2007-01-30 | Lg Philips Lcd Co., Ltd. | Method of fabricating a color filter in liquid crystal display device without using a photo mask |
US7243599B2 (en) | 2002-12-27 | 2007-07-17 | Lg Philips Lcd Co., Ltd. | Method of fabricating color filter in display device |
US8105762B2 (en) | 2002-12-18 | 2012-01-31 | Lg Display Co., Ltd. | Method for forming pattern using printing process |
-
1991
- 1991-03-26 JP JP8606491A patent/JP2556937B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6924872B2 (en) | 1999-12-02 | 2005-08-02 | Sharp Kabushiki Kaisha | Flexible LCD panel fabrication method and flexible LCD panel fabrication system used for the same |
US6732643B2 (en) | 2001-11-07 | 2004-05-11 | Lg. Philips Lcd Co., Ltd. | Method for forming pattern using printing process |
US6875704B2 (en) | 2002-12-18 | 2005-04-05 | Lg.Philips Lcd Co., Ltd. | Method for forming pattern using printing process |
US6940578B2 (en) | 2002-12-18 | 2005-09-06 | Lg.Philips Lcd Co., Ltd. | Method for fabricating liquid crystal display device |
US8105762B2 (en) | 2002-12-18 | 2012-01-31 | Lg Display Co., Ltd. | Method for forming pattern using printing process |
US7098988B2 (en) | 2002-12-27 | 2006-08-29 | Lg.Philips Lcd Co., Ltd. | Method of fabricating liquid crystal display device |
US7140296B2 (en) | 2002-12-27 | 2006-11-28 | Lg.Philips Lcd Co., Ltd. | Method for forming pattern of liquid crystal display device |
US7169517B2 (en) | 2002-12-27 | 2007-01-30 | Lg Philips Lcd Co., Ltd. | Method of fabricating a color filter in liquid crystal display device without using a photo mask |
US7243599B2 (en) | 2002-12-27 | 2007-07-17 | Lg Philips Lcd Co., Ltd. | Method of fabricating color filter in display device |
US7362405B2 (en) | 2002-12-27 | 2008-04-22 | Lg.Philips Lcd Co., Ltd. | Method of fabricating liquid crystal display device |
Also Published As
Publication number | Publication date |
---|---|
JP2556937B2 (en) | 1996-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030062334A1 (en) | Method for forming a micro-pattern on a substrate by using capillary force | |
US20080092377A1 (en) | Patterned printing plates and processes for printing electrical elements | |
JPH0521310A (en) | Formation of fine pattern | |
JPH04296724A (en) | Printing method for fine pattern | |
CN113219782A (en) | Method for manufacturing photomask, photomask and method for manufacturing display device | |
TWI522024B (en) | Cliche for offset printing and method for preparing the same | |
KR0128827B1 (en) | Phase reversal mask manufacturing method | |
US6136480A (en) | Method for fabrication of and apparatus for use as a semiconductor photomask | |
US20080199786A1 (en) | Method for fabricating photomask in semiconductor device | |
KR101085131B1 (en) | Pattern Forming Method and Method for Manufacturing Substrate for Liquid Crystal Display Device Using the Same | |
KR20060084797A (en) | Printing method by printing pattern and production equipment to print printing pattern | |
JP2664128B2 (en) | Metal plating mask pattern | |
CN114355736B (en) | Method for preparing micron-sized double-layer structure in one step by using mask lithography technology | |
JPS589944B2 (en) | photo mask | |
KR970006722B1 (en) | Phase reversal mask and manufacturing method | |
JPH06148864A (en) | Phase shift mask and its production | |
KR100251988B1 (en) | A method for forming photoresist pattern in semiconductor device | |
JPH03104127A (en) | How to form fine patterns | |
JPH04127149A (en) | Photomask and its manufacturing method | |
US6258490B1 (en) | Transmission control mask utilized to reduce foreshortening effects | |
KR100305142B1 (en) | How to form a phase inversion mask | |
KR100215899B1 (en) | Process for forming contact of semiconductor device | |
KR101477299B1 (en) | GRADIENT FOR GRAVY OFFSET PRINTING DEVICE AND METHOD FOR MANUFACTURING THE SAME | |
JPH04142029A (en) | Processing method for fine pattern | |
JPS61245161A (en) | Manufacture of x-ray mask |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960709 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080905 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080905 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090905 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090905 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090905 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100905 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100905 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 15 |