JPH04294060A - Negative electrode for secondary battery with non-aqueous electrolyte - Google Patents
Negative electrode for secondary battery with non-aqueous electrolyteInfo
- Publication number
- JPH04294060A JPH04294060A JP3060050A JP6005091A JPH04294060A JP H04294060 A JPH04294060 A JP H04294060A JP 3060050 A JP3060050 A JP 3060050A JP 6005091 A JP6005091 A JP 6005091A JP H04294060 A JPH04294060 A JP H04294060A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- aqueous electrolyte
- secondary battery
- electrolyte secondary
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 24
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229920006026 co-polymeric resin Polymers 0.000 claims abstract description 20
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims abstract description 18
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 20
- 239000011230 binding agent Substances 0.000 claims description 20
- 229910052744 lithium Inorganic materials 0.000 claims description 20
- 239000003575 carbonaceous material Substances 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 6
- 239000011149 active material Substances 0.000 claims description 4
- 238000009830 intercalation Methods 0.000 claims description 3
- 238000009831 deintercalation Methods 0.000 claims description 2
- 239000011883 electrode binding agent Substances 0.000 abstract description 13
- 238000007599 discharging Methods 0.000 abstract description 8
- 238000007600 charging Methods 0.000 abstract description 7
- 230000008602 contraction Effects 0.000 abstract description 2
- 125000004122 cyclic group Chemical group 0.000 abstract 2
- 230000005611 electricity Effects 0.000 abstract 1
- -1 Cr2O5 Chemical compound 0.000 description 11
- 230000014759 maintenance of location Effects 0.000 description 10
- 239000004698 Polyethylene Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 239000007773 negative electrode material Substances 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000006258 conductive agent Substances 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229920000915 polyvinyl chloride Polymers 0.000 description 5
- 239000004800 polyvinyl chloride Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229910032387 LiCoO2 Inorganic materials 0.000 description 4
- 229910000733 Li alloy Inorganic materials 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000001989 lithium alloy Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 238000010277 constant-current charging Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910003092 TiS2 Inorganic materials 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001786 chalcogen compounds Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は非水電解質二次電池用負
極に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for non-aqueous electrolyte secondary batteries.
【0002】0002
【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解質二次電池は、高電圧で高エネルギー密度
が期待され、多くの研究が行なわれている。BACKGROUND OF THE INVENTION Non-aqueous electrolyte secondary batteries using lithium or lithium compounds as negative electrodes are expected to have high voltage and high energy density, and many studies are being conducted on them.
【0003】これまで非水電解質二次電池の正極活物質
には、LiCoO2、V2O5、Cr2O5、MnO2
、TiS2、MoS2などの遷移金属の酸化物およびカ
ルコゲン化合物が知られおり、これらは層状もしくはト
ンネル構造を有し、リチウムイオンが出入りできる結晶
構造を持つ。一方、負極活物質としては金属リチウムが
多く検討されてきた。しかしながら充電時にリチウム表
面に樹枝状にリチウムが析出し、充放電効率の低下もし
くは正極と接して内部短絡を生じるという問題点を有し
ていた。[0003] Until now, positive electrode active materials for non-aqueous electrolyte secondary batteries include LiCoO2, V2O5, Cr2O5, MnO2
, TiS2, MoS2, and other transition metal oxides and chalcogen compounds are known, and these have a layered or tunnel structure, and have a crystal structure in which lithium ions can enter and exit. On the other hand, metallic lithium has been widely studied as a negative electrode active material. However, during charging, lithium precipitates on the lithium surface in a dendritic form, resulting in a reduction in charge/discharge efficiency or in contact with the positive electrode, resulting in an internal short circuit.
【0004】0004
【発明が解決しようとする課題】このような問題を解決
する手段として、リチウムの樹枝状成長を抑制しリチウ
ムを吸蔵、放出することできるリチウム−アルミニウム
などのリチウム合金板もしくはリチウムを吸蔵、放出す
ることのできる金属粉末、炭素材料または酸化物、硫化
物を負極活物質に用いる検討がなされている。しかしな
がらリチウム合金板を用いた場合、深い充放電を繰り返
すと電極の微細化が生じサイクル特性に問題があった。
また金属粉末や炭素材料または酸化物、硫化物を用いた
場合、通常単独では電極が構成できないため、金属粉末
や酸化物、硫化物に関しては黒鉛などの導電剤とポリエ
チレンなどの結着剤から、また炭素材料に関しても結着
剤と一緒に電極が構成される。負極の結着剤としては、
正極で頻繁に結着剤として使用されているフッソ樹脂が
電解液の分解を促進することと、負極であるリチウムと
反応するため、ポリエチレンなどのポリオレフィン系が
用いられている。しかしながらいずれにおいてもリチウ
ムの吸蔵、放出に伴い電極の膨張、収縮が生じるため集
電不良が生じ、サイクル特性が良くないという欠点を有
しており未だ充分な特性が得られていない。本発明はこ
のような問題を解決し、充放電サイクル特性の優れた非
水電解質二次電池用負極を提供することを目的とする。[Problems to be Solved by the Invention] As a means to solve such problems, a lithium alloy plate such as lithium-aluminum that can absorb and release lithium while suppressing the dendritic growth of lithium or a lithium alloy plate that can absorb and release lithium is used. Consideration has been made to use metal powders, carbon materials, oxides, and sulfides that can be used as negative electrode active materials. However, when a lithium alloy plate is used, repeated deep charging and discharging causes the electrode to become finer, resulting in a problem with cycle characteristics. In addition, when metal powder, carbon material, oxide, or sulfide is used, electrodes cannot usually be constructed by using them alone, so metal powder, oxide, or sulfide can be used with a conductive agent such as graphite and a binder such as polyethylene. Further, the carbon material also constitutes the electrode together with the binder. As a binder for the negative electrode,
Fluorine resin, which is frequently used as a binder in positive electrodes, promotes decomposition of the electrolyte and reacts with lithium, which is the negative electrode, so polyolefins such as polyethylene are used. However, in all of these methods, expansion and contraction of the electrode occurs as lithium is inserted and released, resulting in poor current collection and poor cycle characteristics, so that sufficient characteristics have not yet been obtained. An object of the present invention is to solve these problems and provide a negative electrode for a non-aqueous electrolyte secondary battery with excellent charge-discharge cycle characteristics.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するため
に、本発明の非水電解質二次電池用負極は、リチウムを
吸蔵、放出することのできる金属粉末、炭素材料または
硫化物、酸化物を活物質とする非水電解質二次電池の負
極において、前記負極中に結着剤として塩化ビニルと酢
酸ビニルの共重合樹脂を用いるものである。[Means for Solving the Problems] In order to solve the above problems, the negative electrode for a nonaqueous electrolyte secondary battery of the present invention is made of a metal powder, carbon material, sulfide, or oxide that can occlude and release lithium. A copolymer resin of vinyl chloride and vinyl acetate is used as a binder in the negative electrode of a non-aqueous electrolyte secondary battery using as an active material.
【0006】[0006]
【作用】この構成により本発明の非水電解質二次電池は
、リチウムを吸蔵、放出することのできる金属粉末、炭
素材料または酸化物、硫化物を活物質とする非水電解質
二次電池用負極の結着剤として、結着性に富む塩化ビニ
ルと酢酸ビニルの共重合樹脂を用いることで、充放電を
繰り返しても電極中の集電が充分保持され、比較的少な
いサイクル数で充放電容量が低下することがなくなり、
安定した電池特性を有する非水電解質二次電池用負極を
構成することが可能となる。[Function] With this configuration, the non-aqueous electrolyte secondary battery of the present invention has a negative electrode for a non-aqueous electrolyte secondary battery whose active material is metal powder, carbon material, oxide, or sulfide that can absorb and release lithium. By using a highly binding copolymer resin of vinyl chloride and vinyl acetate as a binder, the current collection in the electrode is maintained sufficiently even after repeated charging and discharging, and the charging and discharging capacity can be increased with a relatively small number of cycles. will no longer decrease,
It becomes possible to construct a negative electrode for a non-aqueous electrolyte secondary battery that has stable battery characteristics.
【0007】リチウムを吸蔵、放出することのできる金
属粉末としては、リチウムを比較的簡単に吸蔵、放出す
ることができるアルミニウム、錫、鉛、インジウム、ビ
スマスが好ましく、導電剤には、黒鉛もしくはカーボン
ブラックが好ましい。[0007] As the metal powder that can occlude and desorb lithium, aluminum, tin, lead, indium, and bismuth, which can occlude and desorb lithium relatively easily, are preferable, and as the conductive agent, graphite or carbon is preferable. Black is preferred.
【0008】[0008]
【実施例】以下本発明の一実施例の非水電解質二次電池
について図面に基づいて詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described in detail below with reference to the drawings.
【0009】(実施例1)本実施例においては、リチウ
ムを吸蔵、放出することのできるアルミニウム粉末を負
極活物質に、結着剤にポリ塩化ビニル樹脂を用いたもの
ならびに塩化ビニルの含有量が95モル%、85モル%
、75モル%、65モル%、60モル%の塩化ビニルと
酢酸ビニルの共重合樹脂を用いた負極で構成した電池に
ついて説明する。また従来例として結着剤にポリエチレ
ンを用いたものも示す。(Example 1) In this example, aluminum powder capable of inserting and releasing lithium was used as the negative electrode active material, polyvinyl chloride resin was used as the binder, and the content of vinyl chloride was 95 mol%, 85 mol%
, 75 mol %, 65 mol %, and 60 mol % of a battery constructed with a negative electrode using a copolymer resin of vinyl chloride and vinyl acetate will be described. Also shown is a conventional example in which polyethylene is used as a binder.
【0010】負極は、300メッシュパスのアルミニウ
ム粉末と、導電剤としてのアセチレンブラックと、結着
剤としてポリ塩化ビニルもしくは塩化ビニルと酢酸ビニ
ルの共重合樹脂を重量比で45:45:10ならびに4
7.5:47.5:5の割合で混合し、得られた負極合
剤0.1gを直径17.5mmに2トン/cm2でプレ
ス成型することで10重量%と5重量%の結着剤を含む
負極を作製した。正極活物質にはLiCoO2を用い、
正極はLiCoO2と、導電剤であるアセチレンブラッ
クと、結着剤であるポリ4フッカエチレン樹脂を重量比
で7:2:1の割合で混合し、得られた正極合剤0.2
gを直径17.5mmに2トン/cm2でプレス成型す
ることで作製した。図1において、成型した正極1をケ
ース2に置く。正極1の上にセパレータ3としての多孔
性ポリプロピレンフィルムを置いた。負極4を、ポリプ
ロピレン製ガスケット6を付けた封口板5に圧着した。
非水電解質として、1モル/lの過塩素酸リチウムを溶
解したプロピレンカーボネート溶媒を用い、これをセパ
レータ3上および負極4上に加えた。その後電池を封口
した。The negative electrode is made of 300 mesh pass aluminum powder, acetylene black as a conductive agent, and polyvinyl chloride or a copolymer resin of vinyl chloride and vinyl acetate as a binder in a weight ratio of 45:45:10 and 45:45:10.
By mixing at a ratio of 7.5:47.5:5 and press-molding 0.1 g of the obtained negative electrode mixture into a diameter of 17.5 mm at 2 tons/cm2, binding of 10% by weight and 5% by weight was achieved. A negative electrode containing the agent was prepared. LiCoO2 is used as the positive electrode active material,
The positive electrode was made by mixing LiCoO2, acetylene black as a conductive agent, and poly-4-fluoroethylene resin as a binder in a weight ratio of 7:2:1, and the resulting positive electrode mixture was 0.2
g to a diameter of 17.5 mm at a pressure of 2 tons/cm2. In FIG. 1, a molded positive electrode 1 is placed in a case 2. A porous polypropylene film as a separator 3 was placed on the positive electrode 1 . The negative electrode 4 was crimped onto a sealing plate 5 equipped with a polypropylene gasket 6. A propylene carbonate solvent in which 1 mol/l of lithium perchlorate was dissolved was used as a non-aqueous electrolyte, and this was added onto the separator 3 and the negative electrode 4. After that, the battery was sealed.
【0011】なお従来例である負極結着剤にポリエチレ
ンを用いた電池も本実施例と同様の方法で作製した。[0011] A conventional battery using polyethylene as the negative electrode binder was also produced in the same manner as in this example.
【0012】以上、14種類の電池の充放電サイクル特
性の比較を行なった。なお本実施例では、負極の充放電
サイクル試験を行なうため、正極によるサイクル劣化を
除外できるだけの充分な正極容量をもつ条件で電池を構
成している。充放電サイクル試験は、充放電電流0.5
mA、電圧範囲4.0Vから3.0Vの間で定電流充放
電することで行なった。As described above, the charge/discharge cycle characteristics of 14 types of batteries were compared. In this example, in order to perform a charge/discharge cycle test on the negative electrode, the battery was constructed under conditions that the battery had a sufficient positive electrode capacity to exclude cycle deterioration due to the positive electrode. The charge/discharge cycle test is performed at a charge/discharge current of 0.5
This was carried out by constant current charging and discharging at mA and a voltage range of 4.0V to 3.0V.
【0013】(表1)に初期放電容量ならびに50サイ
クル目の放電容量また初期放電容量に対する50サイク
ル目の放電容量の容量維持率を示す。Table 1 shows the initial discharge capacity, the discharge capacity at the 50th cycle, and the capacity retention ratio of the discharge capacity at the 50th cycle relative to the initial discharge capacity.
【0014】[0014]
【表1】[Table 1]
【0015】(表1)に示すように、結着剤にポリエチ
レン5重量%ならびに10重量%を含む負極を用いた従
来例の電池は、初期6.9mAh、6.5mAhの放電
容量を示すが、サイクルとともに容量が低下し、50サ
イクル後の放電容量維持率が40%程度まで低下する。
一方負極結着剤に塩化ビニルと酢酸ビニルの共重合樹脂
を用いた本実施例の電池はいずれも初期従来例の電池と
同等もしくはそれ以上の放電容量を示し、また50サイ
クル後の放電容量維持率も70%以上とサイクル特性が
向上している。結着剤量が5重量%ならびに10重量%
のポリ塩化ビニル樹脂単独を負極結着剤に用いた電池の
初期放電容量は、塩化ビニルと酢酸ビニルの共重合樹脂
を用いた電池に比べて若干大きいものの、50サイクル
目の放電容量維持率は5重量%のものが59%、10重
量%のものが63%まで低下する。二次電池においては
、放電容量ならびに容量維持率が大きい電極が望まれる
ことから、塩化ビニルと酢酸ビニルの共重合樹脂は負極
結着剤として優れている。中でも塩化ビニルの含有量が
95モル%から65モル%の共重合樹脂を用いた電池は
初期放電容量ならびに容量維持率が大きく、負極結着剤
として望ましいことがわかった。As shown in Table 1, conventional batteries using negative electrodes containing 5% by weight and 10% by weight of polyethylene as a binder exhibit initial discharge capacities of 6.9mAh and 6.5mAh; The capacity decreases with each cycle, and the discharge capacity retention rate after 50 cycles decreases to about 40%. On the other hand, all of the batteries of this example using a copolymer resin of vinyl chloride and vinyl acetate as the negative electrode binder exhibited a discharge capacity equal to or higher than that of the initial conventional battery, and maintained the discharge capacity after 50 cycles. The cycle characteristics have also been improved, with a cycle rate of over 70%. Binder amount is 5% and 10% by weight
Although the initial discharge capacity of a battery using only polyvinyl chloride resin as the negative electrode binder is slightly larger than that of a battery using a copolymer resin of vinyl chloride and vinyl acetate, the discharge capacity retention rate at the 50th cycle is 5% by weight decreases to 59%, and 10% by weight decreases to 63%. In secondary batteries, since electrodes with high discharge capacity and capacity retention are desired, copolymer resins of vinyl chloride and vinyl acetate are excellent as negative electrode binders. Among them, it has been found that batteries using copolymer resins with a vinyl chloride content of 95 mol % to 65 mol % have high initial discharge capacity and capacity retention rate, and are desirable as negative electrode binders.
【0016】以上のように、アルミニウム粉末を負極活
物質に用いる電池において、負極結着剤に塩化ビニルと
酢酸ビニルの共重合樹脂を用いることで、サイクル特性
の優れた非水電解質二次電池を作製できることを確認し
た。As described above, in a battery using aluminum powder as the negative electrode active material, by using a copolymer resin of vinyl chloride and vinyl acetate as the negative electrode binder, a non-aqueous electrolyte secondary battery with excellent cycle characteristics can be created. We confirmed that it can be produced.
【0017】なお実施例では、金属粉末としてアルミニ
ウム、導電剤としてアセチレンブラックの組合せで説明
したが、同様にリチウムを吸蔵、放出しリチウムと合金
形成することのできるスズ、鉛、インジウム、ビスマス
粉末と導電剤として黒鉛、カーボンブラックのいずれの
組合せにおいても、ほぼ同様の効果が得られることを確
認した。In the examples, the combination of aluminum as the metal powder and acetylene black as the conductive agent was explained, but tin, lead, indium, and bismuth powders, which can similarly absorb and release lithium and form an alloy with lithium, are also used. It was confirmed that almost the same effect can be obtained with any combination of graphite and carbon black as the conductive agent.
【0018】(実施例2)本実施例においては、リチウ
ムを吸蔵、放出することのできる炭素材料を負極活物質
に、結着剤にポリ塩化ビニルを用いたもの、ならびに塩
化ビニルの含有量が95モル%、85モル%、75モル
%、65モル%、60モル%の塩化ビニルと酢酸ビニル
の共重合樹脂を用いた負極で構成した電池について説明
する。また従来例として結着剤にポリエチレンを用いた
ものも示す。(Example 2) In this example, a carbon material capable of inserting and releasing lithium was used as the negative electrode active material, polyvinyl chloride was used as the binder, and the content of vinyl chloride was A battery constructed with a negative electrode using a copolymer resin of vinyl chloride and vinyl acetate of 95 mol%, 85 mol%, 75 mol%, 65 mol%, and 60 mol% will be described. Also shown is a conventional example in which polyethylene is used as a binder.
【0019】負極は、炭素材料と結着剤としての塩化ビ
ニルならびに塩化ビニルと酢酸ビニルの共重合樹脂を重
量比で9:1ならびに95:5の割合で混合し、得られ
た負極合剤0.1gを直径17.5mmに2トン/cm
2でプレス成型することで10重量%と5重量%の結着
剤を含む負極を作製した。正極活物質はLiCoO2を
用い、実施例1と同様の条件で正極を作製した。電池の
製造も、実施例1と同様の条件で行なった。The negative electrode is made of a negative electrode mixture obtained by mixing a carbon material, vinyl chloride as a binder, and a copolymer resin of vinyl chloride and vinyl acetate at a weight ratio of 9:1 and 95:5. .1g to 17.5mm in diameter 2 tons/cm
Negative electrodes containing 10% by weight and 5% by weight of the binder were produced by press molding in Step 2. A positive electrode was produced under the same conditions as in Example 1 using LiCoO2 as the positive electrode active material. The battery was also manufactured under the same conditions as in Example 1.
【0020】なお従来例である負極結着剤にポリエチレ
ンを用いた電池も本実施例と同様の方法で作製した。[0020] A conventional battery using polyethylene as a negative electrode binder was also produced in the same manner as in this example.
【0021】以上、14種類の電池の充放電サイクル特
性の比較を行なった。なお本実施例では、実施例1同様
、負極の充放電サイクル試験を行なうため、正極による
サイクル劣化を除外できるだけの充分な正極容量をもつ
条件で電池を構成している。充放電サイクル試験は、充
放電電流0.5mA、電圧範囲4.1Vから3.0Vの
間で定電流充放電することで行なった。As described above, the charge/discharge cycle characteristics of 14 types of batteries were compared. In this example, as in Example 1, a charge/discharge cycle test is performed on the negative electrode, so the battery is constructed under conditions that the battery has a sufficient positive electrode capacity to exclude cycle deterioration due to the positive electrode. The charge/discharge cycle test was performed by constant current charging/discharging at a charge/discharge current of 0.5 mA and a voltage range of 4.1 V to 3.0 V.
【0022】(表2)に初期放電容量ならびに50サイ
クル目の放電容量、また初期放電容量に対する50サイ
クル目の放電容量の容量維持率を示す。Table 2 shows the initial discharge capacity, the discharge capacity at the 50th cycle, and the capacity retention ratio of the discharge capacity at the 50th cycle relative to the initial discharge capacity.
【0023】[0023]
【表2】[Table 2]
【0024】(表2)に示すように、結着剤にポリエチ
レン5重量%ならびに10重量%を含む負極を用いた従
来例の電池は、初期6.4mAh、6.2mAhの放電
容量を示すが、サイクルとともに容量が低下し、50サ
イクル後の放電容量維持率が40%前後まで低下する。
一方負極結着剤に塩化ビニルと酢酸ビニルの共重合樹脂
を用いた本実施例の電池は、いずれも初期従来例の電池
と同等もしくはそれ以上の放電容量を示し、また50サ
イクル後の放電容量維持率も70%以上とサイクル特性
が向上している。結着剤量が5重量%ならびに10重量
%のポリ塩化ビニル樹脂単独を負極結着剤に用いた電池
の初期放電容量は、塩化ビニルと酢酸ビニルの共重合樹
脂を用いた電池に比べて若干大きいものの、50サイク
ル目の放電容量維持率は5重量%のものが56%、10
重量%のものが60%まで低下する。二次電池において
は、放電容量ならびに容量維持率が大きい電極が望まれ
ることから、塩化ビニルと酢酸ビニルの共重合樹脂は負
極結着剤として優れている。中でも塩化ビニルの含有量
が95モル%から65モル%の共重合樹脂を用いた電池
は初期放電容量ならびに容量維持率が大きく、負極結着
剤として望ましいことがわかった。As shown in Table 2, conventional batteries using negative electrodes containing 5% and 10% by weight of polyethylene as a binder exhibited initial discharge capacities of 6.4 mAh and 6.2 mAh, respectively. The capacity decreases with each cycle, and the discharge capacity retention rate after 50 cycles decreases to around 40%. On the other hand, the batteries of this example using a copolymer resin of vinyl chloride and vinyl acetate as the negative electrode binder showed a discharge capacity equal to or higher than that of the initial conventional battery, and also had a discharge capacity after 50 cycles. The cycle characteristics have improved, with a maintenance rate of over 70%. The initial discharge capacity of batteries using polyvinyl chloride resin alone as the negative electrode binder with a binder amount of 5% or 10% by weight is slightly lower than that of batteries using a copolymer resin of vinyl chloride and vinyl acetate. Although it is large, the discharge capacity retention rate at the 50th cycle was 56% for the 5% by weight product, 10%.
The weight percentage decreases to 60%. In secondary batteries, since electrodes with high discharge capacity and capacity retention are desired, copolymer resins of vinyl chloride and vinyl acetate are excellent as negative electrode binders. Among them, it has been found that batteries using copolymer resins with a vinyl chloride content of 95 mol % to 65 mol % have high initial discharge capacity and capacity retention rate, and are desirable as negative electrode binders.
【0025】以上のように、炭素材料を負極活物質に用
いる電池において、負極結着剤に塩化ビニルと酢酸ビニ
ルの共重合樹脂を用いることで、充放電サイクル特性の
優れた非水電解質二次電池を作製できることを確認した
。As described above, in a battery using a carbon material as the negative electrode active material, by using a copolymer resin of vinyl chloride and vinyl acetate as the negative electrode binder, a non-aqueous electrolyte secondary with excellent charge/discharge cycle characteristics can be obtained. It was confirmed that batteries could be produced.
【0026】なお本実施例では、負極活物質としてリチ
ウムを吸蔵、放出することのできる炭素材料について説
明したが、負極活物質として期待されるFe2O3や、
WO2などの遷移金属酸化物についても、ほぼ同様の効
果が得られることを確認した。[0026] In this example, a carbon material capable of intercalating and releasing lithium was explained as a negative electrode active material, but Fe2O3, which is expected to be a negative electrode active material,
It was confirmed that almost the same effect can be obtained with transition metal oxides such as WO2.
【0027】[0027]
【発明の効果】以上の実施例の説明で明らかなように、
本発明の非水電解質二次電池用負極によれば、リチウム
を吸蔵、放出することのできる金属粉末、炭素材料また
は硫化物、酸化物を活物質とする非水電解質二次電池の
負極の結着剤として塩化ビニルと酢酸ビニルの共重合樹
脂を用いることで、優れた充放電サイクル特性を有する
非水電解質二次電池用負極を得ることができる。[Effects of the Invention] As is clear from the above description of the embodiments,
According to the negative electrode for a non-aqueous electrolyte secondary battery of the present invention, the negative electrode of a non-aqueous electrolyte secondary battery whose active material is a metal powder, carbon material, sulfide, or oxide capable of intercalating and deintercalating lithium. By using a copolymer resin of vinyl chloride and vinyl acetate as an adhesive, it is possible to obtain a negative electrode for a non-aqueous electrolyte secondary battery that has excellent charge-discharge cycle characteristics.
【図1】本発明の一実施例の非水電解質二次電池用負極
を用いた電池の縦断面図[Fig. 1] A vertical cross-sectional view of a battery using a negative electrode for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.
1 正極 2 ケース 3 セパレータ 4 負極 5 封口板 6 ガスケット 1 Positive electrode 2 Case 3 Separator 4 Negative electrode 5 Sealing plate 6 Gasket
Claims (2)
属粉末、炭素材料または硫化物、酸化物を活物質とする
非水電解質二次電池の負極において、前記負極中に結着
剤として塩化ビニルと酢酸ビニルの共重合樹脂を用いた
非水電解質二次電池用負極。1. A negative electrode for a nonaqueous electrolyte secondary battery whose active material is a metal powder, carbon material, sulfide, or oxide capable of intercalating and deintercalating lithium, wherein vinyl chloride is used as a binder in the negative electrode. A negative electrode for non-aqueous electrolyte secondary batteries using a copolymer resin of and vinyl acetate.
重合樹脂中の塩化ビニルの含有量が95モル%から65
モル%である請求項1記載の非水電解質二次電池用負極
。Claim 2: The content of vinyl chloride in the copolymer resin of vinyl chloride and vinyl acetate as a binder is from 95 mol% to 65 mol%.
The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, which is mol%.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3060050A JP2529479B2 (en) | 1991-03-25 | 1991-03-25 | Negative electrode for non-aqueous electrolyte secondary battery |
US07/826,993 US5262255A (en) | 1991-01-30 | 1992-01-28 | Negative electrode for non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3060050A JP2529479B2 (en) | 1991-03-25 | 1991-03-25 | Negative electrode for non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04294060A true JPH04294060A (en) | 1992-10-19 |
JP2529479B2 JP2529479B2 (en) | 1996-08-28 |
Family
ID=13130871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3060050A Expired - Fee Related JP2529479B2 (en) | 1991-01-30 | 1991-03-25 | Negative electrode for non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2529479B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0606533A2 (en) * | 1992-11-19 | 1994-07-20 | Sanyo Electric Co., Ltd | Secondary battery |
WO1999003784A1 (en) * | 1997-07-15 | 1999-01-28 | Sony Corporation | Lithium hydrogentitanates and process for the preparation thereof |
-
1991
- 1991-03-25 JP JP3060050A patent/JP2529479B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0606533A2 (en) * | 1992-11-19 | 1994-07-20 | Sanyo Electric Co., Ltd | Secondary battery |
EP0606533A3 (en) * | 1992-11-19 | 1996-05-08 | Sanyo Electric Co | Secondary battery. |
WO1999003784A1 (en) * | 1997-07-15 | 1999-01-28 | Sony Corporation | Lithium hydrogentitanates and process for the preparation thereof |
US6139815A (en) * | 1997-07-15 | 2000-10-31 | Sony Corporation | Hydrogen lithium titanate and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2529479B2 (en) | 1996-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6436573B1 (en) | Non-aqueous electrolyte secondary cell, negative electrode therefor, and method of producing negative electrode | |
JPH1027626A (en) | Lithium secondary battery | |
JPH10144298A (en) | Lithium secondary battery | |
JP2002025611A (en) | Nonaqueous electrolyte secondary battery | |
JP2548460B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery | |
JPH04294059A (en) | Negative electrode for secondary battery with non-aqueous electrolyte | |
JPH04355057A (en) | Nonaqueous electrolyte secondary battery | |
JP2924329B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH03291862A (en) | Lithium secondary cell | |
US20040096741A1 (en) | Non-aqueous electrolyte secondary battery, negative electrode, and method of manufacturing negative electrode | |
JPH10255766A (en) | Non-aqueous electrolyte secondary battery | |
JPH04294060A (en) | Negative electrode for secondary battery with non-aqueous electrolyte | |
JP3921836B2 (en) | Organic electrolyte secondary battery | |
JPH04328258A (en) | Nonaqueous electrolyte secondary battery | |
JP2000285923A (en) | Non-aqueous electrolyte secondary battery | |
JP2701586B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery | |
JP3558751B2 (en) | Non-aqueous solvent secondary battery | |
JP2001110406A (en) | Nonaqueous electrolyte secondary battery | |
JPH04289658A (en) | Nonaqueous electrolyte secondary battery | |
JP3367342B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH07130359A (en) | Nonaqueous electrolyte secondary battery | |
JP3168615B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH04363864A (en) | Negative electrode for nonaqueous electrolytic secondary battery | |
JPH04249870A (en) | Nonaqueous electrolyte secondary battery | |
JPH05226003A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |