JPH04279151A - Nuclear magnetic resonance apparatus - Google Patents
Nuclear magnetic resonance apparatusInfo
- Publication number
- JPH04279151A JPH04279151A JP3039837A JP3983791A JPH04279151A JP H04279151 A JPH04279151 A JP H04279151A JP 3039837 A JP3039837 A JP 3039837A JP 3983791 A JP3983791 A JP 3983791A JP H04279151 A JPH04279151 A JP H04279151A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- signal
- magnetic resonance
- nuclear magnetic
- signals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は,被検体中の水素や燐等
からの核磁気共鳴(以下,「NMR」という)信号を測
定し,核の密度分布や緩和時間分布等を映像化する核磁
気共鳴装置に関する。[Industrial Application Field] The present invention measures nuclear magnetic resonance (hereinafter referred to as "NMR") signals from hydrogen, phosphorus, etc. in a sample, and visualizes nuclear density distribution, relaxation time distribution, etc. Related to nuclear magnetic resonance apparatus.
【0002】0002
【従来の技術】従来,核磁気共鳴装置(以下MR装置と
呼ぶ)においては,被検体(例えば,人)の関心部位を
取り巻く各種の頭部用コイルや腹部用コイル,心臓等の
動きの影響を受けにくい表面コイル等を用い被検体の検
査,撮像が行われてきた。[Prior Art] Conventionally, in a nuclear magnetic resonance apparatus (hereinafter referred to as an MR apparatus), various head coils and abdominal coils surrounding the region of interest of a subject (for example, a person), the influence of the movement of the heart, etc. Testing and imaging of objects have been performed using surface coils that are less sensitive to radiation.
【0003】上記表面コイルは,上記頭部用コイルや上
記腹部用コイルに比べ高感度であるが,視野が制限され
てしまい,脊椎等広範囲を検査する際には,上記表面コ
イルを移動させ,数回撮像せねばならず時間がかかると
いう問題が発生していた。[0003] The above-mentioned surface coil has higher sensitivity than the above-mentioned head coil and above-mentioned abdominal coil, but the field of view is limited, and when examining a wide area such as the spine, it is necessary to move the above-mentioned surface coil. A problem has arisen in that images must be taken several times and it takes time.
【0004】これに対して,複数個の表面コイルを各表
面コイルが隣接する表面コイルと相互結合しないよう適
度にオ−バラップさせて配列し,上記各表面コイルで受
信されたNMR信号を合成することにより実質的に視野
を広くする方法がある。この方法の原理については,特
表平2−500175,特公平2−13432号,ある
いはマグネティックレゾナンスインメディスン(mag
neticresonance in medic
ine)16巻192頁から225頁(1990年)に
記載してある。In contrast, a plurality of surface coils are arranged with appropriate overlap so that each surface coil does not couple with an adjacent surface coil, and the NMR signals received by each of the surface coils are synthesized. There is a way to substantially widen the field of view. The principle of this method can be found in Japanese Patent Publication No. Hei 2-500175, Japanese Patent Publication No. 2-13432, or Magnetic Resonance in Medicine (magnetic resonance in medicine).
neticresonance in medicine
ine) Vol. 16, pp. 192-225 (1990).
【0005】[0005]
【発明が解決しようとする課題】上記,従来の技術にお
いて,プローブ出力を単に加算して検出すると信号雑音
比(S/N)が向上しないことから,S/Nを上げるた
めに図2に示した従来例のごとく複数個のプローブ出力
をそれぞれ独自に検出しなければならなかった。そのた
め複数個の信号処理系が必要となり装置が複雑,かつ大
型,高額になるという問題があった。またプローブ出力
を時系列的に分割して1つの信号処理系で処理した場合
にはこれらの問題は解決できるものの撮像時間が長くな
り実用的に問題が生じる。本発明はS/Nが向上する信
号加算方式を提案し,これを用いた実用的なMR装置を
提供するものである。[Problems to be Solved by the Invention] In the above-mentioned conventional technology, the signal-to-noise ratio (S/N) does not improve if the probe outputs are simply added together for detection. As in the conventional example, each of the plurality of probe outputs had to be detected independently. As a result, multiple signal processing systems are required, making the device complex, large, and expensive. Furthermore, if the probe output is divided in time series and processed by one signal processing system, these problems can be solved, but the imaging time increases, causing a practical problem. The present invention proposes a signal addition method that improves S/N, and provides a practical MR device using this method.
【0006】[0006]
【課題を解決するための手段】上記目的を達成する基本
的な特徴は,MR装置において,複数個の出力端を有す
る高周波プローブから生体の高周波信号を検出するMR
装置において,該複数の出力高周波信号を各々の出力に
対応した複数個の増幅器で増幅後,それぞれを変調する
複数個の変調器により信号周波数を下げ,次に複数の帯
域通過フィルタにより該低周波信号のそれぞれをフィル
タリングし,その後該複数個の信号を加算する手段を設
けることにある。[Means for Solving the Problems] The basic feature of achieving the above object is that the MR device detects high frequency signals of a living body from a high frequency probe having a plurality of output ends.
In the device, the plurality of output high frequency signals are amplified by a plurality of amplifiers corresponding to each output, the signal frequency is lowered by a plurality of modulators that modulate each signal, and then the low frequency signal is lowered by a plurality of bandpass filters. Means is provided for filtering each of the signals and then adding the plurality of signals.
【0007】[0007]
【作用】各々の出力に対応した複数個の増幅器で増幅し
,該低周波信号のそれぞれを複数の帯域通過フィルタに
よりフィルタリング処理したのちに信号加算するのでS
/Nが向上する。[Operation] Each output is amplified by multiple amplifiers, each of the low frequency signals is filtered by multiple band pass filters, and then the signals are added.
/N improves.
【0008】[0008]
【実施例】以下,本発明を図1に示した実施例を用いて
詳細に説明する。図1は3個の高周波プローブからの出
力信号1−1〜1−3を同時に検出し加算する回路を示
している。コイル15−1から15−3の出力信号1−
1〜1−3は第1の信号周波数をもち,これは生体原子
核のラーモア周波数に正確に一致する。ラーモア周波数
はMR装置の磁場強度と生体中の注目している原子核で
決まる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below using the embodiment shown in FIG. FIG. 1 shows a circuit that simultaneously detects and adds output signals 1-1 to 1-3 from three high-frequency probes. Output signal 1- of coils 15-1 to 15-3
1 to 1-3 have a first signal frequency, which exactly corresponds to the Larmor frequency of the biological nucleus. The Larmor frequency is determined by the magnetic field strength of the MR device and the atomic nucleus of interest in the living body.
【0009】図3を用いてこれを説明する。垂直磁場方
式のMR装置を例にとると,磁場強度は図示した静磁場
(z方向とする)の強度G0と,静磁場と直交する方向
xに強度分布をもつz方向磁場を発生する傾斜磁場強度
G(x)の加算値である。この時のラーモア周波数fは
,
f=γ(G(x)+G0)/2π
(1)である
。γは原子核固有の磁気回転比でありプロトンでは26
7(MHz/T)である。G(x)は例えば視野中心を
0として傾きは一定であり,この傾きaは例えば0.1
(mT/m)〜10(mT/m)(あるいは0.01G
/cm〜1G/cm)程度である。x方向の視野をL(
m)とすれば検出されるMR信号の帯域Δfは,Δf=
γaL/2π
(2)
である。This will be explained using FIG. 3. Taking a vertical magnetic field type MR device as an example, the magnetic field strength is the strength G0 of the static magnetic field (in the z direction) shown in the figure, and the gradient magnetic field that generates the z-direction magnetic field with an intensity distribution in the direction x orthogonal to the static magnetic field. This is the added value of the intensity G(x). The Larmor frequency f at this time is f=γ(G(x)+G0)/2π
(1). γ is the gyromagnetic ratio specific to the atomic nucleus, and for protons it is 26
7 (MHz/T). For example, G(x) has a constant slope with the center of the visual field set to 0, and this slope a is, for example, 0.1.
(mT/m) ~ 10 (mT/m) (or 0.01G
/cm to 1G/cm). The field of view in the x direction is L(
m), the band Δf of the detected MR signal is Δf=
γaL/2π
(2)
It is.
【0010】従って,例えば0.2(T)の静磁場強度
において,比較的弱い傾斜磁場,例えば磁場強度0.5
(mT/m)を用いてプロトンを検出する場合,撮像視
野を+0.3(m)〜−0.3(m),計0.6(m)
とすればMR信号の周波数は8.5(MHz)を中心と
して周波数帯域12.75(kHz)となる。Therefore, for example, at a static magnetic field strength of 0.2 (T), a relatively weak gradient magnetic field, for example, a magnetic field strength of 0.5
When detecting protons using (mT/m), the imaging field of view is +0.3 (m) to -0.3 (m), a total of 0.6 (m).
If so, the frequency of the MR signal will be a frequency band of 12.75 (kHz) centered around 8.5 (MHz).
【0011】撮像視野を図3に示したようにコイル15
−1〜15−3の3個の表面コイルで等分して撮像する
場合,各コイルからの信号1−1〜1−3の中心周波数
は(1)式よりそれぞれ8.49575(MHz),8
.50000(MHz),8.50425(MHz)で
ある。また各周波数帯域は(2)式より4.25(kH
z)である。すなわち複数個のプローブの信号検出空間
が異なるときには対応する傾斜磁場強度がそれぞれ異な
り検出する高周波信号の周波数,第1の周波数,は各コ
イルで互いに僅かに異なる。As shown in FIG. 3, the imaging field is
-1 to 15-3, the center frequency of the signals 1-1 to 1-3 from each coil is 8.49575 (MHz), respectively, from equation (1). 8
.. 50000 (MHz), 8.50425 (MHz). Also, each frequency band is 4.25 (kHz) from equation (2).
z). That is, when the signal detection spaces of a plurality of probes are different, the corresponding gradient magnetic field intensities are different, and the frequency of the detected high-frequency signal, the first frequency, is slightly different for each coil.
【0012】以上では垂直磁場方式について説明したが
,水平磁場方式の場合についても検出信号の周波数につ
いて同様の説明ができることはいうまでもない。Although the vertical magnetic field method has been described above, it goes without saying that the same explanation can be made regarding the frequency of the detection signal in the case of the horizontal magnetic field method.
【0013】図1に戻って,出力信号1−1〜1−3は
それぞれ増幅器2−1〜2−3で増幅される。典型的に
は増幅器のゲインは20(dB)から50(dB)程度
である。増幅器の出力信号7−1〜7−3はそれぞれ第
1の周波数変調器3−1から3−3で第2の信号周波数
の信号8−1〜8−3に変調される。この第2の信号周
波数は後段の帯域通過フィルタの帯域と密接な関係を有
し,本発明ではこの周波数を,後述する該フィルタ帯域
が実用的な帯域になるように十分低い周波数にする。Returning to FIG. 1, output signals 1-1 to 1-3 are amplified by amplifiers 2-1 to 2-3, respectively. Typically, the gain of the amplifier is about 20 (dB) to 50 (dB). The output signals 7-1 to 7-3 of the amplifiers are modulated into signals 8-1 to 8-3 at second signal frequencies by first frequency modulators 3-1 to 3-3, respectively. This second signal frequency has a close relationship with the band of the subsequent band-pass filter, and in the present invention, this frequency is set to a sufficiently low frequency so that the filter band, which will be described later, becomes a practical band.
【0014】一例として高周波発生器14の出力12−
1,12−2,12−3の周波数をそれぞれ7.495
75(MHz),7.50000(MHz),7.50
425(MHz)としこれらを周波数変調器3−1から
3−3の参照信号として入力することにより周波数変調
器3−1から3−3の出力8−1から8−3はすべて1
(MHz)になる。この時に発生する約16(MHz)
の高調波は1(MHz)とは大きく周波数が異なるので
必要に応じて,良く知られたように低域通過フィルタ(
図示していない)を用いて簡単に除去できる。出力8−
1から8−3の周波数帯域は,信号1−1〜1−3の帯
域に等しく(2)式より得られたように4.25(kH
z)である。次に出力8−1から8−3をそれぞれ帯域
通過フィルタ4−1から4−3によりフィルタリングす
る。帯域通過フィルタの帯域は信号帯域と略同一,また
はわずかに広く設定することが望ましい。また帯域通過
フィルタの中心周波数は信号周波数と同一にする。As an example, the output 12- of the high frequency generator 14
The frequencies of 1, 12-2, and 12-3 are each 7.495
75 (MHz), 7.50000 (MHz), 7.50
425 (MHz) and by inputting these as reference signals of frequency modulators 3-1 to 3-3, outputs 8-1 to 8-3 of frequency modulators 3-1 to 3-3 are all 1.
(MHz). Approximately 16 (MHz) generated at this time
The harmonics of 1 (MHz) have a significantly different frequency, so if necessary, as is well known, a low-pass filter (
(not shown). Output 8-
The frequency band from 1 to 8-3 is equal to the band of signals 1-1 to 1-3, and is 4.25 (kHz) as obtained from equation (2).
z). Next, the outputs 8-1 to 8-3 are filtered by bandpass filters 4-1 to 4-3, respectively. It is desirable that the band of the band-pass filter be set to be approximately the same as the signal band, or slightly wider. Also, the center frequency of the bandpass filter is made the same as the signal frequency.
【0015】本実施例では第1の周波数変調器で互いに
異なる信号周波数の信号群を互いに同一の中心周波数を
もつ第2の周波数に変調したため該複数の帯域通過フィ
ルタの中心周波数が互いに同一であり,同一の特性のフ
ィルタを複数個作成すれば良く装置製造上好ましい。し
かし本発明は必ずしもこれに限るものではない。帯域通
過フィルタのQ値は一般にf/Δfで示される。本実施
例では,
Q=1(MHz)/4.25(kHz)=235
(3)であり
,例えば図4に示した帯域通過フィルタ回路のように一
般に知られている技術で容易に作成できる。本実施例で
は先に述べたように第1の周波数を十分低い第2の周波
数に周波数変換したため(3)式で与えられるQ値が実
現容易な値になっている。In this embodiment, since the first frequency modulator modulates a group of signals having different signal frequencies to a second frequency having the same center frequency, the center frequencies of the plurality of band-pass filters are the same. , it is sufficient to create a plurality of filters with the same characteristics, which is preferable in terms of device manufacturing. However, the present invention is not necessarily limited to this. The Q value of a bandpass filter is generally expressed as f/Δf. In this example, Q=1(MHz)/4.25(kHz)=235
(3), and can be easily created using generally known techniques, such as the bandpass filter circuit shown in FIG. 4, for example. In this embodiment, as described above, the first frequency is frequency-converted to the sufficiently low second frequency, so the Q value given by equation (3) is a value that is easy to realize.
【0016】再び図2に戻って説明する。帯域通過フィ
ルタ4−1から4−3によりフィルタリングされた第2
の周波数の信号9−1から9−3は,第2の周波数変調
器5−1から5−3により第3の信号周波数の信号群1
0−1から10−3に再び変調される。ここで第3の信
号周波数は必要に応じてそれぞれ互いに異なっている。
すなわち高周波発生器14の出力13−1,13−2,
13−3の周波数をそれぞれ27.49575(MHz
),27.50000(MHz)に,27.50425
(MHz)としこれらを周波数変調器5−1から5−3
の参照信号として入力することによりに周波数変調器5
−1から5−3の出力10−1から10−3はそれぞれ
26.49575(MHz),26.50000(MH
z)に,26.50425(MHz)になる。ここで出
力10−1から10−3は第1の信号周波数及び第2の
信号周波数との干渉を無くすために十分異なっているこ
とが望ましい。しかし増幅器間の相互干渉が十分に小さ
くできれば同一でも良いことはいうまでもない。本実施
例では第1の信号周波数の2倍以上に設定した場合を示
す。周波数変調器5−1から5−3の参照信号相互の周
波数の差は,前述した出力信号1−1〜1−3の相互の
周波数の差に一致させている。これはまた図3に示した
コイル15−1〜15−3が検出したラーモア周波数の
中心値の差にも等しい。このように設定すると後に述べ
るようにMR画像再生に好適である。再び第2図に戻っ
て,第3の信号周波数の信号群10−1から10−3は
加算器6で加算される。この結果加算された信号11は
周波数帯域が12.75(kHz),中心周波数が26
.5(MHz)の信号となる。加算信号の周波数あたり
のノイズは十分に小さく信号加算によるノイズの増大は
無い。これは加算される信号群10−1から10−3が
,既に帯域通過フィルタ群4−1から4−3によりおの
おの不要領域のノイズ除去がされているためである。[0016] Returning to FIG. 2 again, the explanation will be given. The second filter filtered by bandpass filters 4-1 to 4-3
The signals 9-1 to 9-3 at the frequencies are converted into the signal group 1 at the third signal frequency by the second frequency modulators 5-1 to 5-3.
It is modulated again from 0-1 to 10-3. Here, the third signal frequencies are different from each other as required. That is, the outputs 13-1, 13-2 of the high frequency generator 14,
13-3 frequency to 27.49575 (MHz
), 27.50000 (MHz), 27.50425
(MHz) and these are frequency modulators 5-1 to 5-3.
frequency modulator 5 by inputting it as a reference signal of
-1 to 5-3 outputs 10-1 to 10-3 are 26.49575 (MHz) and 26.50000 (MHZ), respectively.
z) becomes 26.50425 (MHz). Here, it is desirable that the outputs 10-1 to 10-3 are sufficiently different to eliminate interference with the first signal frequency and the second signal frequency. However, it goes without saying that they may be the same as long as the mutual interference between the amplifiers can be made sufficiently small. In this embodiment, a case is shown in which the frequency is set to twice or more the first signal frequency. The difference in frequency between the reference signals of the frequency modulators 5-1 to 5-3 is made to match the difference in frequency between the output signals 1-1 to 1-3 described above. This is also equivalent to the difference in the center values of the Larmor frequencies detected by the coils 15-1 to 15-3 shown in FIG. This setting is suitable for MR image reproduction, as will be described later. Returning to FIG. 2 again, the signal groups 10-1 to 10-3 of the third signal frequency are added by the adder 6. The resulting signal 11 has a frequency band of 12.75 (kHz) and a center frequency of 26
.. 5 (MHz) signal. The noise per frequency of the added signal is sufficiently small, and there is no increase in noise due to signal addition. This is because the signal groups 10-1 to 10-3 to be added have already been subjected to noise removal in unnecessary regions, respectively, by the band-pass filter groups 4-1 to 4-3.
【0017】すなわち,例えば,加算をアナログ的に行
っても加算された信号のS/N比は良好である。従って
,図には示していないが,加算後の信号は1つのA/D
変換器でアナログ/デジタル変換出来,そのデジタル信
号は各種デジタル信号処理されることが可能である。
この場合,A/D変換器の数を従来例に比べて著しく削
減でき装置が小型化,低価格化できる。That is, for example, even if addition is performed in an analog manner, the S/N ratio of the added signals is good. Therefore, although not shown in the figure, the signal after addition is one A/D
Analog/digital conversion can be performed using a converter, and the digital signal can be subjected to various digital signal processing. In this case, the number of A/D converters can be significantly reduced compared to the conventional example, and the device can be made smaller and cheaper.
【0018】いま垂直磁場方式を例に採り,静磁場方向
をzとして,MR画像再構成法として例えばx−y平面
の2次元フーリエ変換法を考える。周波数エンコード方
向をx方向にとり位相エンコード方向をy方向にとる。
この場合,信号11は後段の信号処理装置(図示してい
ない)により第1のフーリエ変換がされる。この結果,
各周波数に対応した信号がx方向の位置情報を与える。
本実施例では加算された信号11は加算前の信号10−
1から10−3が周波数領域で互いにずれているので上
記フーリエ変換時に異なった位置情報として与えられる
。とくに加算前の信号10−1から10−3の周波数中
心値の相互の差は,正確に出力信号1−1〜1−3の相
互の周波数の差に一致している。従ってコイル15−1
〜15−3が検出したラーモア周波数の中心値の差に等
しく,これはコイルの信号検出の相対位置を正確に表し
ている。それ故,加算信号11をフーリエ変換した値は
,複数個のコイル15−1から15−3の相対位置情報
を正確に与える。なお位相エンコード方向の位置情報は
第1のフーリエ変換をした値をさらに位相方向に第2の
フーリエ変換をすることによって与えられる。これによ
りx−y方向のMR画像が得られる。信号処理される信
号12が十分ノイズ除去されておりかつ,複数の空間領
域の信号成分を含んでいるので再構成画像は視野が広く
またS/Nが高い。Taking the perpendicular magnetic field system as an example, and assuming that the direction of the static magnetic field is z, consider, for example, a two-dimensional Fourier transform method on the xy plane as an MR image reconstruction method. The frequency encoding direction is set in the x direction, and the phase encoding direction is set in the y direction. In this case, the signal 11 is subjected to a first Fourier transform by a subsequent signal processing device (not shown). As a result,
Signals corresponding to each frequency give position information in the x direction. In this embodiment, the added signal 11 is the signal 10- before addition.
Since the numbers 1 to 10-3 are shifted from each other in the frequency domain, they are given as different position information during the Fourier transform. In particular, the mutual difference in frequency center values of the signals 10-1 to 10-3 before addition exactly matches the mutual frequency difference of the output signals 1-1 to 1-3. Therefore, coil 15-1
~15-3 is equal to the difference between the center values of the detected Larmor frequencies, which accurately represents the relative position of the signal detection of the coil. Therefore, the value obtained by Fourier transforming the summed signal 11 provides accurate relative position information of the plurality of coils 15-1 to 15-3. Note that the position information in the phase encoding direction is given by further performing a second Fourier transform on the value obtained by the first Fourier transform in the phase direction. As a result, an MR image in the x-y direction is obtained. Since the signal 12 subjected to signal processing has been sufficiently removed from noise and contains signal components of a plurality of spatial regions, the reconstructed image has a wide field of view and a high S/N.
【0019】以上の説明で明らかなように,本発明では
検出する原子核の磁気回転比γと装置の傾斜磁場の傾き
a,視野Lによって,高周波発生器14の出力信号12
−1から12−3と13−1から13−3の周波数及び
帯域通過フィルタ4−1から4−3の特性が決定される
。すなわち,隣接する第1の周波数変調器間の参照信号
(例えば12−1と12−2)の周波数の差df1は,
df1=Δf/n=γaL/2πn
(4)とする。こ
こで,撮像視野をn個のコイルで周波数,エンコード方
向にn等分したと仮定した。帯域通過フィルタ4−1か
ら4−3の帯域幅Δf’は,Δf’=Δf/n=γaL
/2πn=df1
(5)である。すなわち隣接する第1の周波数変調器
間の参照信号(例えば12−1と12−2)の周波数の
差df1と,帯域通過フィルタ4−1から4−3の帯域
幅Δf’を等しくすることが望ましい。なお,後述する
ように複数個のコイルを隣接する最に各コイルの視野の
10%から20%を相互に重ねあわせる場合は,0.8
×Δf’≦df1≦0.95×Δf’
(6)とすることが望ましい。さ
らに,各系列の第1の周波数変調器の参照信号と第2の
周波数変調器の参照信号(例えば12−1と13−1)
間の周波数の差df2は,各系列間で等しい。すなわち
12−1と13−1,12−2と13−2,12−3と
13−3の周波数の差は皆等しい。As is clear from the above explanation, in the present invention, the output signal 12 of the high frequency generator 14 is determined by the gyromagnetic ratio γ of the atomic nucleus to be detected, the gradient a of the gradient magnetic field of the device, and the field of view L.
The frequencies of -1 to 12-3 and 13-1 to 13-3 and the characteristics of bandpass filters 4-1 to 4-3 are determined. That is, the frequency difference df1 between the reference signals (for example, 12-1 and 12-2) between adjacent first frequency modulators is df1=Δf/n=γaL/2πn
(4). Here, it is assumed that the imaging field of view is divided into n equal parts by n coils in the frequency and encoding directions. The bandwidth Δf' of the bandpass filters 4-1 to 4-3 is Δf'=Δf/n=γaL
/2πn=df1
(5). In other words, it is possible to make the frequency difference df1 between the reference signals (for example, 12-1 and 12-2) between adjacent first frequency modulators equal to the bandwidth Δf' of the bandpass filters 4-1 to 4-3. desirable. In addition, as described later, when multiple coils are overlapped with each other by 10% to 20% of the field of view of each coil, 0.8
×Δf'≦df1≦0.95×Δf'
(6) is desirable. Furthermore, the reference signal of the first frequency modulator of each series and the reference signal of the second frequency modulator (for example, 12-1 and 13-1)
The frequency difference df2 between them is equal between each series. That is, the differences in frequency between 12-1 and 13-1, 12-2 and 13-2, and 12-3 and 13-3 are all equal.
【0020】より一般的な場合として,n個のコイル1
5−1から15−nの視野が異なる場合は,以上の記述
は以下のようになる。すなわち,第i番目の第1の周波
数変調器の参照信号,12−iの周波数f1iは,f1
i=A+fi
(7
)とする。ここでAは任意の周波数,fiはi番目のコ
イルの中心信号周波数である。帯域通過フィルタ4−i
の帯域幅Δf’iは,
Δf’i=γaLi/2π
(8)と
する。Liは第i番目のi番目のコイルの周波数エンコ
ード方向の視野サイズである。As a more general case, n coils 1
If the fields of view from 5-1 to 15-n are different, the above description becomes as follows. That is, the frequency f1i of the i-th first frequency modulator reference signal 12-i is f1
i=A+fi
(7
). Here, A is an arbitrary frequency, and fi is the center signal frequency of the i-th coil. Bandpass filter 4-i
The bandwidth Δf'i of is Δf'i=γaLi/2π
(8). Li is the field of view size of the i-th i-th coil in the frequency encoding direction.
【0021】第2の周波数変調器の参照信号,13−i
の周波数f2iは,
f2i=B−fi
(9)であり,ここでBは任意の周波数である。更に,
帯域通過フィルタ4−1から4−nのQ値が実用的な範
囲,例えば50から300に入るためには,
50Δf’i≦|A|≦300Δf’i
(10)が必要であるので
,
50γaLi/2π≦|A|≦300γaLi/2π
(11)がAのとりうるべき値である。
前述の例では,A=−1(MHz),Δf’i=4.2
5(kHz)である。
(10)式を計算すると,
50×4.25(kHz)≦|−1(MHz)|≦30
0×4.25(kHz)0.2125(MHz)≦1(
MHz)≦1.275(MHz)となり,Aがとりうる
べき値であることが確認される。Reference signal of second frequency modulator, 13-i
The frequency f2i of is f2i=B−fi
(9), where B is an arbitrary frequency. Furthermore,
In order for the Q value of the bandpass filters 4-1 to 4-n to fall within a practical range, for example 50 to 300, 50Δf'i≦|A|≦300Δf'i
(10) is required, so 50γaLi/2π≦|A|≦300γaLi/2π
(11) is the possible value of A. In the above example, A=-1 (MHz), Δf'i=4.2
5 (kHz). When formula (10) is calculated, 50×4.25 (kHz)≦|-1 (MHz)|≦30
0×4.25(kHz)0.2125(MHz)≦1(
MHz)≦1.275 (MHz), and it is confirmed that A is a possible value.
【0022】次にMR装置の構造のブロック図,図5,
を用いて高周波発生器と帯域通過フィルタの制御方法を
説明する。被写体16は静磁場発生部23で動作される
磁石19の作る静磁場中に配置される。また傾斜磁場コ
イル18は傾斜磁場発生部24により,励起高周波コイ
ル17は励起高周波パルス発生部21によりそれぞれ傾
斜磁場,高周波磁場を発生し,被写体に作用する。複数
個のコイルからなるコイル部15は被写体からの高周波
磁場信号(MR信号)を受信する。Next, a block diagram of the structure of the MR device, FIG.
We will explain how to control the high frequency generator and bandpass filter using . The subject 16 is placed in a static magnetic field generated by a magnet 19 operated by a static magnetic field generator 23 . Further, the gradient magnetic field coil 18 and the excitation high-frequency coil 17 generate a gradient magnetic field and a high-frequency magnetic field by an excitation high-frequency pulse generator 21, respectively, and act on the subject. A coil section 15 made up of a plurality of coils receives a high frequency magnetic field signal (MR signal) from a subject.
【0023】この信号は図1の1から14でなる高周波
信号処理加算部20で処理加算されその後信号処理部2
2で画像処理や信号補正され表示部25でMR画像(M
RIやMRS,MRISなど)が表示される。This signal is processed and added in the high frequency signal processing adder 20 consisting of 1 to 14 in FIG.
2, the image is processed and the signal is corrected, and the display unit 25 displays the MR image (M
RI, MRS, MRIS, etc.) are displayed.
【0024】静磁場発生部23,傾斜磁場発生部24,
励起高周波パルス発生部21,高周波信号処理加算部2
0,信号処理部22,表示部25は制御部26で制御さ
れる。とくに制御部26では傾斜磁場強度と高周波信号
処理時のパラメータを前述のように相互に最適化し制御
する。すなわち一般に傾斜磁場強度は本発明のフィルタ
以外の要因,例えば撮像シーケンスや撮像速度,視野に
より決定されるので,選択された傾斜磁場強度と視野に
したがって本発明で述べた高周波信号処理部のパラメー
タ,例えば帯域通過フィルタの帯域幅や中心周波数,高
周波発生器の信号周波数などを任意に設定することが可
能である。この場合フィルタには可変帯域のフィルタを
用いたり,フィルタを各チャンネルごとに複数個設けて
適宜切り替えても良い。Static magnetic field generating section 23, gradient magnetic field generating section 24,
Excitation high frequency pulse generation section 21, high frequency signal processing addition section 2
0, the signal processing section 22 and the display section 25 are controlled by a control section 26. In particular, the control unit 26 mutually optimizes and controls the gradient magnetic field strength and the parameters during high frequency signal processing as described above. That is, since the gradient magnetic field strength is generally determined by factors other than the filter of the present invention, such as the imaging sequence, the imaging speed, and the field of view, the parameters of the high-frequency signal processing unit described in the present invention, For example, it is possible to arbitrarily set the bandwidth and center frequency of the bandpass filter, the signal frequency of the high frequency generator, etc. In this case, a variable band filter may be used as the filter, or a plurality of filters may be provided for each channel and switched as appropriate.
【0025】本実施例で使われるコイルは例えばフェイ
ズドアレイコイルを用いることができる。また鞍型コイ
ル,バードケージコイル,スロッテドチューブレゾネー
タコイルなどに適用可能である。The coil used in this embodiment may be, for example, a phased array coil. It can also be applied to saddle-shaped coils, birdcage coils, slotted tube resonator coils, etc.
【0026】以上の説明では垂直磁場方式を例に採り,
説明したが水平磁場方式でも本発明が適用されることは
明らかである。また0.2Tの磁場強度で説明したが本
発明は他の磁場強度でも適用できる。傾斜磁場強度につ
いても実施例で記載した以外の強度についても適用でき
る。更にMR装置の構成図は一実施例であり他の構成で
も本発明が適用できる。[0026] In the above explanation, the perpendicular magnetic field method is taken as an example.
Although described above, it is clear that the present invention is also applicable to the horizontal magnetic field method. Further, although the description has been made using a magnetic field strength of 0.2 T, the present invention can be applied to other magnetic field strengths. It is also possible to apply gradient magnetic field strengths other than those described in the examples. Further, the configuration diagram of the MR apparatus is one example, and the present invention can be applied to other configurations.
【0027】[0027]
【発明の効果】本発明によれば,複数個の出力端を有す
る高周波プローブにより被写体からの高周波信号を検出
するMR装置において,該複数の出力高周波信号を各々
の出力に対応した複数個の増幅器で増幅後,それぞれを
変調する複数個の変調器により信号周波数を下げ,次に
該低周波信号のそれぞれを複数の帯域通過フィルタによ
りフィルタリングし,その後該複数個の信号を加算する
ので,広い視野で高S/Nの画像が得られる。According to the present invention, in an MR device that detects high frequency signals from a subject using a high frequency probe having a plurality of output terminals, the plurality of output high frequency signals are connected to a plurality of amplifiers corresponding to each output. After amplification, the signal frequency is lowered using multiple modulators that modulate each low-frequency signal, and then each of the low-frequency signals is filtered using multiple band-pass filters, and then the multiple signals are added, allowing a wide field of view. An image with high S/N can be obtained.
【0028】[0028]
【図1】本発明の一実施例の装置構成を示すブロック図
である。FIG. 1 is a block diagram showing the configuration of an apparatus according to an embodiment of the present invention.
【図2】従来例の装置構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of a conventional device.
【図3】本発明の実施例の動作説明図である。FIG. 3 is an explanatory diagram of the operation of the embodiment of the present invention.
【図4】帯域通過フィルタの回路図である。FIG. 4 is a circuit diagram of a bandpass filter.
【図5】本発明の実施例の装置構成を示すブロック図で
ある。FIG. 5 is a block diagram showing the configuration of an apparatus according to an embodiment of the present invention.
Claims (8)
ら第1の周波数を有する生体の高周波信号を検出する核
磁気共鳴装置において,少なくとも該複数の第1の周波
数の出力高周波信号を各々の出力に対応した複数個の増
幅器で増幅後,それぞれを変調する第1の複数個の変調
器により第2の周波数に信号周波数を下げ,次に複数の
帯域通過フィルタにより該低周波信号のそれぞれをフィ
ルタリングし,その後該複数個の信号を加算する手段を
有する核磁気共鳴装置。Claim 1: A nuclear magnetic resonance apparatus for detecting biological high frequency signals having a first frequency from a high frequency probe having a plurality of output ends, each of which outputs at least the plurality of output high frequency signals having the first frequency. After amplification by a plurality of amplifiers corresponding to A nuclear magnetic resonance apparatus having means for adding the plurality of signals.
該フィルタリングの後に第2の周波数変調手段を有し該
複数の第2の周波数の変調信号をそれぞれ第3の周波数
に変調することを特徴とする核磁気共鳴装置。Claim 2: The nuclear magnetic resonance apparatus according to claim 1,
A nuclear magnetic resonance apparatus comprising a second frequency modulation means after the filtering and modulates each of the plurality of modulation signals of the second frequency to a third frequency.
場を有し,周波数エンコード方向の視野が複数個のコイ
ルにより分割され検出される核磁気共鳴装置において,
磁気回転比γの原子核を検出するときに,少なくとも第
1の周波数の該複数のコイルの出力高周波信号を各々の
出力に対応した複数個の増幅器で増幅後,それぞれを変
調する第1の複数個の変調器により第2の周波数に信号
周波数を下げ,次に該低周波信号のそれぞれを複数の帯
域通過フィルタによりフィルタリングし,その後該複数
個の信号を加算する手段を有する核磁気共鳴装置。3. A nuclear magnetic resonance apparatus having a gradient magnetic field having at least a gradient a of gradient magnetic field strength, and in which a field of view in the frequency encoding direction is divided and detected by a plurality of coils,
When detecting an atomic nucleus with a gyromagnetic ratio γ, a first plurality of coils modulates each output high-frequency signal of at least a first frequency after amplifying the output high-frequency signal of the plurality of coils with a plurality of amplifiers corresponding to each output. A nuclear magnetic resonance apparatus comprising means for lowering the signal frequency to a second frequency by a modulator, then filtering each of the low frequency signals with a plurality of bandpass filters, and then summing the plurality of signals.
該フィルタリングの後に第2の周波数変調手段を有し該
複数の第2の周波数の変調信号をそれぞれ第3の周波数
に変調することを特徴とする核磁気共鳴装置。4. The nuclear magnetic resonance apparatus according to claim 3,
A nuclear magnetic resonance apparatus comprising a second frequency modulation means after the filtering and modulates each of the plurality of modulation signals of the second frequency to a third frequency.
第i番目の帯域通過フィルタの帯域幅Δf’iは概略,
Δf’i=γaLi/2π であり,ここでγは検出する原子核の磁気回転比,,L
iはi番目のコイルの周波数エンコード方向の視野サイ
ズであることを特徴とする核磁気共鳴装置。5. The bandwidth Δf'i of the i-th bandpass filter among the bandpass filters according to claim 3 is approximately:
Δf'i=γaLi/2π, where γ is the gyromagnetic ratio of the detected nucleus, ,L
A nuclear magnetic resonance apparatus characterized in that i is a field size in the frequency encoding direction of the i-th coil.
該第1の周波数変調器に与える参照信号のうち第i番目
の該参照信号の信号周波数f1iを,該高周波プローブ
の構成要素である第i番目のコイルの中心信号周波数f
iとして, f1i=A+fi とし,Aは次の関係, 50Δf’i≦|A|≦300Δf’iここでΔf’i
は該フィルタのうち第i番目の帯域通過フィルタの帯域
幅、を満たすことを特徴とする核磁気共鳴装置。Claim 6: The apparatus according to claim 1 or 3,
The signal frequency f1i of the i-th reference signal among the reference signals given to the first frequency modulator is set to the center signal frequency f of the i-th coil that is a component of the high-frequency probe.
As i, f1i=A+fi, A is the following relationship, 50Δf'i≦|A|≦300Δf'i where Δf'i
A nuclear magnetic resonance apparatus characterized in that satisfies the bandwidth of the i-th bandpass filter among the filters.
係, 50γaLi/2π≦|A|≦300γaLi/2πこ
こでγは検出する原子核の磁気回転比,aは傾斜磁場強
度の傾き,Liはi番目のコイルの周波数エンコード方
向の視野サイズ、を満たすことを特徴とする核磁気共鳴
装置。7. In the apparatus according to claim 6, A is the following relationship: 50γaLi/2π≦|A|≦300γaLi/2π where γ is the gyromagnetic ratio of the nucleus to be detected, a is the gradient of the gradient magnetic field strength, A nuclear magnetic resonance apparatus characterized in that Li satisfies the field of view size in the frequency encoding direction of the i-th coil.
第2の周波数変調器の参照信号のうち,第i番目の参照
信号の周波数f2iは, f2i=B−fi であり,Bは任意の周波数であることを特徴とする核磁
気共鳴装置。8. The apparatus according to claim 2 or 4, wherein the frequency f2i of the i-th reference signal among the reference signals of the second frequency modulator is f2i=B−fi, where B is arbitrary. A nuclear magnetic resonance apparatus characterized by a frequency of .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3039837A JP2564428B2 (en) | 1991-03-06 | 1991-03-06 | Nuclear magnetic resonance equipment |
US07/793,456 US5280246A (en) | 1990-11-16 | 1991-11-18 | Nuclear magnetic resonance apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3039837A JP2564428B2 (en) | 1991-03-06 | 1991-03-06 | Nuclear magnetic resonance equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04279151A true JPH04279151A (en) | 1992-10-05 |
JP2564428B2 JP2564428B2 (en) | 1996-12-18 |
Family
ID=12564081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3039837A Expired - Fee Related JP2564428B2 (en) | 1990-11-16 | 1991-03-06 | Nuclear magnetic resonance equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2564428B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004358221A (en) * | 2003-05-30 | 2004-12-24 | Ge Medical Systems Global Technology Co Llc | Method and system for high-speed imaging using parallel mri |
JP2008522651A (en) * | 2004-12-06 | 2008-07-03 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method and apparatus for connecting receive coils in a magnetic resonance imaging scanner |
JP2009061272A (en) * | 2007-09-07 | 2009-03-26 | General Electric Co <Ge> | System and apparatus for receiving magnetic resonance (mr) signal from imaging target |
-
1991
- 1991-03-06 JP JP3039837A patent/JP2564428B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004358221A (en) * | 2003-05-30 | 2004-12-24 | Ge Medical Systems Global Technology Co Llc | Method and system for high-speed imaging using parallel mri |
JP2008522651A (en) * | 2004-12-06 | 2008-07-03 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method and apparatus for connecting receive coils in a magnetic resonance imaging scanner |
JP2009061272A (en) * | 2007-09-07 | 2009-03-26 | General Electric Co <Ge> | System and apparatus for receiving magnetic resonance (mr) signal from imaging target |
Also Published As
Publication number | Publication date |
---|---|
JP2564428B2 (en) | 1996-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3525007B2 (en) | Magnetic resonance imaging system | |
US6876199B2 (en) | Method and system for accelerated imaging using parallel MRI | |
EP0112663B1 (en) | Nuclear magnetic resonance methods and apparatus | |
JPH0970397A (en) | Magnetic resonance imaging apparatus | |
JPH0392136A (en) | Steady free precession magnetic resonance imaging method | |
EP1102082B1 (en) | Method and apparatus for reducing image artifacts caused by magnet vibration in an MR imaging system | |
US6329821B1 (en) | Method and apparatus to compensate for image artifacts caused by magnet vibration in an MR imaging system | |
JPS60179645A (en) | Nmr tomographic device | |
JPH04279151A (en) | Nuclear magnetic resonance apparatus | |
JP5636058B2 (en) | Magnetic resonance imaging device | |
JP2555233B2 (en) | Nuclear magnetic resonance equipment | |
JP2860682B2 (en) | Method for stabilizing static magnetic field uniformity of magnetic resonance imaging apparatus | |
JP3198967B2 (en) | MR imaging device | |
EP1102081A2 (en) | Method and apparatus to compensate for image artifacts caused by magnet vibration in an MR imaging system | |
JPS6266846A (en) | NMR inspection device using chemical shift values | |
JP3041691B2 (en) | Magnetic resonance imaging equipment | |
JP3120111B2 (en) | High-speed magnetic resonance imaging system using single excitation spin echo | |
JP4349646B2 (en) | Nuclear magnetic resonance imaging system | |
JP2734061B2 (en) | MR imaging device | |
JPH0475638A (en) | Magnetic resonance imaging device | |
JP2000023938A (en) | MR imaging device | |
JPH0938065A (en) | Nuclear magnetic resonance inspection system | |
JP3478867B2 (en) | Magnetic resonance imaging equipment | |
JP2004097607A (en) | Rf coil and magnetic resonance imaging device using the same | |
JP2619398B2 (en) | Inspection equipment using nuclear magnetic resonance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |