[go: up one dir, main page]

JP2564428B2 - Nuclear magnetic resonance equipment - Google Patents

Nuclear magnetic resonance equipment

Info

Publication number
JP2564428B2
JP2564428B2 JP3039837A JP3983791A JP2564428B2 JP 2564428 B2 JP2564428 B2 JP 2564428B2 JP 3039837 A JP3039837 A JP 3039837A JP 3983791 A JP3983791 A JP 3983791A JP 2564428 B2 JP2564428 B2 JP 2564428B2
Authority
JP
Japan
Prior art keywords
frequency
signal
magnetic resonance
coil
nuclear magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3039837A
Other languages
Japanese (ja)
Other versions
JPH04279151A (en
Inventor
哲彦 高橋
悦治 山本
良国 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP3039837A priority Critical patent/JP2564428B2/en
Priority to US07/793,456 priority patent/US5280246A/en
Publication of JPH04279151A publication Critical patent/JPH04279151A/en
Application granted granted Critical
Publication of JP2564428B2 publication Critical patent/JP2564428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,被検体中の水素や燐等
からの核磁気共鳴(以下,「NMR」という)信号を測
定し,核の密度分布や緩和時間分布等を映像化する核磁
気共鳴装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures nuclear magnetic resonance (hereinafter referred to as "NMR") signals from hydrogen, phosphorus, etc. in an object, and visualizes nuclear density distribution and relaxation time distribution. The present invention relates to a nuclear magnetic resonance apparatus.

【0002】[0002]

【従来の技術】従来,核磁気共鳴装置(以下MR装置と
呼ぶ)においては,被検体(例えば,人)の関心部位を
取り巻く各種の頭部用コイルや腹部用コイル,心臓等の
動きの影響を受けにくい表面コイル等を用い被検体の検
査,撮像が行われてきた。
2. Description of the Related Art Conventionally, in a nuclear magnetic resonance apparatus (hereinafter referred to as an MR apparatus), various head coils or abdominal coils surrounding a region of interest of a subject (for example, a person), influence of movement of the heart, etc. Examination and imaging of the subject have been performed using a surface coil that is difficult to receive.

【0003】上記表面コイルは,上記頭部用コイルや上
記腹部用コイルに比べ高感度であるが,視野が制限され
てしまい,脊椎等広範囲を検査する際には,上記表面コ
イルを移動させ,数回撮像せねばならず時間がかかると
いう問題が発生していた。
The surface coil has higher sensitivity than the head coil and the abdominal coil, but the field of view is limited, and when the wide area such as the spine is inspected, the surface coil is moved, There has been a problem that it takes time to capture images several times.

【0004】これに対して,複数個の表面コイルを各表
面コイルが隣接する表面コイルと相互結合しないよう適
度にオ−バラップさせて配列し,上記各表面コイルで受
信されたNMR信号を合成することにより実質的に視野
を広くする方法がある。この方法の原理については,特
表平2−500175,特公平2−13432号,ある
いはマグネティックレゾナンスインメディスン(mag
neticresonance in medicin
e)16巻192頁から225頁(1990年)に記載
してある。
On the other hand, a plurality of surface coils are appropriately overlapped and arranged so that each surface coil does not mutually couple with an adjacent surface coil, and the NMR signals received by the surface coils are synthesized. Therefore, there is a method of substantially widening the field of view. The principle of this method is described in Japanese Patent Publication No. 2-500175, Japanese Patent Publication No. 2-3432, or Magnetic Resonance in Medicine (mag).
network resonance in medicin
e) 16 volumes 192 to 225 (1990).

【0005】[0005]

【発明が解決しようとする課題】上記,従来の技術にお
いて,プローブ出力を単に加算して検出すると信号雑音
比(S/N)が向上しないことから,S/Nを上げるた
めに図2に示した従来例のごとく複数個のプローブ出力
をそれぞれ独自に検出しなければならなかった。そのた
め複数個の信号処理系が必要となり装置が複雑,かつ大
型,高額になるという問題があった。またプローブ出力
を時系列的に分割して1つの信号処理系で処理した場合
にはこれらの問題は解決できるものの撮像時間が長くな
り実用的に問題が生じる。本発明はS/Nが向上する信
号加算方式を提案し,これを用いた実用的なMR装置を
提供するものである。
In the above-mentioned conventional technique, the signal-noise ratio (S / N) is not improved when the probe outputs are simply added and detected. Therefore, FIG. 2 is used to increase the S / N. Moreover, as in the conventional example, it is necessary to independently detect a plurality of probe outputs. Therefore, a plurality of signal processing systems are required, and there is a problem that the device is complicated, large in size, and expensive. Further, when the probe output is time-sequentially divided and processed by one signal processing system, although these problems can be solved, the imaging time becomes long and a practical problem occurs. The present invention proposes a signal addition system with improved S / N and provides a practical MR device using the same.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する基本
的な特徴は,MR装置において,複数個の出力端を有す
る高周波プローブから生体の高周波信号を検出するMR
装置において,該複数の出力高周波信号を各々の出力に
対応した複数個の増幅器で増幅後,それぞれを周波数変
する複数個の周波数変換器により信号周波数を下げ,
次に複数の帯域通過フィルタにより該低周波信号のそれ
ぞれをフィルタリングし,その後該複数個の信号を加算
する手段を設けることにある。
The basic feature for achieving the above object is to detect an RF signal of a living body from a high frequency probe having a plurality of output terminals in an MR apparatus.
In the device, the plurality of output high-frequency signals are amplified by a plurality of amplifiers corresponding to the respective outputs, and then each of them is subjected to frequency conversion.
Lowering the signal frequency by a plurality of frequency converters for conversion,
Next, means for filtering each of the low-frequency signals by a plurality of band-pass filters and then adding the plurality of signals is provided.

【0007】[0007]

【作用】各々の出力に対応した複数個の増幅器で増幅
し,該低周波信号のそれぞれを複数の帯域通過フィルタ
によりフィルタリング処理したのちに信号加算するので
S/Nが向上する。
The S / N is improved because the low-frequency signals are amplified by a plurality of amplifiers corresponding to the respective outputs, the low-frequency signals are filtered by a plurality of band-pass filters, and then the signals are added.

【0008】[0008]

【実施例】以下,本発明を図1に示した実施例を用いて
詳細に説明する。図1は3個の高周波プローブからの出
力信号1−1〜1−3を同時に検出し加算する回路を示
している。コイル15−1から15−3の出力信号1−
1〜1−3は第1の信号周波数をもち,これは生体原子
核のラーモア周波数に正確に一致する。ラーモア周波数
はMR装置の磁場強度と生体中の注目している原子核で
決まる。
The present invention will be described in detail below with reference to the embodiment shown in FIG. FIG. 1 shows a circuit for simultaneously detecting and adding output signals 1-1 to 1-3 from three high frequency probes. Output signals of coils 15-1 to 15-3 1-
1-1 to 3 have a first signal frequency, which exactly corresponds to the Larmor frequency of biological nuclei. The Larmor frequency is determined by the magnetic field strength of the MR device and the nucleus of interest in the living body.

【0009】図3を用いてこれを説明する。垂直磁場方
式のMR装置を例にとると,磁場強度は図示した静磁場
(z方向とする)の強度 0 と,静磁場と直交する方向
xに強度分布をもつz方向磁場を発生する傾斜磁場強度
G(x)の加算値である。この時のラーモア周波数f
は,
This will be described with reference to FIG. Taking a vertical magnetic field type MR device as an example, the magnetic field strength is the gradient G 0 of the illustrated static magnetic field (in the z direction) and a z-direction magnetic field having an intensity distribution in the direction x orthogonal to the static magnetic field. It is an added value of the magnetic field strength G (x). Larmor frequency f at this time
Is

【数1】 f=γ(G(x)+ 0 )/2π …(数1) である。γは原子核固有の磁気回転比でありプロトンで
は267(MHz/T)である。G(x)は例えば視野
中心を0として傾きは一定であり,この傾きaは例えば
0.1(mT/m)〜10(mT/m)(あるいは0.
01G/cm〜1G/cm)程度である。x方向の視野
をL(m)とすれば検出されるMR信号の帯域Δfは,
Is a [number 1] f = γ (G (x) + G 0) / 2π ... ( number 1). γ is the gyromagnetic ratio peculiar to the nucleus, and is 267 (MHz / T) for protons. G (x) has a constant inclination with the center of the field of view being 0, and this inclination a is, for example, 0.1 (mT / m) to 10 (mT / m) (or 0.
It is about 01 G / cm to 1 G / cm). If the visual field in the x direction is L (m), the band Δf of the detected MR signal is

【数2】 Δf=γaL/2π …(数2) である。 ## EQU00002 ## .DELTA.f = .gamma.aL / 2.pi. ( Equation 2) .

【0010】従って,例えば0.2(T)の静磁場強度
において,比較的弱い傾斜磁場,例えば磁場強度0.5
(mT/m)を用いてプロトンを検出する場合,撮像視
野を+0.3(m)〜−0.3(m),計0.6(m)
とすればMR信号の周波数は8.5(MHz)を中心と
して周波数帯域12.75(kHz)となる。
Therefore, at a static magnetic field strength of 0.2 (T), for example, a relatively weak gradient magnetic field, for example, a magnetic field strength of 0.5.
When detecting protons using (mT / m), the imaging field of view is +0.3 (m) to -0.3 (m), 0.6 (m) in total.
Then, the frequency of the MR signal is 12.75 (kHz) centered on 8.5 (MHz).

【0011】撮像視野を図3に示したようにコイル15
−1〜15−3の3個の表面コイルで等分して撮像する
場合,各コイルからの信号1−1〜1−3の中心周波数
(数1)よりそれぞれ8.49575(MHz),
8.50000(MHz),8.50425(MHz)
である。また各周波数帯域は(数2)より4.25(k
Hz)である。すなわち複数個のプローブの信号検出空
間が異なるときには対応する傾斜磁場強度がそれぞれ異
なり検出する高周波信号の周波数,第1の周波数,は各
コイルで互いに僅かに異なる。
As shown in FIG. 3, the field of view of the coil 15
When the image is equally divided by the three surface coils -1 to 15-3, the center frequencies of the signals 1-1 to 1-3 from each coil are 8.49575 (MHz) from (Equation 1 ),
8.50000 (MHz), 8.50425 (MHz)
Is. And each frequency band is 4.25 than (the number 2) (k
Hz). That is, when the signal detection spaces of the plurality of probes are different, the corresponding gradient magnetic field strengths are different, and the frequency of the high-frequency signal to be detected and the first frequency are slightly different in each coil.

【0012】以上では垂直磁場方式について説明した
が,水平磁場方式の場合についても検出信号の周波数に
ついて同様の説明ができることはいうまでもない。
Although the vertical magnetic field method has been described above, it goes without saying that the same can be applied to the frequency of the detection signal in the case of the horizontal magnetic field method.

【0013】図1に戻って,出力信号1−1〜1−3は
それぞれ増幅器2−1〜2−3で増幅される。典型的に
は増幅器のゲインは20(dB)から50(dB)程度
である。増幅器の出力信号7−1〜7−3はそれぞれ第
1の周波数変換器3−1から3−3で第2の信号周波数
の信号8−1〜8−3に変換される。この第2の信号周
波数は後段の帯域通過フィルタの帯域と密接な関係を有
し,本発明ではこの周波数を,後述する該フィルタ帯域
が実用的な帯域になるように十分低い周波数にする。
Returning to FIG. 1, the output signals 1-1 to 1-3 are amplified by the amplifiers 2-1 to 2-3, respectively. The gain of the amplifier is typically about 20 (dB) to 50 (dB). The output signals 7-1 to 7-3 of the amplifier are converted into signals 8-1 to 8-3 having the second signal frequency by the first frequency converters 3-1 to 3-3, respectively. This second signal frequency has a close relationship with the band of the band pass filter in the subsequent stage, and in the present invention, this frequency is set to a sufficiently low frequency so that the filter band described later becomes a practical band.

【0014】一例として高周波発生器14の出力12−
1,12−2,12−3の周波数をそれぞれ7.495
75(MHz),7.50000(MHz),7.50
425(MHz)としこれらを周波数変換器3−1から
3−3の参照信号として入力することにより周波数変換
器3−1から3−3の出力8−1から8−3はすべて1
(MHz)になる。この時に発生する約16(MHz)
の高調波は1(MHz)とは大きく周波数が異なるので
必要に応じて,良く知られたように低域通過フィルタ
(図示していない)を用いて簡単に除去できる。出力8
−1から8−3の周波数帯域は,信号1−1〜1−3の
帯域に等しく(数2)より得られたように4.25(k
Hz)である。次に出力8−1から8−3をそれぞれ帯
域通過フィルタ4−1から4−3によりフィルタリング
する。帯域通過フィルタの帯域は信号帯域と略同一,ま
たはわずかに広く設定することが望ましい。また帯域通
過フィルタの中心周波数は信号周波数と同一にする。
As an example, the output 12- of the high frequency generator 14
The frequencies of 1, 12-2 and 12-3 are 7.495 respectively.
75 (MHz), 7.50000 (MHz), 7.50
425 (MHz) and all the outputs 8-1 from the frequency converter <br/> unit 3-1 3-3 8-3 by inputting a reference signal of the from the frequency converter 3-1 3-3 1
(MHz). About 16 (MHz) generated at this time
Since the frequency of the harmonics of 1 differs greatly from 1 (MHz), it can be easily removed by using a low-pass filter (not shown) as well known, if necessary. Output 8
Frequency band from -1 8-3, as obtained from equal to the bandwidth of the signal 1-1 to 1-3 (number 2) 4.25 (k
Hz). Next, the outputs 8-1 to 8-3 are filtered by the bandpass filters 4-1 to 4-3, respectively. It is desirable that the band of the band pass filter be set to be approximately the same as or slightly wider than the signal band. The center frequency of the bandpass filter is the same as the signal frequency.

【0015】本実施例では第1の周波数変換器で互いに
異なる信号周波数の信号群を互いに同一の中心周波数を
もつ第2の周波数に変換したため該複数の帯域通過フィ
ルタの中心周波数が互いに同一であり,同一の特性のフ
ィルタを複数個作成すれば良く装置製造上好ましい。し
かし本発明は必ずしもこれに限るものではない。帯域通
過フィルタのQ値は一般にf/Δfで示される。本実施
例では,
[0015] In the present embodiment be the same center frequency of the plurality of band pass filters for the conversion to the second frequency to each other having the same center frequency with each other signal group different signal frequencies from each other at a first frequency converter It is sufficient to make a plurality of filters having the same characteristics, which is preferable in manufacturing the device. However, the present invention is not necessarily limited to this. The Q value of the bandpass filter is generally represented by f / Δf. In this embodiment,

【数3】 Q=1(MHz)/4.25(kHz)=235 …(数3) であり,例えば図4に示した帯域通過フィルタ回路のよ
うに一般に知られている技術で容易に作成できる。本実
施例では先に述べたように第1の周波数を十分低い第2
の周波数に周波数変換したため(数3)で与えられるQ
値が実現容易な値になっている。
## EQU00003 ## Q = 1 (MHz) /4.25 (kHz) = 235 (Equation 3) , which can be easily created by a generally known technique such as the bandpass filter circuit shown in FIG. it can. In this embodiment, as described above, the first frequency is set to the sufficiently low second frequency.
Q given by (Equation 3) because the frequency is converted to
The value is easy to realize.

【0016】再び図2に戻って説明する。帯域通過フィ
ルタ4−1から4−3によりフィルタリングされた第2
の周波数の信号9−1から9−3は,第2の周波数変換
器5−1から5−3により第3の信号周波数の信号群1
0−1から10−3に再び変換される。ここで第3の信
号周波数は必要に応じてそれぞれ互いに異なっている。
すなわち高周波発生器14の出力13−1,13−2,
13−3の周波数をそれぞれ27.49575(MH
z),27.50000(MHz)に,27.5042
5(MHz)としこれらを周波数変換器5−1から5−
3の参照信号として入力することによりに周波数変換
5−1から5−3の出力10−1から10−3はそれぞ
れ26.49575(MHz),26.50000(M
Hz)に,26.50425(MHz)になる。ここで
出力10−1から10−3は第1の信号周波数及び第2
の信号周波数との干渉を無くすために十分異なっている
ことが望ましい。しかし増幅器間の相互干渉が十分に小
さくできれば同一でも良いことはいうまでもない。本実
施例では第1の信号周波数の2倍以上に設定した場合を
示す。周波数変換器5−1から5−3の参照信号相互の
周波数の差は,前述した出力信号1−1〜1−3の相互
の周波数の差に一致させている。これはまた図3に示し
たコイル15−1〜15−3が検出したラーモア周波数
の中心値の差にも等しい。このように設定すると後に述
べるようにMR画像再生に好適である。再び第2図に戻
って,第3の信号周波数の信号群10−1から10−3
は加算器6で加算される。この結果加算された信号11
は周波数帯域が12.75(kHz),中心周波数が2
6.5(MHz)の信号となる。加算信号の周波数あた
りのノイズは十分に小さく信号加算によるノイズの増大
は無い。これは加算される信号群10−1から10−3
が,既に帯域通過フィルタ群4−1から4−3によりお
のおの不要領域のノイズ除去がされているためである。
Returning to FIG. 2, the description will be continued. Second filtered by band pass filter 4-1 to 4-3
The signals 9-1 to 9-3 having the frequency of 1 to 3 are transmitted by the second frequency converters 5-1 to 5-3 to the signal group 1 having the third signal frequency.
It is converted again from 0-1 to 10-3. Here, the third signal frequencies are different from each other as necessary.
That is, the outputs 13-1, 13-2 of the high frequency generator 14,
13-3 frequencies of 27.49575 (MH
z), 27.50000 (MHz), 27.5042
5 (MHz) and frequency converters 5-1 to 5-
By inputting as the reference signal of No. 3, the outputs 10-1 to 10-3 of the frequency converters 5-1 to 5-3 are 26.49575 (MHz) and 26.50000 (M, respectively).
Hz) becomes 26.50425 (MHz). Here, the outputs 10-1 to 10-3 are the first signal frequency and the second signal frequency.
It is desirable that they are sufficiently different to eliminate interference with the signal frequency of. However, it goes without saying that they may be the same if the mutual interference between the amplifiers can be made sufficiently small. In the present embodiment, the case where the frequency is set to twice the first signal frequency or more is shown. The difference in frequency between the reference signals of the frequency converters 5-1 to 5-3 is made to coincide with the difference in frequency between the output signals 1-1 to 1-3 described above. This is also equal to the difference between the center values of the Larmor frequencies detected by the coils 15-1 to 15-3 shown in FIG. This setting is suitable for MR image reproduction as described later. Returning to FIG. 2 again, the signal groups 10-1 to 10-3 of the third signal frequency
Are added by the adder 6. Resulting signal 11
Has a frequency band of 12.75 (kHz) and a center frequency of 2
It becomes a signal of 6.5 (MHz). The noise per frequency of the added signal is sufficiently small, and there is no increase in noise due to signal addition. This is the added signal group 10-1 to 10-3.
However, this is because the noise in each unnecessary region has already been removed by the bandpass filter groups 4-1 to 4-3.

【0017】すなわち,例えば,加算をアナログ的に行
っても加算された信号のS/N比は良好である。従っ
て,図には示していないが,加算後の信号は1つのA/
D変換器でアナログ/デジタル変換出来,そのデジタル
信号は各種デジタル信号処理されることが可能である。
この場合,A/D変換器の数を従来例に比べて著しく削
減でき装置が小型化,低価格化できる。
That is, for example, even if the addition is performed in an analog manner, the S / N ratio of the added signals is good. Therefore, although not shown in the figure, the signal after addition is one A /
The D converter can perform analog / digital conversion, and the digital signal can be processed by various digital signals.
In this case, the number of A / D converters can be significantly reduced as compared with the conventional example, and the device can be downsized and the cost can be reduced.

【0018】いま垂直磁場方式を例に採り,静磁場方向
をzとして,MR画像再構成法として例えばx−y平面
の2次元フーリエ変換法を考える。周波数エンコード方
向をx方向にとり位相エンコード方向をy方向にとる。
この場合,信号11は後段の信号処理装置(図示してい
ない)により第1のフーリエ変換がされる。この結果,
各周波数に対応した信号がx方向の位置情報を与える。
本実施例では加算された信号11は加算前の信号10−
1から10−3が周波数領域で互いにずれているので上
記フーリエ変換時に異なった位置情報として与えられ
る。とくに加算前の信号10−1から10−3の周波数
中心値の相互の差は,正確に出力信号1−1〜1−3の
相互の周波数の差に一致している。従ってコイル15−
1〜15−3が検出したラーモア周波数の中心値の差に
等しく,これはコイルの信号検出の相対位置を正確に表
している。それ故,加算信号11をフーリエ変換した値
は,複数個のコイル15−1から15−3の相対位置情
報を正確に与える。なお位相エンコード方向の位置情報
は第1のフーリエ変換をした値をさらに位相方向に第2
のフーリエ変換をすることによって与えられる。これに
よりx−y方向のMR画像が得られる。信号処理される
信号12が十分ノイズ除去されておりかつ,複数の空間
領域の信号成分を含んでいるので再構成画像は視野が広
くまたS/Nが高い。
Taking a vertical magnetic field method as an example, a two-dimensional Fourier transform method on the xy plane is considered as an MR image reconstruction method with the static magnetic field direction as z. The frequency encode direction is the x direction and the phase encode direction is the y direction.
In this case, the signal 11 is subjected to the first Fourier transform by a signal processing device (not shown) in the subsequent stage. As a result,
A signal corresponding to each frequency gives position information in the x direction.
In this embodiment, the added signal 11 is the signal 10-
Since 1 to 10-3 are shifted from each other in the frequency domain, they are given as different position information at the time of the Fourier transform. In particular, the difference between the frequency center values of the signals 10-1 to 10-3 before addition exactly matches the difference between the frequency of the output signals 1-1 to 1-3. Therefore, coil 15-
1-15-3 is equal to the difference between the detected Larmor frequency center values, which accurately represents the relative position of the coil signal detection. Therefore, the value obtained by Fourier transforming the addition signal 11 accurately gives the relative position information of the plurality of coils 15-1 to 15-3. The position information in the phase encode direction is obtained by adding the value obtained by the first Fourier transform to the second value in the phase direction.
Is given by the Fourier transform of. As a result, an MR image in the xy direction is obtained. The reconstructed image has a wide field of view and a high S / N, since the signal 12 to be signal-processed is sufficiently denoised and contains signal components in a plurality of spatial regions.

【0019】以上の説明で明らかなように,本発明では
検出する原子核の磁気回転比γと装置の傾斜磁場の傾き
a,視野Lによって,高周波発生器14の出力信号12
−1から12−3と13−1から13−3の周波数及び
帯域通過フィルタ4−1から4−3の特性が決定され
る。すなわち,隣接する第1の周波数変換器間の参照信
号(例えば12−1と12−2)の周波数の差df
1 は,
As is clear from the above description, according to the present invention,
Detected nuclear gyromagnetic ratio γ and gradient of instrument gradient
a, the output signal 12 of the high frequency generator 14 depending on the visual field L
-1 to 12-3 and 13-1 to 13-3 frequencies and
The characteristics of the band pass filters 4-1 to 4-3 are determined.
You. That is, the adjacent first frequencyconversionReference signal between instruments
The difference between the frequencies of signals (eg 12-1 and 12-2)df
1 Is

【数4】 df 1 =Δf/n=γaL/2πn …(数4) とする。ここで,撮像視野をn個のコイルで周波数エン
コード方向にn等分したと仮定した。帯域通過フィルタ
4−1から4−3の帯域幅Δf’は,
## EQU00004 ## df 1 = Δf / n = γaL / 2πn ( Equation 4) Here, the imaging field of view is frequency-enhanced with n coils.
It was assumed that the code direction was divided into n equal parts. The bandwidth Δf ′ of the band pass filters 4-1 to 4-3 is

【数5】 Δf’=Δf/n=γaL/2πn=df 1 …(数5) である。すなわち隣接する第1の周波数変換器間の参照
信号(例えば12−1と12−2)の周波数の差df1
と,帯域通過フィルタ4−1から4−3の帯域幅Δf’
を等しくすることが望ましい。なお,後述するように複
数個のコイルを隣接する最に各コイルの視野の10%か
ら20%を相互に重ねあわせる場合は,
[Number 5 is a Δf '= Δf / n = γaL / 2πn = df 1 ... ( number 5). That is, the frequency difference df 1 of the reference signals (for example, 12-1 and 12-2) between the adjacent first frequency converters .
And the bandwidth Δf ′ of the band pass filters 4-1 to 4-3.
Is desirable to be equal. As will be described later, when 10% to 20% of the field of view of each coil are overlapped with each other when the coils are adjacent to each other,

【数6】 0.8×Δf’≦df1≦0.95×Δf’ …(数6) とすることが望ましい。さらに,各系列の第1の周波数
変換器の参照信号と第2の周波数変換器の参照信号(例
えば12−1と13−1)間の周波数の差df2は,各
系列間で等しい。すなわち12−1と13−1,12−
2と13−2,12−3と13−3の周波数の差は皆等
しい。
## EQU6 ## It is desirable that 0.8 × Δf'≤df 1 ≤0.95 × Δf ' ( Equation 6) . Furthermore, the first frequency of each sequence
The frequency difference df2 between the reference signal of the converter and the reference signal of the second frequency converter (for example, 12-1 and 13-1) is equal between the series. That is, 12-1 and 13-1, 12-
The frequency differences between 2 and 13-2 and 12-3 and 13-3 are all equal.

【0020】より一般的な場合として,n個のコイル1
5−1から15−nの視野が異なる場合は,以上の記述
は以下のようになる。すなわち,第i番目の第1の周波
変換器の参照信号,12−iの周波数 1i は,
As a more general case, n coils 1
When the fields of view from 5-1 to 15-n are different, the above description is as follows. That is, the reference signal of the i-th first frequency converter , the frequency f 1i of 12-i,

【数7】 1i =A+ i …(数7) とする。ここでAは任意の周波数, i はi番目のコイ
ルの中心信号周波数である。帯域通過フィルタ4−iの
帯域幅Δf’ i は,
[Equation 7] and f 1i = A + f i ... ( 7). Where A is an arbitrary frequency and f i is the center signal frequency of the i-th coil. The bandwidth Δf ′ i of the bandpass filter 4- i is

【数8】 Δf’ i =γa i /2π …(数8) とする。 i は第i番目のi番目のコイルの周波数エン
コード方向の視野サイズである。
[ Formula 8] Δf ′ i = γa L i / 2π ( Formula 8) L i is the field size in the frequency encoding direction of the i-th i-th coil.

【0021】第2の周波数変換器の参照信号,13−i
の周波数 2i は,
Reference signal of the second frequency converter , 13-i
Frequency f 2i of

【数9】 2i =B− i …(数9) であり,ここでBは任意の周波数である。更に,帯域通
過フィルタ4−1から4−nのQ値が実用的な範囲,例
えば50から300に入るためには,
[Equation 9] f 2i = B- f i is the ... (number 9), where B is an arbitrary frequency. Furthermore, in order for the Q values of the band pass filters 4-1 to 4-n to fall within a practical range, for example, 50 to 300,

【数10】 50Δf’ i ≦|A|≦300Δf’ i …(数10) が必要であるので, [ Expression 10] Since 50 Δf ′ i ≦ | A | ≦ 300 Δf ′ i ( Expression 10) is required,

【数11】 50γa i /2π≦|A|≦300γa i /2π …(数11) がAのとりうるべき値である。前述の例では,A=−1
(MHz),Δf’ i =4.25(kHz)である。
(数10)を計算すると, 50×4.25(kHz)≦|−1(MHz)|≦30
0×4.25(kHz) 0.2125(MHz)≦1(MHz)≦1.275
(MHz) となり,Aがとりうるべき値であることが確認される。
Equation 11] 50γa L i / 2π ≦ | A | ≦ 300γa L i / 2π ... ( number 11) is a value to be taken for A. In the above example, A = -1
(MHz) and Δf ′ i = 4.25 (kHz).
When (Equation 10) is calculated, 50 × 4.25 (kHz) ≦ | −1 (MHz) | ≦ 30
0 × 4.25 (kHz) 0.2125 (MHz) ≦ 1 (MHz) ≦ 1.275
(MHz), and it is confirmed that A is a possible value.

【0022】次にMR装置の構造のブロック図,図5,
を用いて高周波発生器と帯域通過フィルタの制御方法を
説明する。被写体16は静磁場発生部23で動作される
磁石19の作る静磁場中に配置される。また傾斜磁場コ
イル18は傾斜磁場発生部24により,励起高周波コイ
ル17は励起高周波パルス発生部21によりそれぞれ傾
斜磁場,高周波磁場を発生し,被写体に作用する。複数
個のコイルからなるコイル部15は被写体からの高周波
磁場信号(MR信号)を受信する。
Next, a block diagram of the structure of the MR device, FIG.
A method of controlling the high frequency generator and the band pass filter will be described using. The subject 16 is placed in the static magnetic field created by the magnet 19 operated by the static magnetic field generator 23. The gradient magnetic field coil 18 generates a gradient magnetic field and the excitation high frequency pulse generator 21 generates a gradient magnetic field and a high frequency magnetic field, respectively, which act on the subject. The coil unit 15 including a plurality of coils receives a high frequency magnetic field signal (MR signal) from a subject.

【0023】この信号は図1の1から14でなる高周波
信号処理加算部20で処理加算されその後信号処理部
22で画像処理や信号補正され表示部25でMR画像
(MRIやMRS,MRISなど)が表示される。
This signal is processed and added by the high-frequency signal processing / adding unit 20 shown by 1 to 14 in FIG. 1, and then image processing and signal correction are performed by the signal processing unit 22 and the MR image (MRI, MRS, MRIS, etc.) is displayed on the display unit 25. ) Is displayed.

【0024】静磁場発生部23,傾斜磁場発生部24,
励起高周波パルス発生部21,高周波信号処理加算部
20,信号処理部22,表示部25は制御部26で制御
される。とくに制御部26では傾斜磁場強度と高周波信
号処理時のパラメータを前述のように相互に最適化し制
御する。すなわち一般に傾斜磁場強度は本発明のフィル
タ以外の要因,例えば撮像シーケンスや撮像速度,視野
により決定されるので,選択された傾斜磁場強度と視野
にしたがって本発明で述べた高周波信号処理部のパラメ
ータ,例えば帯域通過フィルタの帯域幅や中心周波数,
高周波発生器の信号周波数などを任意に設定することが
可能である。この場合フィルタには可変帯域のフィルタ
を用いたり,フィルタを各チャンネルごとに複数個設け
て適宜切り替えても良い。
Static magnetic field generator 23, gradient magnetic field generator 24,
The excitation high frequency pulse generator 21, the high frequency signal processor / adder 20, the signal processor 22, and the display 25 are controlled by the controller 26. In particular, the control unit 26 mutually optimizes and controls the gradient magnetic field strength and the parameters at the time of high frequency signal processing. That is, since the gradient magnetic field strength is generally determined by factors other than the filter of the present invention, for example, the imaging sequence, the imaging speed, and the visual field, the parameters of the high-frequency signal processing unit described in the present invention according to the selected gradient magnetic field strength and visual field, For example, the bandwidth and center frequency of a bandpass filter,
The signal frequency of the high frequency generator can be set arbitrarily. In this case, a variable band filter may be used as the filter, or a plurality of filters may be provided for each channel and switched appropriately.

【0025】本実施例で使われるコイルは例えばフェイ
ズドアレイコイルを用いることができる。また鞍型コイ
ル,バードケージコイル,スロッテドチューブレゾネー
タコイルなどに適用可能である。
As the coil used in this embodiment, for example, a phased array coil can be used. It is also applicable to saddle type coils, birdcage coils, slotted tube resonator coils, etc.

【0026】以上の説明では垂直磁場方式を例に採り,
説明したが水平磁場方式でも本発明が適用されることは
明らかである。また0.2Tの磁場強度で説明したが本
発明は他の磁場強度でも適用できる。傾斜磁場強度につ
いても実施例で記載した以外の強度についても適用でき
る。更にMR装置の構成図は一実施例であり他の構成で
も本発明が適用できる。
In the above description, the vertical magnetic field method is taken as an example,
Although described, it is clear that the present invention can be applied to the horizontal magnetic field method. Further, although the magnetic field strength of 0.2T has been described, the present invention can be applied to other magnetic field strengths. The gradient magnetic field strength can be applied to strengths other than those described in the examples. Furthermore, the configuration diagram of the MR device is an example, and the present invention can be applied to other configurations.

【0027】[0027]

【発明の効果】本発明によれば,複数個の出力端を有す
る高周波プローブにより被写体からの高周波信号を検出
するMR装置において,該複数の出力高周波信号を各々
の出力に対応した複数個の増幅器で増幅後,それぞれを
周波数変換する複数個の周波数変換器により信号周波数
を下げ,次に該低周波信号のそれぞれを複数の帯域通過
フィルタによりフィルタリングし,その後該複数個の信
号を加算するので,広い視野で高S/Nの画像が得られ
る。
According to the present invention, in an MR device for detecting a high frequency signal from a subject by a high frequency probe having a plurality of output terminals, a plurality of amplifiers corresponding to the respective output high frequency signals. After amplification with
Since the signal frequency is lowered by a plurality of frequency converters for frequency conversion , each of the low frequency signals is filtered by a plurality of band pass filters, and then the plurality of signals are added, a high S / N images are obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の装置構成を示すブロック図
である。
FIG. 1 is a block diagram showing a device configuration of an embodiment of the present invention.

【図2】従来例の装置構成を示すブロック図である。FIG. 2 is a block diagram showing a device configuration of a conventional example.

【図3】本発明の実施例の動作説明図である。FIG. 3 is an operation explanatory diagram of the embodiment of the present invention.

【図4】帯域通過フィルタの回路図である。FIG. 4 is a circuit diagram of a bandpass filter.

【図5】本発明の実施例の装置構成を示すブロック図で
ある。
FIG. 5 is a block diagram showing a device configuration of an embodiment of the present invention.

【符号の説明】 1−1〜1−3…高周波プローブからの出力信号,2−
1〜2−3…増幅器,3−1〜3−3…第1の周波数変
換器4−1〜4−3…帯域通過フィルタ5−1〜5
−3…第2の周波数変換器6…加算器7−1〜7−
3…増幅器の出力信号8−1〜8−3…第2の信号周
波数の信号9−1〜9−3…第2の周波数の信号
0−1〜10−3…第3の信号周波数の信号11…加
算信号12−1,12−2,12−3…高周波発生器
の出力(第1の周波数変換器の参照信号)13−1,
13−2,13−3…高周波発生器の出力(第2の周波
数変換器の参照信号)14…高周波発生器15…コ
イル部15−1〜15−n…コイル16…被写体
17…励起高周波コイル18…傾斜磁場コイル19
…磁石20…高周波信号処理加算部21…励起高周
波パルス発生部22…信号処理部表示部23…静磁
場発生部24…傾斜磁場発生部25…表示部26
…制御部。
[Explanation of Codes] 1-1 to 1-3 ... Output signal from high-frequency probe, 2-
1-2-3 ... Amplifier, 3-1-3-3 ... First frequency change
Exchanger, 4-1 to 4-3 ... band-pass filter, 5-1 to 5
-3 ... 2nd frequency converter , 6 ... Adder , 7-1 to 7-
3 ... Output signal of amplifier , 8-1 to 8-3 ... Second signal frequency
Signals of wave number , 9-1 to 9-3 ... Signals of second frequency , 1
0-1 to 10-3 ... Signal of third signal frequency , 11 ... Addition
Arithmetic signal , 12-1 , 12-2 , 12-3 ... High frequency generator
Output (reference signal of the first frequency converter) , 13-1,
13-2, 13-3 ... Output of high frequency generator (second frequency
Number converter reference signal) , 14 ... High frequency generator , 15 ...
Iil part , 15-1 to 15 -n ... Coil , 16 ... Subject ,
17 ... Excitation high-frequency coil , 18 ... Gradient magnetic field coil , 19
... magnet , 20 ... high-frequency signal processing adder , 21 ... high frequency excitation
Wave pulse generator , 22 ... Signal processor display , 23 ... Magnetostatic
Field generation unit , 24 ... Gradient magnetic field generation unit , 25 ... Display unit , 26
… Control unit.

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数個の出力端を有する高周波プローブか
複数の第1の周波数を有する生体の高周波信号を検出
する核磁気共鳴装置において,前記出力端のそれぞれに
接続され前記複数の第1の周波数の高周波信号を各々増
幅する増幅器と,該増幅器のそれぞれに接続され該増幅
器のそれぞれの出力信号を周波数変換して第2の周波数
に信号周波数を下げる第1の周波数変換器と,該第1の
周波数変換器のそれぞれに接続され該第1の周波数変換
器のそれぞれの出力信号をフィルタリングする帯域通過
フィルタと,該帯域通過フィルタのそれぞれの出力信号
を加算する手段とを有することを特徴とする核磁気共鳴
装置。
1. A nuclear magnetic resonance apparatus for detecting a high-frequency signal of a living body having a plurality of first frequencies from a high-frequency probe having a plurality of output terminals, wherein each of the output terminals is provided.
Are connected to increase the high frequency signals of the plurality of first frequencies.
Amplifiers and the amplifiers connected to each of the amplifiers
Frequency conversion of each output signal of the instrument
A first frequency converter for reducing the signal frequency to
A first frequency converter connected to each of the frequency converters.
Bandpass filtering each output signal of the instrument
Filters and respective output signals of the band pass filter
And a means for adding the .
【請求項2】前記帯域通過フィルタのそれぞれに接続さ
れる第2の周波数変換手段をさらに有し,前記複数の第
2の周波数をそれぞれ第3の周波数に変換することを特
徴とする請求項1に記載の核磁気共鳴装置。
2. Connected to each of the bandpass filters.
Further comprising second frequency conversion means,
It is special to convert each frequency of 2 to the third frequency.
The nuclear magnetic resonance apparatus according to claim 1, which is used as a characteristic.
【請求項3】静磁場,及び傾斜磁場強度の傾きが所定の
値を有する傾斜磁場が印加され,周波数エンコード方向
の視野が複数コイルにより分割され検出される核磁気共
鳴装置において,前記複数コイルのそれぞれに接続され
前記複数コイルのそれぞれにより検出される第1の周波
数をもつ高周波信号を増幅する増幅器と,該増幅器のそ
れぞれに接続され該増幅器のそれぞれの出力信号の信号
周波数を第2の周波数に下げる第1の周波数変換器と,
該第1の周波数変換器のそれぞれに接続され該第1の周
波数変換器のそれぞれの出力信号をフィルタリングする
帯域通過フィルタと,該帯域通過フィルタのそれぞれの
出力信号を加算する手段とを有することを特徴とする核
磁気共鳴装置。
3. The static magnetic field and the gradient of the gradient magnetic field strength have a predetermined value.
A gradient magnetic field having a value is applied, and the frequency encoding direction
Field of view detected by being divided by multiple coils
In the sounding device, connected to each of the plurality of coils
First frequency detected by each of the plurality of coils
An amplifier for amplifying a high frequency signal having a number and its amplifier
The signal of each output signal of the amplifier connected to each
A first frequency converter for reducing the frequency to a second frequency,
The first frequency converter is connected to each of the first frequency converters.
Filter each output signal of wavenumber converter
The bandpass filter and each of the bandpass filter
And a means for adding output signals
Magnetic resonance device.
【請求項4】前記帯域通過フィルタのそれぞれに接続さ
れる第2の周波数変換手段をさらに有し,前記複数の第
2の周波数のそれぞれを第3の周波数に変換することを
特徴とする請求項3に記載の核磁気共鳴装置。
4. Connected to each of the bandpass filters.
Further comprising second frequency conversion means,
To convert each of the two frequencies into a third frequency
The nuclear magnetic resonance apparatus according to claim 3, which is characterized in that.
【請求項5】検出する原子核の磁気回転比をγ,前記所
定の値をa,i番目のコイルの周波数エンコード方向の
視野サイズをL i とするとき,前記帯域通過フィルタの
うち第i番目の前記帯域通過フィルタの帯域幅Δf’ i
が概略,Δf’ i =γaL i /2πであることを特徴とす
る請求項3に記載の核磁気共鳴装置。
5. The gyromagnetic ratio of nuclei to be detected is γ, where
A constant value in the frequency encoding direction of the a, i-th coil
When the visual field size is L i ,
The bandwidth Δf ′ i of the i-th band-pass filter
Is approximately Δf ′ i = γaL i / 2π
The nuclear magnetic resonance apparatus according to claim 3.
【請求項6】前記第1の周波数変換器に印加される参照
信号のうち第i番目の前記参照信号の信号周波数を
1i ,前記複数コイルのうち第i番目のコイルの中心信
号周波数又は前記高周波プローブを構成する第i番目の
コイルの中心信号周波数をf i ,前記帯域通過フィルタ
のうち第i番目の前記帯域通過フィルタの帯域幅をΔ
f’ i とするとき,50Δf’ i ≦|A|≦300Δf’
i なる関係を満足するAを用いて,f 1i =A+f i の関係
を満たすことを特徴とする請求項1又は請求項3に記載
の核磁気共鳴装置。
6. A reference applied to the first frequency converter.
The signal frequency of the i-th reference signal of the signals
f 1i , the center signal of the i-th coil of the plurality of coils
Signal frequency or the i-th
The center signal frequency of the coil is f i , and the band pass filter is
The bandwidth of the i-th band-pass filter of the
When f ′ i , 50Δf ′ i ≦ | A | ≦ 300Δf ′
using A satisfying the i the relationship, the relationship of f 1i = A + f i
The method according to claim 1 or claim 3, characterized in that
Nuclear magnetic resonance apparatus.
【請求項7】検出する原子核の磁気回転比をγ,前記所
定の値をa,i番目のコイルの周波数エンコード方向の
視野サイズをL i とするとき, 50γa i /2π≦|A|≦300γa i /2πなる関係をAを満たすことを特徴とする請求項6に記載
の核磁気共鳴装置。
7. The gyromagnetic ratio of nuclei to be detected is γ, where
A constant value in the frequency encoding direction of the a, i-th coil
7. The relation of 50γa L i / 2π ≦ | A | ≦ 300γa L i / 2π is satisfied when the size of the visual field is L i, and A is satisfied.
Nuclear magnetic resonance apparatus.
【請求項8】前記複数コイルのうち第i番目のコイルの
中心信号周波数,又は前記高周波プローブを構成する第
i番目のコイルの中心信号周波数をf i ,任意の周波数
をB,前記第2の周波数変換器に印加される参照信号の
うち第i番目の前記参照信号の周波数をf 2i とすると
き,f 2i =B−f i の関係を満たすことことを特徴とす
る請求項2又は請求項4に記載の核磁気共鳴装置。
8. The i-th coil of the plurality of coils
The center signal frequency or the first high frequency probe
The center signal frequency of the i-th coil is f i , an arbitrary frequency
B of the reference signal applied to the second frequency converter
When out of the frequency of the i-th of said reference signal and f 2i
And satisfying the relationship of f 2i = B−f i
The nuclear magnetic resonance apparatus according to claim 2 or 4.
JP3039837A 1990-11-16 1991-03-06 Nuclear magnetic resonance equipment Expired - Fee Related JP2564428B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3039837A JP2564428B2 (en) 1991-03-06 1991-03-06 Nuclear magnetic resonance equipment
US07/793,456 US5280246A (en) 1990-11-16 1991-11-18 Nuclear magnetic resonance apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3039837A JP2564428B2 (en) 1991-03-06 1991-03-06 Nuclear magnetic resonance equipment

Publications (2)

Publication Number Publication Date
JPH04279151A JPH04279151A (en) 1992-10-05
JP2564428B2 true JP2564428B2 (en) 1996-12-18

Family

ID=12564081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3039837A Expired - Fee Related JP2564428B2 (en) 1990-11-16 1991-03-06 Nuclear magnetic resonance equipment

Country Status (1)

Country Link
JP (1) JP2564428B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876199B2 (en) * 2003-05-30 2005-04-05 General Electric Company Method and system for accelerated imaging using parallel MRI
EP1825287A2 (en) * 2004-12-06 2007-08-29 Koninklijke Philips Electronics N.V. Frequency domain multiplexed transmission of mr signals from a receiver coil array
US9354287B2 (en) * 2007-09-07 2016-05-31 General Electric Company System and apparatus for receiving magnetic resonance (MR) signals from an imaging subject

Also Published As

Publication number Publication date
JPH04279151A (en) 1992-10-05

Similar Documents

Publication Publication Date Title
US5208534A (en) Magnetic resonance imaging system
US8816688B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
EP1371327A1 (en) Magnetic resonance imaging apparatus and method
JP4381378B2 (en) Magnetic resonance imaging system
US5280246A (en) Nuclear magnetic resonance apparatus
JP4035219B2 (en) Nuclear magnetic resonance system
JPH0614901A (en) Magnetic resonance imaging system
JPWO2003092497A1 (en) Magnetic resonance imaging system
JP6410452B2 (en) Method for obtaining separation matrix of separation device for coil array of parallel transmission magnetic resonance imaging system (MRI system), configuration method of parallel transmission magnetic resonance imaging system (MRI system) having separation device for coil array, magnetic resonance imaging Computer program for determining separation matrix of separation device for coil array of system (MRI) and parallel transmission magnetic resonance imaging system (MRI)
JPH05269108A (en) Magnetic resonance video device
US6853193B2 (en) Simultaneous MR data acquisition with multiple mutually desensitized RF coils
JP2564428B2 (en) Nuclear magnetic resonance equipment
JP2002248089A (en) Apparatus and method for magnetic resonance imaging
JPH0647020A (en) Nuclear magnetic resonance probe
JP3197262B2 (en) Magnetic resonance imaging
JP2555233B2 (en) Nuclear magnetic resonance equipment
JP2503821B2 (en) NMR signal processing method and apparatus
JP3135592B2 (en) Magnetic resonance imaging
JP3137366B2 (en) Magnetic resonance imaging equipment
JP2878721B2 (en) Magnetic resonance imaging
US6339626B1 (en) MRI system with fractional decimation of acquired data
US5227726A (en) Nuclear magnetic resonance methods and apparatus
JP4502488B2 (en) Magnetic resonance imaging device
JP3665425B2 (en) Magnetic resonance imaging system
EP1102081A2 (en) Method and apparatus to compensate for image artifacts caused by magnet vibration in an MR imaging system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees