JPH0427901A - Birefringence diffraction grating type polarizer - Google Patents
Birefringence diffraction grating type polarizerInfo
- Publication number
- JPH0427901A JPH0427901A JP2133565A JP13356590A JPH0427901A JP H0427901 A JPH0427901 A JP H0427901A JP 2133565 A JP2133565 A JP 2133565A JP 13356590 A JP13356590 A JP 13356590A JP H0427901 A JPH0427901 A JP H0427901A
- Authority
- JP
- Japan
- Prior art keywords
- grating
- refractive index
- diffraction grating
- diffraction
- depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Head (AREA)
- Polarising Elements (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、 光ピツクアップ等において用いられ る複屈折回折格子型偏光子に関する。[Detailed description of the invention] Industrial applications The present invention Used in optical pickup, etc. The present invention relates to a birefringent grating type polarizer.
従来の技術
従来、
この種の複屈折回折格子型偏光子として第3図に示すよ
うなものがある。これは、” 88春の応用物理学会予
稿集p、848において「29a−ZH−10複屈折回
折格子型偏光子」として発表されたものであり、光学的
異方性を持つ結晶、ここではLiNb0.基板lの光学
軸を含む面に例えば1007111ピツチの周期的なイ
オン交換を施してプロトン交換領域2を形成することに
より出射側回折格子3を形成し、このプロトン交換領域
2上に誘電体膜4を装荷することにより入射側回折格子
5を形成した構造を持つ。プロトン交換領域2では、波
長113μmの異常光線に対して屈折率が0.09pm
増加し、常光線に対しては約0.04減少する。よって
、プロトン交換領域2での常光線の位相差を誘電体M4
で相殺することにより、常光線は直進させ、異常光線だ
けを回折させ得る偏光子となる。即ち、このような複屈
折回折格子型偏光子6は、相直交する2直線偏光を回折
光と透過光とに分けるものである。ここでは常光線成分
と異常光線成分とを含む入射光をO1±1重回折光に分
ける。BACKGROUND OF THE INVENTION Conventionally, there is a birefringent grating type polarizer of this type as shown in FIG. This was announced as ``29a-ZH-10 birefringence grating type polarizer'' in the Spring 1988 Proceedings of the Japan Society of Applied Physics, p. 848, and is a crystal with optical anisotropy, here LiNb0. The output side diffraction grating 3 is formed by performing periodic ion exchange of, for example, 1007111 pitches on the surface including the optical axis of the substrate l to form a proton exchange region 2, and a dielectric film 4 is formed on the proton exchange region 2. It has a structure in which an incident side diffraction grating 5 is formed by loading. In proton exchange region 2, the refractive index is 0.09 pm for extraordinary rays with a wavelength of 113 μm.
increases, and decreases by about 0.04 for ordinary rays. Therefore, the phase difference of the ordinary ray in the proton exchange region 2 can be expressed as
By canceling each other out, the polarizer becomes a polarizer that allows the ordinary rays to travel straight and only the extraordinary rays to diffract. That is, such a birefringent diffraction grating type polarizer 6 separates two orthogonal linearly polarized lights into diffracted light and transmitted light. Here, the incident light including the ordinary ray component and the extraordinary ray component is divided into O1±1 double diffracted light.
よって、このような複屈折回折格子型偏光子6は光磁気
ディスク装置における光磁気信号の読取り用として用い
ることができる。第4図は、′ 89秋の応用物理学会
予稿集p、972においてr30a−PB−3光磁気デ
ィスクヘッド用検光子機能付きホログラム光学素子」と
して発表された光磁気ディスク用の光ピツクアップへの
応用例を示すものである。この光ピツクアップは、半導
体レーザ7から射出されたレーザ光をレンズ8、偏光ビ
ームスプリッタ9、対物レンズ10を経て光磁気ディス
ク11に集光照射し、光磁気ディスク11からの反射光
を再び対物レンズ】0を経て偏光ビームスプリッタ9で
反射させ入射光と分離し、レンズ12を経てホログラム
光学素子12で受光素子14に分離結像させるものであ
る。このホログラム光学素子12が第3図に示した複屈
折回折格子型偏光子機能を利用したもので、第5図に示
すようにO9±19上折光に分けて8分割の受光素子1
2に結像させ、焦点誤差、トラック誤差とともに、光磁
気信号の検出に供するものである。ここに、光磁気信号
は+1次光と一1次光との合計光量と、0次光の光量と
の差により検出される。Therefore, such a birefringent diffraction grating type polarizer 6 can be used for reading magneto-optical signals in a magneto-optical disk device. Figure 4 shows an application to optical pickup for magneto-optical disks, which was announced as ``Hologram optical element with analyzer function for r30a-PB-3 magneto-optical disk heads'' in the Proceedings of Japan Society of Applied Physics, Fall 1989, p. 972. This is an example. In this optical pickup, a laser beam emitted from a semiconductor laser 7 passes through a lens 8, a polarizing beam splitter 9, and an objective lens 10, and is focused onto a magneto-optical disk 11, and the light reflected from the magneto-optical disk 11 is returned to the objective lens. 0, is reflected by a polarizing beam splitter 9 and separated from the incident light, passes through a lens 12, and is separated and imaged on a light receiving element 14 by a hologram optical element 12. This hologram optical element 12 utilizes the birefringent diffraction grating type polarizer function shown in FIG. 3, and as shown in FIG.
2 and is used to detect focus errors, tracking errors, and magneto-optical signals. Here, the magneto-optical signal is detected based on the difference between the total light amount of the +1st order light and the 11th order light and the light amount of the 0th order light.
一方、光磁気信号を読取るためのホログラムはそのピッ
チを細かくすることによっても実現される。即ち、表面
レリーフ型グレーティングの波長とピッチ、深さを適宜
制御することで、TEとTMとの偏光の回折効率が異な
るからである(′87秋の応用物理学会予稿集p、70
3参照)。第68!Iは、このような表面レリーフ型グ
レーティング14の断面形状を誇張して示したものであ
り、ピッチA=0.32pm、深さd=o、254a、
入射光の波長λ=0.83μmの場合であれば、その回
折効率と格子ピッチ依存性との特性は第7図のようにな
る。図中、実線はO次TM、−点鎖線は0次TE、二点
鎖線は1次TE、破線は1次TMを示す。ここに、表面
レリーフ型グレーティングは、その格子深さをピッチ以
上であって2倍程度の深溝とすれば、さらに高い効率が
得られることも知られている。On the other hand, holograms for reading magneto-optical signals can also be realized by making the pitch finer. In other words, by appropriately controlling the wavelength, pitch, and depth of the surface relief grating, the diffraction efficiency of TE and TM polarized light differs ('87 Autumn Proceedings of Japan Society of Applied Physics, p. 70).
(See 3). No. 68! I shows an exaggerated cross-sectional shape of such a surface relief type grating 14, in which pitch A=0.32 pm, depth d=o, 254a,
When the wavelength λ of the incident light is 0.83 μm, the characteristics of the diffraction efficiency and grating pitch dependence are as shown in FIG. In the figure, the solid line shows the O-order TM, the -dot chain line shows the 0-order TE, the two-dot chain line shows the first-order TE, and the broken line shows the first-order TM. It is also known that in surface relief gratings, even higher efficiency can be obtained if the grating depth is made into grooves that are approximately twice as deep as the pitch.
発明が解決しようとする課題
ところが、第3図に示したような複屈折回折格子6を利
用した光磁気ピックアップにあっては、ピッチが110
0pと大きいため、ラマン−ナス回折現象によるもので
ある。よって、回折効率は高々34%程度と低いもので
ある。また、+1次光と一1次光との両方を検知するこ
とにより68%となったとしても、+1次光と−1次光
とに対する受光素子は別個であるため、各々の受光素子
の雑音も各々独立に生ずるものとなり、C/Nはやはり
34%の回折効率時のものと同等となる。よって、高い
C/Nを望めないものである。Problem to be Solved by the Invention However, in a magneto-optical pickup using a birefringent diffraction grating 6 as shown in FIG.
Since it is as large as 0p, it is due to the Raman-Nath diffraction phenomenon. Therefore, the diffraction efficiency is as low as about 34% at most. Furthermore, even if the ratio is 68% by detecting both the +1st-order light and the 1st-order light, since the light-receiving elements for the +1st-order light and the -1st-order light are separate, the noise of each light-receiving element The C/N is also generated independently, and the C/N is also equivalent to that at a diffraction efficiency of 34%. Therefore, a high C/N cannot be expected.
また、第6図に示したような微小ピッチ回折格子なる表
面レリーフ型グレーティング14を用いた光磁気ピック
アップにあっては、ピッチが波長と同程度又はそれ以下
と小さいため、光源の波長変動によって回折角が大きく
変動し、実用上、問題となる。この点を、回折角を表す
次式を用いて説明する。即ち、格子ピッチをΛ、波長を
λ、入射角をθi、回折角を00とすると、
なる式が成立する。即ち、ピッチAが微小になると波長
λの係数1/Aは大きくなる。このため、入射波長^が
変化した際に回折角θ0が大きく変化することが分る。In addition, in a magneto-optical pickup using a surface relief type grating 14, which is a fine pitch diffraction grating, as shown in FIG. The angle of failure varies greatly, which poses a practical problem. This point will be explained using the following equation expressing the diffraction angle. That is, when the grating pitch is Λ, the wavelength is λ, the incident angle is θi, and the diffraction angle is 00, the following formula holds true. That is, as the pitch A becomes minute, the coefficient 1/A of the wavelength λ becomes larger. Therefore, it can be seen that the diffraction angle θ0 changes greatly when the incident wavelength ^ changes.
例えば、入射角θ1=30゜でλ=Aの場合において、
波長λが1%変化(実用上の半導体レーザで生じ得る変
化値)した際、回折角θ0は上式より30.664°と
なる。この結果、受光素子上での光軸移動は340μm
にも達する。例えば、非点収差法による焦点誤差検出の
光軸移動許容範囲が20μm程度であることを考えると
、この先軸移動量が如何に大きいかが分る。For example, when the incident angle θ1=30° and λ=A,
When the wavelength λ changes by 1% (a change value that can occur in a practical semiconductor laser), the diffraction angle θ0 becomes 30.664° from the above equation. As a result, the optical axis movement on the photodetector is 340 μm.
reach even. For example, considering that the allowable range of optical axis movement for focus error detection using the astigmatism method is about 20 μm, it can be seen how large the amount of forward axis movement is.
以上の点をまとめて図示すると、第8図のようになる。If the above points are collectively illustrated, the result will be as shown in Fig. 8.
即ち、複屈折回折格子型偏光子6の場合には波長変動に
よる影響は許容範囲内にあるが回折効率が低く、逆に、
微小ピッチ回折格子14の場合には回折効率が高いもの
の波長変動に対する影響が許容値を越えてしまうもので
ある(ただし、格子深さは各ピッチにおいて最大の回折
効率を得る深さとする)。That is, in the case of the birefringent diffraction grating type polarizer 6, although the influence of wavelength fluctuation is within the permissible range, the diffraction efficiency is low;
In the case of the fine pitch diffraction grating 14, although the diffraction efficiency is high, the influence on wavelength fluctuation exceeds the permissible value (however, the grating depth is set to the depth at which the maximum diffraction efficiency is obtained at each pitch).
課題を解決するための手段
入射側回折格子と出射側回折格子との複屈折回折格子よ
りなり、格子ピッチをΛ、入射光の波長をλ、単位波長
変化量当りで許容される回折角変化量をX、入射側回折
格子の深さをT1、出射側回折格子の深さをT、とし、
入射側回折格子についてその高屈折率部分の格子方向の
屈折率をn11、格子直交方向の屈折率を貼1、低屈折
率部分の格子方向の屈折率をn11、格子直交方向の屈
折率をn12’ 、格子方向の中心屈折率をN11、格
子直交方向の中心屈折率をN l lとし、出射側回折
格子についてその高屈折率部分の格子方向の屈折率を0
21、格子直交方向の屈折率をn83、低屈折率部分の
格子方向の屈折率をn33、格子直交方向の屈折率をn
12’ 、格子方向の中心屈折率をN t + を格子
直交方向の中心屈折率をN。とじたとき、各諸元が、
A圧]7而>ゝ ゛°゛゛°°°°°°°°°°゛°
°゛°′°個n12’ T、 十n12’ Ts #
n(+L + n12T、−・川(c)なる各式を満足
するように構成した。Means for Solving the Problem Consists of a birefringent diffraction grating consisting of an input side diffraction grating and an output side diffraction grating, where the grating pitch is Λ, the wavelength of the incident light is λ, and the amount of change in diffraction angle allowed per unit amount of wavelength change. is X, the depth of the input side diffraction grating is T1, the depth of the output side diffraction grating is T,
Regarding the incident side diffraction grating, the refractive index in the grating direction of the high refractive index part is n11, the refractive index in the grating direction is 1, the refractive index in the grating direction of the low refractive index part is n11, and the refractive index in the grating perpendicular direction is n12. ', the central refractive index in the grating direction is N11, the central refractive index in the orthogonal direction to the grating is N l l, and the refractive index in the grating direction of the high refractive index portion of the output side diffraction grating is 0.
21. The refractive index in the direction perpendicular to the lattice is n83, the refractive index in the lattice direction of the low refractive index part is n33, and the refractive index in the direction perpendicular to the lattice is n.
12', the center refractive index in the lattice direction is N t + , and the center refractive index in the direction perpendicular to the lattice is N. When closed, each specification is A pressure]7ゝ ゛°゛゛°°°°°°°°°°゛°
°゛°′°pieces n12' T, ten n12' Ts #
It was constructed so as to satisfy the following equations: n(+L + n12T, - Kawa (c).
作用
複屈折回折格子型構造において、各諸元が、上記(A)
〜(D)の各式を満足することにより、格子深さが深く
て波長変動を許容し得る範囲で格子ピッチが細かくなり
、高回折効率にして、波長変動に対して安定したものと
なる。In the active birefringence grating structure, each of the specifications is as described in (A) above.
By satisfying the formulas (D) to (D), the grating pitch is fine within a range where the grating depth is deep and wavelength fluctuations can be tolerated, resulting in high diffraction efficiency and stability against wavelength fluctuations.
実施例
本発明の一実施例を第1図及び第2図に基づいて説明す
る。第3図ないし第8図で示した部分と同一部分は同一
符号を用いて示す。本実施例は、前述した2つの従来方
式による欠点をなくし、双方の長所を活かすように、複
屈折回折格子型偏光子6構造をベースとするが、その格
子深さを深くし、格子ピッチを波長変動を許容し得る範
囲で細かくし、第8図特性において、両者の中間領域C
を実現するようにしたものである。Embodiment An embodiment of the present invention will be explained based on FIGS. 1 and 2. Components that are the same as those shown in FIGS. 3 to 8 are indicated using the same reference numerals. In order to eliminate the drawbacks of the two conventional methods mentioned above and take advantage of the advantages of both, this embodiment is based on a birefringent grating type polarizer 6 structure, but the grating depth is increased and the grating pitch is increased. The wavelength fluctuation is made finer within an allowable range, and in the characteristics shown in Figure 8, the intermediate region C between the two is obtained.
It was designed to realize the following.
まず、波長変動を許容し得る格子ピッチAの条件を以下
のように導出する。まず、入射角をθi、回折角をθO
5入射光の波長をλ、格子ピッチを八とすると、回折条
件式は
sinθi + sinθ0=λ/A ・・
・・・・・・・・・・・・・(1)で表される。いま、
波長変動Δλが生じた場合の回折角の変化をΔθ0とす
ると、(1)式はsinθi + 5in(θ0+Δθ
0)=(λ+Δλ)/A・・・・・・・・・(2)とな
る。ここに、Δθ0くθ0として(2)式を展開すると
、sinΔθ0#Δθ0%cO8Δθ0#lによりとな
る。(3)式に(1)式を代入すると、Δθo cos
θ0=Δλ/A ・・・・・・・・・・・・
・・・・・・・・・(4)となる。即ち、
Δθ01
Δ^ Acosθ0
・・・・・・・・・・・・・・・・・・・・・(5)が
成立する。ここに、回折をブラッグ回折とすると、θ1
=00とおけるので、(1)式からλ
sinθo = sinθi=−
A
が成立する。(6)式より、
・・・・・・・・・・・・・・・・・・・・・・・・(
6)cosθo=J1
− sin”Oo = J 1
−(λ/2A)’
・・・・・・・・・・・・・・・・・・・・・・・・(
7)となる。(7)式を(5)式に代入すると、となる
。この(8)式から、波長変動を許容し得る格子ピッチ
八を算出できる。First, conditions for the grating pitch A that can tolerate wavelength fluctuations are derived as follows. First, the incident angle is θi, and the diffraction angle is θO.
5.If the wavelength of the incident light is λ and the grating pitch is 8, the diffraction conditional expression is sinθi + sinθ0=λ/A...
・・・・・・・・・・・・It is expressed as (1). now,
If the change in the diffraction angle when the wavelength fluctuation Δλ occurs is Δθ0, then equation (1) becomes sinθi + 5in(θ0+Δθ
0)=(λ+Δλ)/A (2). Here, when formula (2) is expanded by setting Δθ0 x θ0, it becomes sinΔθ0#Δθ0%cO8Δθ0#l. Substituting equation (1) into equation (3), Δθo cos
θ0=Δλ/A ・・・・・・・・・・・・
......(4). That is, Δθ01 Δ^ Acosθ0 (5) holds true. Here, if the diffraction is Bragg diffraction, θ1
=00, so from equation (1), λ sinθo = sinθi=-A holds true. From equation (6), ・・・・・・・・・・・・・・・・・・・・・・・・(
6) cosθo=J1-sin"Oo=J1-(λ/2A)'
7). Substituting equation (7) into equation (5) yields. From this equation (8), it is possible to calculate a grating pitch of eight that can tolerate wavelength fluctuations.
例えば、回折格子からの距離が30mm、受光素子上で
の許容光軸移動長を20μm(焦点誤差検出で一般的な
許容値)、波長を0.83μmとすると、Δθ0/Δλ
’=6.7 X 10−’[radlとなり、これを満
たすAは、A#15μmとなる。結局、許容できる単位
波長変化当りの回折角変化をXとすると、Rマ■πW<
ゝ °゛°°”°゛°゛“°°゛°°゛°゛°(A)な
る条件を満足すればよい。For example, if the distance from the diffraction grating is 30 mm, the allowable optical axis movement length on the photodetector is 20 μm (general tolerance for focus error detection), and the wavelength is 0.83 μm, then Δθ0/Δλ
'=6.7 x 10-' [radl, and A that satisfies this is A#15 μm. After all, if the allowable diffraction angle change per unit wavelength change is X, then Rma ■πW<
It is sufficient to satisfy the following condition (A).
次に、高回折効率を得るための条件を検討する。Next, conditions for obtaining high diffraction efficiency will be considered.
まず、回折格子のQ値は、格子深さをT、中心屈折率を
noとすると、
Q=2πλT/noA” ・・・・・・・・
・・・・・・・・・・・・・・・・(9)で表される。First, the Q value of the diffraction grating is Q=2πλT/noA'', where T is the grating depth and no is the central refractive index.
It is represented by (9).
Q<1の場合に得られる最高回折効率は、高々33.9
%であることが文献により知られている(コロナ社発行
「光波電子光学」小山状部、西原浩著、p、118参照
)。複屈折回折格子の場合、レジスト(=プロトン交換
領域2)の中心屈折率をn8、深さをTR,LfNbO
。The highest diffraction efficiency obtained when Q<1 is at most 33.9
% (see "Light Wave Electron Optics" published by Corona Publishing Co., Ltd., written by Hiroshi Nishihara, p. 118). In the case of a birefringent diffraction grating, the center refractive index of the resist (=proton exchange region 2) is n8, the depth is TR, and LfNbO
.
(=基板1)の中心屈折率をnLs深さをTLとすると
、
となる。ここに、nR==1166、T、=0.4pm
、nL=2. 2、T、=5.3pm、 Δ=100
p+++、 λ=113pmとすると、Q=2.2X
10−”となり、Q<1の領域となる。Letting the center refractive index of (=substrate 1) be nLs and the depth be TL, then the following equation is obtained. Here, nR==1166, T,=0.4pm
, nL=2. 2, T, = 5.3pm, Δ=100
p+++, λ=113pm, Q=2.2X
10-'', which is the region of Q<1.
そこで、本実施例では、高回折効率を得るために、Q>
1となるようにする。Q>1の場合であれば、第3図に
対応する第1図の複屈折回折格子型偏光子6構成におい
て、回折格子に対して直交方向の偏光を考えると、
となる。ただし、材料は、上述したレジストやLiNb
0.に限らないので、一般論として、第1図に示すよう
に、入射側回折格子5の深さをT1、出射側回折格子3
の深さをT、とし、入射側回折格子5について、その高
屈折率部分の格子方向の屈折率をn、1、格子直交方向
の屈折率をnl12低屈折率部分の格子方向の屈折率を
n11、格子直交方向の屈折率をn12’ 、格子方向
の中心屈折率をN11、格子直交方向の中心屈折率をN
l mとし、出射側回折格子3についてその高屈折率
部分の格子方向の屈折率を021、格子直交方向の屈折
率をnヨ3、低屈折率部分の格子方向の屈折率をn3格
子直交方向の屈折率を03□ 、格子方向の中心屈折率
をN3.、格子直交方向の中心屈折率をN3゜とじた。Therefore, in this example, in order to obtain high diffraction efficiency, Q>
Make it 1. In the case of Q>1, considering the polarization in the direction orthogonal to the diffraction grating in the birefringence grating type polarizer 6 configuration of FIG. 1 corresponding to FIG. 3, the following equation is obtained. However, the materials used are the above-mentioned resist and LiNb.
0. Therefore, in general terms, as shown in FIG.
The depth of the diffraction grating 5 on the incident side is T, the refractive index of the high refractive index portion in the grating direction is n,1, the refractive index in the direction perpendicular to the grating is nl12, and the refractive index of the low refractive index portion in the grating direction is n11, the refractive index in the direction orthogonal to the lattice is n12', the center refractive index in the lattice direction is N11, the center refractive index in the direction orthogonal to the lattice is N
l m, the refractive index in the grating direction of the high refractive index part of the output side diffraction grating 3 is 021, the refractive index in the grating direction perpendicular to the grating is nyo3, and the refractive index in the grating direction of the low refractive index part is n3 in the grating perpendicular direction. The refractive index is 03□, and the central refractive index in the lattice direction is N3. , the central refractive index in the direction orthogonal to the grating was set at N3°.
このように、(A)(B)式を満たすように、回折格子
3,5を構成すれば、波長変動に強く、高回折効率のも
のとなる。ただし、本実施例の対象とする複屈折回折格
子型のものにあっては、格子直交方向の偏光にとっては
高回折効率で格子方向の偏光にとっては低回折効率にし
て、光磁気信号を読取るという特徴がある。即ち、第1
図において、格子方向の偏光にとっては回折格子が無き
が如くふるまう必要があるので、格子ピッチのl/2の
距離を持たせた光線Q、 Q、の感する回折格子の光
学長が同じでなければならない。よって、格子方向の偏
光にとっては、
n++’ T+ 十nm% T、 #n12T、 +
n12T、 ・−(c)を満たすような屈折率n12
、 n12 、 n12。In this way, if the diffraction gratings 3 and 5 are configured to satisfy equations (A) and (B), they will be resistant to wavelength fluctuations and have high diffraction efficiency. However, in the case of the birefringent diffraction grating type that is the subject of this example, the diffraction efficiency is high for light polarized in the direction perpendicular to the grating, and low diffraction efficiency is used for light polarized in the grating direction, and the magneto-optical signal is read. It has characteristics. That is, the first
In the figure, it is necessary for the polarized light in the grating direction to behave as if there were no diffraction grating, so the optical lengths of the diffraction grating perceived by rays Q and Q, which have a distance of 1/2 of the grating pitch, must be the same. Must be. Therefore, for polarized light in the lattice direction, n++' T+ 10 nm% T, #n12T, +
n12T, ・Refractive index n12 that satisfies -(c)
, n12, n12.
nヨ1(入射側が表面レリーフ型であって、外気に接し
ていればn12’ # l )を持つような材料を選び
、第3図に準じた作製において、T12 T、を実現す
る必要がある(これは、第3図に示したような複屈折回
折格子型偏光子6の特徴である)。It is necessary to select a material that has nyo1 (n12'#l if the incident side is a surface relief type and is in contact with the outside air), and realize T12 T by manufacturing according to Figure 3. (This is a feature of the birefringent grating type polarizer 6 as shown in FIG. 3).
例えば、n12= n12 = 1 、66、n12’
=n ′=1、n12=2,246、n12’ =2
.286、n12=2.29、n12’ =2.20な
る材料を選定して構成したとする。すると、N11=N
12= (1,66+1)/2=1133、N11=(
n*+ + nm+’ ) / 2” 2. 266、
N11=(n12+n12’ )/2=2.245とな
り、これらの数値を(C)式に代入すると、
T、 = 16.5T、 ・・・・・
・・・・・・・・・・・・・(11)となる。また、使
用する波長λをλ=0.83μ馬とし、格子ピッチAを
(A)式より求めた15μmとすると、
T、 ) −1,688T + 93.86 ・・
・・・・・・・・・・・・・・・・(12)となる。For example, n12=n12=1,66,n12'
=n'=1, n12=2,246, n12'=2
.. 286, n12=2.29, and n12'=2.20. Then, N11=N
12= (1,66+1)/2=1133, N11=(
n*+ + nm+') / 2" 2. 266,
N11=(n12+n12')/2=2.245, and by substituting these values into formula (C), T, = 16.5T, ...
・・・・・・・・・・・・(11) Furthermore, if the wavelength λ used is λ=0.83 μm and the grating pitch A is 15 μm obtained from equation (A), then T, ) −1,688T + 93.86 ・・
・・・・・・・・・・・・・・・(12)
これらの(II)(12)式をグラフ化して示すと、第
2図のようになる。図中の交点Pは(T12 T、)=
(5,33,879)となる。この値は、第3図構造に
おいて、λ=113μm、プロトン交換深さ=5.3μ
m、レジスト膜厚=400nm、格子ピッチ=100μ
m、回折角=0,74°、異常光線損失=29.1dB
、常光線損失=114dB (これらの損失はフレネル
損失113dBを含む)、偏光分離度=27.7dBと
した場合の最小のT l lTヨであり、第2図中のP
点より右上の実線の部分であってもよい。このような設
計は、材料に応じて任意になし得る。When these formulas (II) and (12) are expressed in a graph, the result is as shown in FIG. The intersection P in the figure is (T12 T,)=
(5, 33, 879). In the structure shown in Figure 3, this value is λ = 113 μm, proton exchange depth = 5.3 μm.
m, resist film thickness = 400 nm, grating pitch = 100 μ
m, diffraction angle = 0.74°, extraordinary ray loss = 29.1 dB
, ordinary ray loss = 114 dB (these losses include Fresnel loss of 113 dB), polarization separation degree = 27.7 dB, this is the minimum T l l T yo, and P in Figure 2
It may be the part of the solid line above and to the right of the point. Such a design can be made arbitrarily depending on the material.
なお、回折させる偏光は格子方向のものであってもよい
。これは、使用する材料によっても変更され得るもので
ある。また、屈折率回折格子の屈折率は連続して変化す
るものであってもよい。この場合、光線Q12 Q、は
屈折率の極大、若しくは極小(光線Q12 Q、の何れ
でもよい)をとることになる。また、入出射方向は相対
的なものであり、入射方向が逆であっても同様の効果が
得られることはもちろんである。Note that the polarized light to be diffracted may be in the grating direction. This can also be changed depending on the material used. Further, the refractive index of the refractive index diffraction grating may change continuously. In this case, the light ray Q12Q has a maximum or minimum refractive index (either the light ray Q12Q may be used). Further, the directions of incidence and emission are relative, and it goes without saying that the same effect can be obtained even if the direction of incidence is reversed.
発明の効果
本発明は、上述したように複屈折回折格子型構造におい
て、その各諸元が、(A)〜(D)なる各式を満足する
ように構成したので、格子深さが深くて波長変動を許容
し得る範囲で格子ピッチが細かくなり、高回折効率にし
て、外部条件等に起因する波長変動に対して安定した偏
光子を提供できるものである。Effects of the Invention The present invention has a birefringent diffraction grating type structure as described above, which is configured so that each of its specifications satisfies the formulas (A) to (D). The grating pitch is fine within a range that allows wavelength fluctuations, and the diffraction efficiency is high, making it possible to provide a polarizer that is stable against wavelength fluctuations caused by external conditions and the like.
第1図は本発明の一実施例を示す原理的構造図、第2図
は特性図、第3図は従来の複屈折回折格子型偏光子構造
を示す斜視図、第4図はその光磁気ピックアップへの適
用例を示す光学系構成図、第5図はそのホログラム光学
素子及び受光素子の斜親図、第6図は微小ピッチ回折格
子の従来例を示す構造図、第7図はλ/d−回折効率特
性図、第8図はA/λ−回折効率及び回折角変化/波長
変化特性図である。
3・・・出射側回折格子、5・・・入射側回折格子」
図
」
図
入/dFig. 1 is a principle structural diagram showing an embodiment of the present invention, Fig. 2 is a characteristic diagram, Fig. 3 is a perspective view showing a conventional birefringence grating type polarizer structure, and Fig. 4 is its magneto-optical structure. An optical system configuration diagram showing an example of application to a pickup, FIG. 5 is a perspective view of the hologram optical element and light receiving element, FIG. 6 is a structural diagram showing a conventional example of a fine pitch diffraction grating, and FIG. 7 is a λ/ d-diffraction efficiency characteristic diagram, and FIG. 8 is an A/λ-diffraction efficiency and diffraction angle change/wavelength change characteristic diagram. 3... Output side diffraction grating, 5... Input side diffraction grating.
Claims (1)
りなり、格子ピッチをΛ、入射光の波長をλ、単位波長
変化量当りで許容される回折角変化量をX、入射側回折
格子の深さをT_1、出射側回折格子の深さをT_2と
し、入射側回折格子についてその高屈折率部分の格子方
向の屈折率をn_1_1、格子直交方向の屈折率をn_
1_2、低屈折率部分の格子方向の屈折率をn_1_1
’、格子直交方向の屈折率をn_1_2’、格子方向の
中心屈折率をN_1_1、格子直交方向の中心屈折率を
N_1_2とし、出射側回折格子についてその高屈折率
部分の格子方向の屈折率をn_2_1、格子直交方向の
屈折率をn_2_2、低屈折率部分の格子方向の屈折率
をn_2_1’、格子直交方向の屈折率をn_2_2’
、格子方向の中心屈折率をN_2_1、格子直交方向の
中心屈折率をN_2_2としたとき、各諸元が、 1/Λ√1−(λ/2Λ)^2<X・・・・・(A)2
πλ/Λ^2(T_1/N_1_2+T_2/N_2_
2)>1・・・・・(B)n_1_1’T_1+n_2
_1’T_2≒n_1_1T_1+n_2_1T_2・
・・・・(C)N_1_2=n_1_2+n_1_2’
/2、N_2_2=n_2_2+n_2_2’/2・・
・・・(D)なる各式を満足するようにしたことを特徴
とする複屈折回折格子型偏光子。[Claims] Consisting of a birefringent diffraction grating consisting of an incident side diffraction grating and an output side diffraction grating, the grating pitch is Λ, the wavelength of the incident light is λ, and the allowable amount of change in diffraction angle per unit amount of change in wavelength is X, the depth of the input side diffraction grating is T_1, the depth of the output side diffraction grating is T_2, the refractive index of the high refractive index portion of the input side diffraction grating in the grating direction is n_1_1, and the refractive index in the direction orthogonal to the grating is n_
1_2, the refractive index in the lattice direction of the low refractive index part is n_1_1
', the refractive index in the direction orthogonal to the grating is n_1_2', the center refractive index in the grating direction is N_1_1, the center refractive index in the direction orthogonal to the grating is N_1_2, and the refractive index in the grating direction of the high refractive index part of the output side diffraction grating is n_2_1. , the refractive index in the direction perpendicular to the lattice is n_2_2, the refractive index in the lattice direction of the low refractive index portion is n_2_1', and the refractive index in the direction perpendicular to the lattice is n_2_2'.
, when the central refractive index in the lattice direction is N_2_1 and the central refractive index in the orthogonal direction to the lattice is N_2_2, each dimension is 1/Λ√1-(λ/2Λ)^2<X... (A )2
πλ/Λ^2(T_1/N_1_2+T_2/N_2_
2)>1... (B) n_1_1'T_1+n_2
_1'T_2≒n_1_1T_1+n_2_1T_2・
...(C)N_1_2=n_1_2+n_1_2'
/2, N_2_2=n_2_2+n_2_2'/2...
A birefringent diffraction grating type polarizer, characterized in that it satisfies the following formulas (D).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2133565A JPH0427901A (en) | 1990-05-23 | 1990-05-23 | Birefringence diffraction grating type polarizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2133565A JPH0427901A (en) | 1990-05-23 | 1990-05-23 | Birefringence diffraction grating type polarizer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0427901A true JPH0427901A (en) | 1992-01-30 |
Family
ID=15107777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2133565A Pending JPH0427901A (en) | 1990-05-23 | 1990-05-23 | Birefringence diffraction grating type polarizer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0427901A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11328713A (en) * | 1998-05-14 | 1999-11-30 | Hideo Maeda | Directional diffraction grating |
-
1990
- 1990-05-23 JP JP2133565A patent/JPH0427901A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11328713A (en) * | 1998-05-14 | 1999-11-30 | Hideo Maeda | Directional diffraction grating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3077156B2 (en) | Optical element and optical pickup device using the same | |
DE60033201T2 (en) | Optical head with broadband retarder | |
KR101105186B1 (en) | Polarizing diffraction element and optical head device | |
US5535055A (en) | Optical head device and birefringent diffraction grating polarizer and polarizing hologram element used therein | |
EP0059084B1 (en) | Optical reader apparatus | |
CN101339335A (en) | Non-Etched Plane Polarization Selective Diffractive Optical Elements | |
JP2004219977A (en) | Phase correction element and optical head system | |
JPH07182687A (en) | Optical pick-up | |
JP2001290017A (en) | Diffraction device for two wavelengths and optical head device | |
US5627812A (en) | Optical head apparatus and diffraction element having at least two diffractive surfaces | |
JP5767858B2 (en) | Optical diffraction element, optical pickup, and method of manufacturing optical diffraction element | |
JPS62212940A (en) | Optical pickup | |
JP4613651B2 (en) | Staircase diffraction element and optical head device | |
JPH0427901A (en) | Birefringence diffraction grating type polarizer | |
JPH02259702A (en) | Polarization diffraction element | |
JP2570563B2 (en) | Optical head device | |
JP3711652B2 (en) | Polarization diffraction element and optical head device using the same | |
JP4725756B2 (en) | Directional diffraction grating | |
JP5131244B2 (en) | Laminated phase plate and optical head device | |
JP2008262662A (en) | Quarter wavelength plate for optical pickup, and optical head device | |
JPS61230634A (en) | Optical head | |
JP2658818B2 (en) | Birefringent diffraction grating polarizer and optical head device | |
JP4337510B2 (en) | Diffraction element and optical head device | |
JP3018689B2 (en) | Magneto-optical head device | |
JP2000193812A (en) | Diffraction element and optical head device |