JPH04277624A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH04277624A JPH04277624A JP3039640A JP3964091A JPH04277624A JP H04277624 A JPH04277624 A JP H04277624A JP 3039640 A JP3039640 A JP 3039640A JP 3964091 A JP3964091 A JP 3964091A JP H04277624 A JPH04277624 A JP H04277624A
- Authority
- JP
- Japan
- Prior art keywords
- gate electrode
- diffusion layer
- semiconductor device
- buried contact
- oxide film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 10
- 238000009792 diffusion process Methods 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 6
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000002844 melting Methods 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- 230000008018 melting Effects 0.000 claims abstract 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052710 silicon Inorganic materials 0.000 abstract description 8
- 239000010703 silicon Substances 0.000 abstract description 8
- 229910021341 titanium silicide Inorganic materials 0.000 description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- HAYXDMNJJFVXCI-UHFFFAOYSA-N arsenic(5+) Chemical compound [As+5] HAYXDMNJJFVXCI-UHFFFAOYSA-N 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は半導体装置に関し、特に
ゲート電極と拡散層との電気的接続構造に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to an electrical connection structure between a gate electrode and a diffusion layer.
【0002】0002
【従来の技術】従来技術によるスタティックRAMのメ
モリセルにおける、ゲート電極の一端から他の拡散層へ
電気的に接続する(埋め込みコンタクトホール)構造に
ついて、図3(a),(b)を参照して説明する。2. Description of the Related Art Refer to FIGS. 3(a) and 3(b) for a structure (buried contact hole) for electrically connecting one end of a gate electrode to another diffusion layer in a static RAM memory cell according to the prior art. I will explain.
【0003】はじめに図3(a)に示すように、P型シ
リコン基板1上にLOCOS選択酸化法によりフィール
ド酸化膜2を形成し、厚さ200Aのゲート酸化膜3を
形成したのち、ゲート酸化膜3の一部を選択エッチング
して埋め込みコンタクト4を形成する。First, as shown in FIG. 3(a), a field oxide film 2 is formed on a P-type silicon substrate 1 by the LOCOS selective oxidation method, and a gate oxide film 3 with a thickness of 200A is formed. 3 is selectively etched to form a buried contact 4.
【0004】つぎに図3(b)に示すように、厚さ30
00Aのドープトポリシリコン膜を形成したのち、パタ
ーニングしてゲート電極5を形成する。そのあと砒素イ
オン注入によりソース−ドレイン(図示せず)を形成し
、熱処理してゲート電極5からP型シリコン基板1への
燐拡散などによりN型拡散層8を形成して埋め込みコン
タクト4への接続が完了する。Next, as shown in FIG. 3(b), the thickness is 30 mm.
After forming a doped polysilicon film of 00A, patterning is performed to form a gate electrode 5. Thereafter, a source-drain (not shown) is formed by arsenic ion implantation, and an N-type diffusion layer 8 is formed by heat treatment to diffuse phosphorus from the gate electrode 5 into the P-type silicon substrate 1, and then the N-type diffusion layer 8 is formed to form the buried contact 4. The connection is complete.
【0005】[0005]
【発明が解決しようとする課題】半導体装置の高集積化
により、埋め込みコンタクトでゲート電極と拡散層との
接触面積が小さくなり、N+ 型拡散層の接合が浅くな
っている。そのためN+ 型拡散層の燐の総量が減少し
てコンタクト抵抗が増大し、回路が正常に動作しないと
いう問題があった。[Problems to be Solved by the Invention] As semiconductor devices become more highly integrated, the contact area between the gate electrode and the diffusion layer through a buried contact becomes smaller, and the junction of the N+ type diffusion layer becomes shallower. As a result, the total amount of phosphorus in the N+ type diffusion layer decreases, contact resistance increases, and the circuit does not operate properly.
【0006】[0006]
【課題を解決するための手段】本発明の半導体装置には
、埋め込みコンタクト部に自己整合的に高融点金属シリ
サイドを形成することにより、埋め込みコンタクト部で
のコンタクト抵抗を減少させた。[Means for Solving the Problems] In the semiconductor device of the present invention, contact resistance in the buried contact portion is reduced by forming refractory metal silicide in the buried contact portion in a self-aligned manner.
【0007】[0007]
【実施例】本発明の第1の実施例について、図1(a)
〜(d)を参照して説明する。[Example] Regarding the first example of the present invention, FIG. 1(a)
This will be explained with reference to (d).
【0008】はじめに図1(a)に示すように、P型シ
リコン基板1上にLOCOS選択酸化法によりフィール
ド酸化膜2を形成し、厚さ200Aのゲート酸化膜3を
形成したのち、ゲート酸化膜3の一部を選択エッチング
して埋め込みコンタクト4を形成する。First, as shown in FIG. 1(a), a field oxide film 2 is formed on a P-type silicon substrate 1 by the LOCOS selective oxidation method, and a gate oxide film 3 with a thickness of 200A is formed. 3 is selectively etched to form a buried contact 4.
【0009】つぎに図1(b)に示すように、厚さ30
00Aのドープトポリシリコン膜を形成したのち、パタ
ーニングしてゲート電極5を形成する。Next, as shown in FIG. 1(b), the thickness is 30 mm.
After forming a doped polysilicon film of 00A, patterning is performed to form a gate electrode 5.
【0010】つぎに図1(c)に示すように、厚さ10
00Aのチタニウム膜6を形成する。Next, as shown in FIG. 1(c), a thickness of 10
A titanium film 6 of 00A is formed.
【0011】つぎに図1(d)に示すように、600℃
の窒素雰囲気で数10秒間熱処理して埋め込みコンタク
ト4の露出部とゲート電極5表面とにチタニウムシリサ
イド膜7を形成する。つぎにNH3 −H2 O2系の
水溶液を用いて未反応のチタニウム膜6を除去する。そ
のあと砒素イオン注入によりソース−ドレイン(図示せ
ず)を形成し、熱処理してゲート電極5からP型シリコ
ン基板1への燐拡散などによりN型拡散層8を形成して
埋め込みコンタクト4への接続が完了する。Next, as shown in FIG. 1(d), 600°C
A titanium silicide film 7 is formed on the exposed portion of the buried contact 4 and the surface of the gate electrode 5 by heat treatment for several tens of seconds in a nitrogen atmosphere. Next, the unreacted titanium film 6 is removed using an NH3-H2O2-based aqueous solution. Thereafter, a source-drain (not shown) is formed by arsenic ion implantation, and an N-type diffusion layer 8 is formed by heat treatment to diffuse phosphorus from the gate electrode 5 into the P-type silicon substrate 1, and then the N-type diffusion layer 8 is formed to form the buried contact 4. The connection is complete.
【0012】この埋め込みコンタクト4はゲート電極5
と拡散層8以外に導電性が高いチタンシリサイドによっ
ても接続されているので、コンタクト抵抗を従来よりも
小さくすることができる。This buried contact 4 is connected to the gate electrode 5.
In addition to the diffusion layer 8, the contacts are also connected by titanium silicide, which has high conductivity, so that the contact resistance can be made smaller than before.
【0013】つぎに本発明の第2の実施例について、図
2(a)〜(e)を参照して説明する。Next, a second embodiment of the present invention will be described with reference to FIGS. 2(a) to 2(e).
【0014】はじめに図2(a)に示すように、P型シ
リコン基板1上にLOCOS選択酸化法によりフィール
ド酸化膜2を形成し、厚さ200Aのゲート酸化膜3を
形成したのち、ゲート酸化膜3の一部を選択エッチング
して埋め込みコンタクト4を形成する。つぎに厚さ30
00Aのドープトポリシリコン膜を形成したのち、パタ
ーニングしてゲート電極5を形成する。つぎにLDDト
ランジスタを形成するため低濃度のP型不純物をイオン
注入したのち、CVD法により厚さ2000Aの酸化膜
9を形成する。First, as shown in FIG. 2(a), a field oxide film 2 is formed on a P-type silicon substrate 1 by the LOCOS selective oxidation method, and a gate oxide film 3 with a thickness of 200A is formed. 3 is selectively etched to form a buried contact 4. Next thickness 30
After forming a doped polysilicon film of 00A, patterning is performed to form a gate electrode 5. Next, in order to form an LDD transistor, a low concentration P type impurity is ion-implanted, and then an oxide film 9 having a thickness of 2000 Å is formed by CVD.
【0015】つぎに図2(b)に示すように、異方性エ
ッチングによりエッチバックして酸化膜9からなるサイ
ドウォール10を形成したのち、CVD法または熱酸化
法により厚さ100Aの酸化膜11を形成する。Next, as shown in FIG. 2(b), after etching back by anisotropic etching to form a sidewall 10 made of an oxide film 9, an oxide film with a thickness of 100A is formed by a CVD method or a thermal oxidation method. 11 is formed.
【0016】つぎに図2(c)に示すように、フォトレ
ジスト12を形成したのちウェットまたはドライエッチ
ングにより、トランジスタ部のサイドウォール10(図
示せず)を残して、埋め込みコンタクト4のサイドウォ
ール10を除去する。Next, as shown in FIG. 2C, after forming a photoresist 12, by wet or dry etching, the sidewall 10 of the buried contact 4 is removed, leaving the sidewall 10 (not shown) of the transistor section. remove.
【0017】つぎに図2(d)に示すように、厚さ10
00Aのチタニウム膜6を形成する。Next, as shown in FIG. 2(d), a thickness of 10
A titanium film 6 of 00A is formed.
【0018】つぎに図2(e)に示すように、600℃
の窒素雰囲気で数10秒間熱処理して埋め込みコンタク
ト4の露出部とゲート電極5表面とにチタニウムシリサ
イド膜7を形成する。つぎにNH3 −H2 O2系の
水溶液を用いて未反応のチタニウム膜6を除去する。そ
のあと砒素イオン注入によりソース−ドレイン(図示せ
ず)を形成し、熱処理してゲート電極5からP型シリコ
ン基板1への燐拡散などによりN型拡散層8を形成して
埋め込みコンタクト4の接続が完了する。Next, as shown in FIG. 2(e), 600°C
A titanium silicide film 7 is formed on the exposed portion of the buried contact 4 and the surface of the gate electrode 5 by heat treatment for several tens of seconds in a nitrogen atmosphere. Next, the unreacted titanium film 6 is removed using an NH3-H2O2-based aqueous solution. Thereafter, a source-drain (not shown) is formed by arsenic ion implantation, and an N-type diffusion layer 8 is formed by heat treatment to diffuse phosphorus from the gate electrode 5 to the P-type silicon substrate 1, and the buried contact 4 is connected. is completed.
【0019】第1の実施例ではゲート電極5をエッチン
グしてチタニウムシリサイド膜7を形成しているので、
ゲート電極5の側面にもチタニウムシリサイド膜7が形
成されてゲート長Lが変化してしまう。一方本実施例で
はゲート電極にサイドウォールを形成してチタンシリサ
イドを形成しているので、ゲート長Lが変化しないので
、設計通りのLSIを製造することができる。In the first embodiment, since the gate electrode 5 is etched to form the titanium silicide film 7,
Titanium silicide film 7 is also formed on the side surfaces of gate electrode 5, resulting in a change in gate length L. On the other hand, in this embodiment, since a sidewall is formed on the gate electrode and titanium silicide is formed, the gate length L does not change, so that an LSI as designed can be manufactured.
【0020】[0020]
【発明の効果】埋め込みコンタクトに導電性の優れた高
融点金属シリサイドを自己整合的に形成することにより
、コンタクト抵抗を低減できる効果がある。Effects of the Invention: Forming high-melting point metal silicide with excellent conductivity in a self-aligned manner in the buried contact has the effect of reducing contact resistance.
【図1】本発明の第1の実施例を工程順に示す断面図で
ある。FIG. 1 is a cross-sectional view showing a first embodiment of the present invention in order of steps.
【図2】本発明の第2の実施例を工程順に示す断面図で
ある。FIG. 2 is a cross-sectional view showing a second embodiment of the present invention in order of steps.
【図3】従来技術による埋め込みコンタクトホール構造
を工程順に示す断面図である。FIG. 3 is a cross-sectional view showing a buried contact hole structure according to the prior art in the order of steps;
1 P型シリコン基板 2 フィールド酸化膜 3 ゲート酸化膜 4 埋め込みコンタクト 5 ゲート電極 6 チタニウム膜 7 チタニウムシリサイド膜 8 N型拡散層 9 酸化膜 10 サイドウォール 11 酸化膜 12 フォトレジスト 1 P-type silicon substrate 2 Field oxide film 3 Gate oxide film 4 Embedded contact 5 Gate electrode 6 Titanium film 7 Titanium silicide film 8 N-type diffusion layer 9 Oxide film 10 Side wall 11 Oxide film 12 Photoresist
Claims (1)
を介して形成されたゲート電極が、前記半導体基板に形
成された拡散層に接続された半導体装置において、前記
拡散層の前記ゲート電極に覆われていない領域と前記ゲ
ート電極表面の少なくとも一部とが高融点金属シリサイ
ドで覆われていることを特徴とする半導体装置。1. A semiconductor device in which a gate electrode formed on one main surface of a semiconductor substrate via a gate insulating film is connected to a diffusion layer formed on the semiconductor substrate, wherein the gate electrode of the diffusion layer 1. A semiconductor device characterized in that a region not covered with silicide and at least a part of the surface of the gate electrode are covered with high melting point metal silicide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3039640A JPH04277624A (en) | 1991-03-06 | 1991-03-06 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3039640A JPH04277624A (en) | 1991-03-06 | 1991-03-06 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04277624A true JPH04277624A (en) | 1992-10-02 |
Family
ID=12558693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3039640A Pending JPH04277624A (en) | 1991-03-06 | 1991-03-06 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04277624A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7023071B2 (en) | 1994-05-27 | 2006-04-04 | Hitachi Ulsi Engineering Corp. | Semiconductor integrated circuit device and process for manufacturing the same |
-
1991
- 1991-03-06 JP JP3039640A patent/JPH04277624A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7023071B2 (en) | 1994-05-27 | 2006-04-04 | Hitachi Ulsi Engineering Corp. | Semiconductor integrated circuit device and process for manufacturing the same |
US7022568B2 (en) | 1994-05-27 | 2006-04-04 | Renesas Technology Corp. | Semiconductor integrated circuit device and process for manufacturing the same |
US7049680B2 (en) | 1994-05-27 | 2006-05-23 | Renesas Technology Corp. | Semiconductor integrated circuit device and process for manufacturing the same |
US7253051B2 (en) | 1994-05-27 | 2007-08-07 | Renesas Technology Corp. | Semiconductor integrated circuit device and process for manufacturing the same |
US7397123B2 (en) | 1994-05-27 | 2008-07-08 | Renesas Technology Corp. | Semiconductor integrated circuit device and process for manufacturing the same |
US7456486B2 (en) | 1994-05-27 | 2008-11-25 | Renesas Technology Corp. | Semiconductor integrated circuit device and process for manufacturing the same |
US7511377B2 (en) | 1994-05-27 | 2009-03-31 | Renesas Technology Corp. | Semiconductor integrated circuit device and process for manufacturing the same |
US7834420B2 (en) | 1994-05-27 | 2010-11-16 | Renesas Electronics Corp. | Semiconductor integrated circuit device and process for manufacturing the same |
US7910427B1 (en) | 1994-05-27 | 2011-03-22 | Renesas Electronics Corporation | Semiconductor integrated circuit device and process for manufacturing the same |
US8093681B2 (en) | 1994-05-27 | 2012-01-10 | Renesas Electronics Corporation | Semiconductor integrated circuit device and process for manufacturing the same |
US8133780B2 (en) | 1994-05-27 | 2012-03-13 | Renesas Electronics Corporation | Semiconductor integrated circuit device and process for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4447128B2 (en) | Insulated gate type semiconductor device manufacturing method | |
US6566208B2 (en) | Method to form elevated source/drain using poly spacer | |
JPH0457337A (en) | Semiconductor device and manufacture thereof | |
KR19990030574A (en) | Method of manufacturing semiconductor device having silicide and LED structure | |
JPS63257231A (en) | Manufacture of semiconductor device | |
JP3129867B2 (en) | Method for manufacturing semiconductor device | |
JPH04277624A (en) | Semiconductor device | |
KR19990018279A (en) | MOSFET device for preventing gate-source-drain short caused by salicide and method for manufacturing same | |
KR19980060621A (en) | Manufacturing method of semiconductor device | |
JPH10335645A (en) | Switching element using silicide and method of manufacturing the same | |
JP2910064B2 (en) | Method for manufacturing semiconductor device | |
JP4956853B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3598693B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH07263690A (en) | Semiconductor device having salicide structure and its manufacture | |
JP2914052B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH02288341A (en) | MIS type semiconductor device | |
JP2001308322A (en) | Method for manufacturing semiconductor integrated circuit device | |
JP3274254B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2982758B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH10242460A (en) | Semiconductor integrated circuit device and method of manufacturing the same | |
KR100898257B1 (en) | Manufacturing method of semiconductor device | |
JP3108927B2 (en) | Method for manufacturing semiconductor device | |
JPS61156883A (en) | Manufacture of semiconductor device | |
JP2001203348A (en) | Semiconductor device and manufacturing method | |
JPH0571191B2 (en) |