[go: up one dir, main page]

JPH04269460A - How to raise the temperature of a fuel cell plant - Google Patents

How to raise the temperature of a fuel cell plant

Info

Publication number
JPH04269460A
JPH04269460A JP3050564A JP5056491A JPH04269460A JP H04269460 A JPH04269460 A JP H04269460A JP 3050564 A JP3050564 A JP 3050564A JP 5056491 A JP5056491 A JP 5056491A JP H04269460 A JPH04269460 A JP H04269460A
Authority
JP
Japan
Prior art keywords
fuel cell
reformer
cathode
temperature
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3050564A
Other languages
Japanese (ja)
Inventor
Kenichi Mochizuki
健一 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
Ishikawajima Harima Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Harima Heavy Industries Co Ltd filed Critical Ishikawajima Harima Heavy Industries Co Ltd
Priority to JP3050564A priority Critical patent/JPH04269460A/en
Publication of JPH04269460A publication Critical patent/JPH04269460A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えばリン酸型燃料電
池プラント、溶融炭酸塩型燃料電池プラント、固体電解
質型燃料電池プラントなどの燃料電池プラントの昇温方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for increasing the temperature of a fuel cell plant, such as a phosphoric acid fuel cell plant, a molten carbonate fuel cell plant, or a solid oxide fuel cell plant.

【0002】0002

【従来の技術】従来の燃料電池プラントのうち溶融炭酸
塩型燃料電池プラントは、図2に示すように燃料電池1
のアノード極2に燃料供給ライン6を介して水素を供給
し、一方カソード極4に空気供給ライン9を介して酸素
を供給することで電池反応を起こして電気を発生させる
ものであり、前記燃料電池1は、アノード極2とカソー
ド極4とを1つの組み合わせ(セル)としてそれを何層
か積み重ねたものである。
[Prior Art] Among conventional fuel cell plants, a molten carbonate fuel cell plant has a fuel cell 1 as shown in FIG.
Hydrogen is supplied to the anode electrode 2 via the fuel supply line 6, while oxygen is supplied to the cathode electrode 4 via the air supply line 9 to cause a cell reaction and generate electricity. The battery 1 is a combination (cell) of an anode 2 and a cathode 4 stacked in several layers.

【0003】前記燃料供給ライン6には、アノード極2
の上流側に配置され、例えば天然ガスなどの原燃料Zを
高温で蒸気Hと改質反応させることで水素を発生させる
改質器7が設けられており、アノード排ガスライン3に
は、アノード極2の下流側に配置され、且つ燃料電池1
からの余剰燃料を改質器7に供給させるアノードブロワ
8が設けられている。一方カソード循環系5は、カソー
ド極4の上流及び下流において、カソード極4へ供給さ
れる酸素を賄うための空気E供給用の空気供給ライン9
と、前記カソード極4の下流に接続されるカソード排ガ
スライン10とに接続されており、カソード循環系5の
中途部には、燃料電池1から排出されたカソード排ガス
を循環させるカソード循環ブロワ11が設けられている
[0003] The fuel supply line 6 includes an anode electrode 2.
A reformer 7 is disposed on the upstream side of the anode exhaust gas line 3 and generates hydrogen by subjecting raw fuel Z such as natural gas to a reforming reaction with steam H at high temperature. 2, and the fuel cell 1
An anode blower 8 is provided to supply surplus fuel from the fuel to the reformer 7. On the other hand, the cathode circulation system 5 includes air supply lines 9 upstream and downstream of the cathode 4 for supplying air E for supplying oxygen to the cathode 4.
and a cathode exhaust gas line 10 connected downstream of the cathode 4, and in the middle of the cathode circulation system 5, there is a cathode circulation blower 11 that circulates the cathode exhaust gas discharged from the fuel cell 1. It is provided.

【0004】又、前記アノード排ガスライン3には、ア
ノードブロワ8の下流側から分岐し前記燃料供給ライン
6の改質器7上流側に通ずる分岐循環ライン12を接続
し、前記燃料供給ライン6には、改質器7の上流側から
分岐し前記アノード排ガスライン3に通ずる分岐供給ラ
イン19を接続してある。
[0004] Also, a branch circulation line 12 is connected to the anode exhaust gas line 3, which branches from the downstream side of the anode blower 8 and leads to the upstream side of the reformer 7 of the fuel supply line 6. is connected to a branch supply line 19 that branches from the upstream side of the reformer 7 and leads to the anode exhaust gas line 3.

【0005】尚、図中13は燃料供給弁、14は蒸気供
給弁、15は空気供給弁、20はアノード排ガスライン
3の分岐循環ライン12分岐部と分岐供給ライン19接
続部との間に設けられた開閉弁、21は分岐循環ライン
12途中に設けられた開閉弁であり、又、E’は前記改
質器7内で前記燃料電池1からの余剰燃料あるいは分岐
供給ライン19からの原燃料Zを燃焼させるために使用
される空気で、更に改質器7は、燃焼排ガスを空気供給
ライン9へ供給できるように該ライン9と接続されてい
る。
In the figure, 13 is a fuel supply valve, 14 is a steam supply valve, 15 is an air supply valve, and 20 is a valve provided between the branch part of the branch circulation line 12 and the connection part of the branch supply line 19 of the anode exhaust gas line 3. 21 is an on-off valve provided in the middle of the branch circulation line 12, and E' is an on-off valve provided in the middle of the branch circulation line 12; In addition, the reformer 7 is connected to the air supply line 9 so that the flue gas can be supplied to the air supply line 9, with the air used to combust the Z.

【0006】燃料電池1の起動操作時には、図2に示す
如く、燃料供給弁13、蒸気供給弁14、空気供給弁1
5、開閉弁20を閉じ、且つ開閉弁21,22を開いた
状態で、図示していない窒素ガス封入ラインから分岐循
環ライン12へ窒素ガスN(不活性ガス)を供給し、燃
料供給ライン6及びアノード排ガスライン3に残存する
ガスをガス排出ライン(図示せず)から排出させたのち
、前記窒素ガスNをアノードブロワ8の駆動により改質
器7から燃料供給ライン6を経てアノード極2を通過す
るよう循環せしめると共に、分岐供給ライン19から供
給される原燃料Zを空気E’により燃焼せしめ、その燃
焼排ガスを空気供給ライン9からカソード極4を通過さ
せてカソード排ガスライン10から排出させる。尚、こ
のときカソード循環ブロワ11は停止させてある。
When starting the fuel cell 1, as shown in FIG. 2, the fuel supply valve 13, steam supply valve 14, and air supply valve 1 are activated.
5. With the on-off valve 20 closed and the on-off valves 21 and 22 open, nitrogen gas N (inert gas) is supplied from the nitrogen gas filling line (not shown) to the branch circulation line 12, and the fuel supply line 6 After exhausting the gas remaining in the anode exhaust gas line 3 from a gas exhaust line (not shown), the nitrogen gas N is driven from the reformer 7 through the fuel supply line 6 to the anode electrode 2 by driving the anode blower 8. At the same time, the raw fuel Z supplied from the branch supply line 19 is combusted by the air E', and the combustion exhaust gas is passed from the air supply line 9 through the cathode 4 and discharged from the cathode exhaust gas line 10. Incidentally, at this time, the cathode circulation blower 11 is stopped.

【0007】これにより、前記窒素ガスNは、改質器7
において燃焼排ガスと熱交換を行って温度上昇し、アノ
ード極2を通過する際に該アノード極2を昇温せしめ、
一方、前記原燃料Zと空気E’との燃焼により改質器7
が暖められると共に、その燃焼排ガスによりカソード極
4が昇温される。
[0007] As a result, the nitrogen gas N is transferred to the reformer 7.
The temperature is increased by exchanging heat with the combustion exhaust gas, and the temperature of the anode 2 is raised when passing through the anode 2,
On the other hand, due to the combustion of the raw fuel Z and the air E', the reformer 7
At the same time, the combustion exhaust gas raises the temperature of the cathode 4.

【0008】而して、燃料電池1が650℃程度の温度
まで昇温し、且つ改質器7が800℃程度の温度まで昇
温したら、前記燃料供給弁13、蒸気供給弁14、空気
供給弁15、開閉弁20が開かれ、且つ開閉弁21,2
2が閉じられ、燃料供給弁13を介して供給された原燃
料Zが改質器7内へ供給されると共に蒸気供給弁14を
介して供給された蒸気Hが改質器7へ供給され、該改質
器7内では高温状態で原燃料Zと蒸気Hの改質反応が行
われることで水素が発生し、該水素はアノード極2へ供
給され、次いで該アノード極2からの余剰燃料は改質器
7の燃料としてアノードブロワ8によって再び改質器7
へ戻される。
[0008] When the temperature of the fuel cell 1 rises to about 650°C and the temperature of the reformer 7 rises to about 800°C, the fuel supply valve 13, the steam supply valve 14, and the air supply The valve 15 and the on-off valve 20 are opened, and the on-off valves 21 and 2 are opened.
2 is closed, raw fuel Z supplied via the fuel supply valve 13 is supplied into the reformer 7, and steam H supplied via the steam supply valve 14 is supplied to the reformer 7, In the reformer 7, hydrogen is generated by a reforming reaction between the raw fuel Z and the steam H at a high temperature, and the hydrogen is supplied to the anode 2, and then the surplus fuel from the anode 2 is The anode blower 8 supplies the reformer 7 with fuel as fuel for the reformer 7.
be returned to.

【0009】一方、空気供給ライン9では、空気供給弁
15を介して導入された空気Eがカソード極4へ供給さ
れ、そののち該カソード極4からのカソード排ガスは主
にカソード排ガスライン10へ流れるが、一部はカソー
ド循環系5のカソード循環ブロワ11の駆動により再循
環され、空気供給ライン9において、前記空気供給弁1
5を介して供給される低温の空気Eと混合して適切な温
度まで下げられたのち、カソード極4へ戻される。これ
により、カソード極4に多量のガスを流すことができ、
燃料電池1が電池反応によって必要以上に高温になるこ
とを抑えている。
On the other hand, in the air supply line 9, air E introduced through the air supply valve 15 is supplied to the cathode 4, and then the cathode exhaust gas from the cathode 4 mainly flows to the cathode exhaust gas line 10. However, a part of it is recirculated by driving the cathode circulation blower 11 of the cathode circulation system 5, and in the air supply line 9, the air supply valve 1
After being mixed with low-temperature air E supplied through 5 and lowered to an appropriate temperature, it is returned to the cathode 4. This allows a large amount of gas to flow into the cathode 4,
This prevents the fuel cell 1 from becoming hotter than necessary due to cell reactions.

【0010】0010

【発明が解決しようとする課題】前述の如き燃料電池プ
ラントの起動操作時においては、燃料電池1は、熱歪み
や電解質不均一に伴う性能低下を回避するために、規定
速度以下でゆっくりと且つ均一に所定温度まで昇温させ
なければならず、又、改質器7の昇温条件の制限により
決まる燃焼排ガス量で昇温されるため昇温を完了するま
でに数日必要となる。
[Problems to be Solved by the Invention] During the start-up operation of a fuel cell plant as described above, the fuel cell 1 is operated slowly and at a speed below a specified speed in order to avoid performance deterioration due to thermal distortion and electrolyte non-uniformity. The temperature must be raised uniformly to a predetermined temperature, and since the temperature is raised by the amount of combustion exhaust gas determined by the restrictions on the temperature raising conditions of the reformer 7, it takes several days to complete the temperature raising.

【0011】又、改質器7については、それ単独で温め
るとすれば、通常3〜4時間程度で昇温を完了できるの
であるが、前記燃料電池1と改質器7の両方を同時に温
めるため、燃料電池1に合わせて改質器7もゆっくりと
加熱する必要があり、図示していない原燃料Z供給用の
ポンプ又はコンプレッサや空気E’供給用のコンプレッ
サ等の補機を長時間に亘って駆動しなければならず、非
常に無駄が多く、しかも全体の昇温制御も燃焼電池1と
改質器7の昇温条件の制約が相互に干渉するため困難と
なっていた。
[0011] Regarding the reformer 7, if it is heated alone, the temperature rise can normally be completed in about 3 to 4 hours, but if both the fuel cell 1 and the reformer 7 are heated at the same time, Therefore, it is necessary to slowly heat the reformer 7 along with the fuel cell 1, and auxiliary equipment such as a pump or compressor for supplying raw fuel Z and a compressor for supplying air E' (not shown) may be heated for a long time. It has to be driven over the entire range, which is very wasteful, and furthermore, the overall temperature increase control is also difficult because the constraints on the temperature increase conditions of the combustion battery 1 and the reformer 7 interfere with each other.

【0012】本発明は、斯かる実情に鑑み、燃料電池と
改質器を個別に昇温させることができ、補機動力を節減
し、且つ昇温制御を容易に行える燃料電池プラントの昇
温方法を提供しようとするものである。
In view of these circumstances, the present invention has been developed to increase the temperature of a fuel cell plant in which the temperature of the fuel cell and the reformer can be raised individually, the power of auxiliary equipment can be saved, and the temperature can be easily controlled. It is intended to provide a method.

【0013】[0013]

【課題を解決するための手段】本発明は、カソード循環
系と改質器を備えた燃料電池プラントの昇温方法におい
て、燃料電池の起動操作時に、前記カソード循環系に導
入した不活性ガスを加熱器で加熱したうえ前記カソード
循環系に循環させ、前記燃料電池を所定温度まで昇温さ
せる一方、燃料電池のアノード極をバイパスするよう形
成した改質器循環系に導入した不活性ガスを、前記改質
器へ供給された原燃料の燃焼により加熱しつつ前記改質
器循環系に循環させ、前記改質器を所定温度まで昇温さ
せることを特徴とするものである。
[Means for Solving the Problems] The present invention provides a method for increasing the temperature of a fuel cell plant equipped with a cathode circulation system and a reformer, in which an inert gas introduced into the cathode circulation system is The inert gas is heated with a heater and circulated through the cathode circulation system to raise the temperature of the fuel cell to a predetermined temperature, while the inert gas is introduced into a reformer circulation system formed to bypass the anode electrode of the fuel cell. The present invention is characterized in that the raw fuel supplied to the reformer is heated by combustion and circulated through the reformer circulation system to raise the temperature of the reformer to a predetermined temperature.

【0014】[0014]

【作用】従って、燃料電池の起動操作時には、カソード
循環系に導入された不活性ガスは、加熱器で加熱された
うえカソード循環系に循環させられ、燃料電池は不活性
ガスによって間接的に加熱される一方、燃料電池のアノ
ード極をバイパスするよう形成した改質器循環系に不活
性ガスを導入し、該不活性ガスを前記改質器へ供給され
た原燃料の燃焼により加熱しつつ前記改質器循環系に循
環させれば、前記改質器が、前記燃料電池とは全く別に
前記原燃料の燃焼により加熱される。
[Operation] Therefore, during the startup operation of a fuel cell, the inert gas introduced into the cathode circulation system is heated by the heater and then circulated to the cathode circulation system, and the fuel cell is indirectly heated by the inert gas. Meanwhile, an inert gas is introduced into a reformer circulation system formed to bypass the anode electrode of the fuel cell, and the inert gas is heated by combustion of the raw fuel supplied to the reformer. When the fuel is circulated through the reformer circulation system, the reformer is heated by combustion of the raw fuel completely separately from the fuel cell.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0016】図1は本発明の方法が採用される燃料電池
プラントの系統の一例であって、図中図2と同一の符号
を付した部分は同一のものを表しており、基本的な構成
は、図2で示した従来のものとほぼ同じであるが、本実
施例の特徴とするところは、カソード循環系5における
カソード循環ブロワ11と空気供給ライン9への接続部
との間に加熱器18を設け、カソード循環系5には空気
Eを窒素ガス(不活性ガス)N’と置換するためのガス
排出ライン及び窒素ガス封入ライン(図示せず)を接続
し、空気供給ライン9におけるカソード循環系5の接続
部と改質器7の接続部との間にカソード入口弁16を、
カソード排ガスライン10におけるカソード循環系5の
分岐部より下流側にカソード出口弁17を夫々設け、又
、燃料供給ライン6におけるアノード極2の上流側にア
ノード入口弁23を、アノード排ガスライン3における
アノードブロワ8上流側にアノード出口弁24を夫々設
け、前記燃料供給ライン6のアノード入口弁23上流側
とアノード排ガスライン3のアノード出口弁24下流側
とを、途中に開閉弁25が設けられたバイパスライン2
6によって短絡せしめ、燃料供給ライン6とバイパスラ
イン26とアノード排ガスライン3と分岐循環ライン1
2とからアノード極2をバイパスする改質器循環系27
を形成し、更に、前記空気供給ライン9のカソード入口
弁16上流側とカソード排ガスライン10のカソード出
口弁17下流側とを、途中に開閉弁28が設けられた排
ガスバイパスライン29によって短絡せしめた点にある
FIG. 1 shows an example of a system of a fuel cell plant in which the method of the present invention is adopted. In the figure, parts given the same reference numerals as in FIG. 2 represent the same parts, and the basic configuration is is almost the same as the conventional one shown in FIG. A gas discharge line and a nitrogen gas filling line (not shown) for replacing air E with nitrogen gas (inert gas) N' are connected to the cathode circulation system 5. A cathode inlet valve 16 is provided between the connection part of the cathode circulation system 5 and the connection part of the reformer 7,
A cathode outlet valve 17 is provided downstream of the branch of the cathode circulation system 5 in the cathode exhaust gas line 10, an anode inlet valve 23 is provided upstream of the anode electrode 2 in the fuel supply line 6, and an anode inlet valve 23 is provided in the anode exhaust gas line 3 on the upstream side of the anode electrode 2. Anode outlet valves 24 are provided upstream of the blowers 8, and the upstream side of the anode inlet valve 23 of the fuel supply line 6 and the downstream side of the anode outlet valve 24 of the anode exhaust gas line 3 are connected to each other by a bypass in which an on-off valve 25 is provided in the middle. line 2
6 to short-circuit the fuel supply line 6, the bypass line 26, the anode exhaust gas line 3, and the branch circulation line 1.
2 and a reformer circulation system 27 that bypasses the anode electrode 2.
Furthermore, the upstream side of the cathode inlet valve 16 of the air supply line 9 and the downstream side of the cathode outlet valve 17 of the cathode exhaust gas line 10 are short-circuited by an exhaust gas bypass line 29 provided with an on-off valve 28 in the middle. At the point.

【0017】次に、上記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

【0018】燃料電池プラントでは、燃料電池1の起動
操作時には、カソード入口弁16及びカソード出口弁1
7を閉塞させ、カソード循環系5の系内ガスに代えて窒
素ガスN’を前記カソード循環系5に供給し、カソード
循環ブロワ11を作動させることで窒素ガスN’をカソ
ード極4を含むカソード循環系5内において循環させる
と共に、前記加熱器18を作動させ、加熱器18への加
熱媒体の供給を適宜調節して循環している窒素ガスN’
を適切な速度で昇温させ、これに伴って該窒素ガスN’
が燃料電池1内で熱交換して該燃料電池1も次第に昇温
する。このとき、該燃料電池1は前述したようにアノー
ド極2とカソード極4とを交互に配列するセル配置とな
っているため、このようにカソード極4だけに加熱され
た高温の窒素ガスN’を流しても燃料電池1全体を加熱
することができる。
In the fuel cell plant, when starting up the fuel cell 1, the cathode inlet valve 16 and the cathode outlet valve 1 are closed.
7 is closed, nitrogen gas N' is supplied to the cathode circulation system 5 instead of the internal gas of the cathode circulation system 5, and the cathode circulation blower 11 is operated to supply nitrogen gas N' to the cathode including the cathode electrode 4. Nitrogen gas N' is circulated within the circulation system 5 and is circulated by operating the heater 18 and appropriately adjusting the supply of heating medium to the heater 18.
The temperature of the nitrogen gas N' is increased at an appropriate rate.
exchanges heat within the fuel cell 1, and the temperature of the fuel cell 1 also gradually rises. At this time, since the fuel cell 1 has a cell arrangement in which the anode electrode 2 and the cathode electrode 4 are arranged alternately as described above, the heated nitrogen gas N' is applied only to the cathode electrode 4. The entire fuel cell 1 can be heated even if it flows.

【0019】次いで、燃料電池1のカソード極4を通過
することで温度低下した窒素ガスN’は加熱器18で再
加熱され、再びカソード極4へ送られて燃料電池1の加
熱に供される。
Next, the nitrogen gas N' whose temperature has decreased by passing through the cathode 4 of the fuel cell 1 is reheated by the heater 18 and sent to the cathode 4 again to heat the fuel cell 1. .

【0020】一方、改質器7の加熱時には、図1に示す
如く、燃料供給弁13、蒸気供給弁14、空気供給弁1
5、カソード入口弁16、カソード出口弁17、開閉弁
20、アノード入口弁23、アノード出口弁24を夫々
閉じ、且つ開閉弁21,22,25,28を夫々開いた
状態で、図示していない窒素ガス封入ラインから分岐循
環ライン12へ窒素ガスN(不活性ガス)を供給し、燃
料供給ライン6及びアノード排ガスライン3に残存する
ガスをガス排出ライン(図示せず)から排出させた後、
前記窒素ガスNをアノードブロワ8の駆動により改質器
循環系27内でアノード極2をバイパスするよう循環さ
せながら、分岐供給ライン19から供給される原燃料Z
を改質器7内で空気E’により燃焼せしめることにより
改質器7の昇温がなされ、その燃焼排ガスは空気供給ラ
イン9から排ガスバイパスライン29を経てカソード排
ガスライン10から排出される。
On the other hand, when heating the reformer 7, as shown in FIG.
5. With the cathode inlet valve 16, the cathode outlet valve 17, the on-off valve 20, the anode inlet valve 23, and the anode outlet valve 24 closed, and the on-off valves 21, 22, 25, and 28 open, not shown. After supplying nitrogen gas N (inert gas) from the nitrogen gas filling line to the branch circulation line 12 and discharging the gas remaining in the fuel supply line 6 and the anode exhaust gas line 3 from the gas discharge line (not shown),
While the nitrogen gas N is circulated in the reformer circulation system 27 by driving the anode blower 8 so as to bypass the anode electrode 2, the raw fuel Z is supplied from the branch supply line 19.
The temperature of the reformer 7 is raised by burning it with air E' in the reformer 7, and the combustion exhaust gas is discharged from the cathode exhaust gas line 10 via the air supply line 9, the exhaust gas bypass line 29.

【0021】燃料電池1並びに改質器7の昇温完了後は
、図1において閉じられていた弁13,14,15,1
6,17,20,23,24が開かれ、且つ開かれてい
た弁21,22,25,28が閉じられ、更に加熱器1
8への加熱媒体の供給が停止された状態で、従来の場合
と同様通常運転が行なわれる。
After the temperature rise of the fuel cell 1 and the reformer 7 is completed, the valves 13, 14, 15, 1, which were closed in FIG.
6, 17, 20, 23, 24 are opened, and the open valves 21, 22, 25, 28 are closed, and the heater 1
With the supply of heating medium to 8 being stopped, normal operation is performed as in the conventional case.

【0022】こうして、燃料電池1と改質器7を、お互
いの制約を受けることなく個別に昇温させることが可能
となり、燃料電池1の起動操作時には、先に燃料電池1
のみを昇温させていき、その昇温が完了する例えば3〜
4時間前から改質器7の昇温を開始するようにすれば、
原燃料Z供給用のポンプ又はコンプレッサや空気E’供
給用のコンプレッサ等の補機を燃料電池1の昇温に合わ
せて長時間に亘って駆動する必要もなくなり、しかも全
体の昇温制御も容易となる。
[0022] In this way, it becomes possible to raise the temperature of the fuel cell 1 and the reformer 7 individually without being constrained by each other, and when starting up the fuel cell 1, the fuel cell 1 and the reformer 7 are heated individually.
For example, when the temperature rise is completed, e.g.
If you start raising the temperature of the reformer 7 4 hours in advance,
There is no need to drive auxiliary equipment such as the pump or compressor for supplying raw fuel Z or the compressor for supplying air E' for a long time in accordance with the temperature rise of the fuel cell 1, and the overall temperature rise control is also easy. becomes.

【0023】尚、本発明の燃料電池プラントの昇温方法
は、上述の実施例にのみ限定されるものではなく、本発
明の要旨を逸脱しない範囲内において種々変更を加え得
ることは勿論である。
It should be noted that the method for increasing the temperature of a fuel cell plant according to the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention. .

【0024】[0024]

【発明の効果】以上説明したように、本発明の燃料電池
プラントの昇温方法によれば、燃料電池と改質器を個別
に昇温させることができ、補機動力の節減が可能となる
と共に、昇温制御も容易に行なえるという優れた効果を
奏し得る。
[Effects of the Invention] As explained above, according to the temperature raising method for a fuel cell plant of the present invention, it is possible to raise the temperature of the fuel cell and the reformer individually, and it is possible to save the power of auxiliary equipment. At the same time, an excellent effect can be achieved in that temperature increase control can be easily performed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の方法が採用される燃料電池プラントの
一例を示す概略系統図である。
FIG. 1 is a schematic system diagram showing an example of a fuel cell plant in which the method of the present invention is adopted.

【図2】従来例の概略系統図である。FIG. 2 is a schematic system diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1     燃料電池 2     アノード極 4     カソード極 5     カソード循環系 7     改質器 18     加熱器 26     バイパスライン 27     改質器循環系 Z     原燃料 N,N’  窒素ガス(不活性ガス) 1 Fuel cell 2 Anode pole 4 Cathode pole 5 Cathode circulation system 7 Reformer 18 Heater 26 Bypass line 27 Reformer circulation system Z raw fuel N, N' Nitrogen gas (inert gas)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  カソード循環系と改質器を備えた燃料
電池プラントの昇温方法において、燃料電池の起動操作
時に、前記カソード循環系に導入した不活性ガスを加熱
器で加熱したうえ前記カソード循環系に循環させ、前記
燃料電池を所定温度まで昇温させる一方、燃料電池のア
ノード極をバイパスするよう形成した改質器循環系に導
入した不活性ガスを、前記改質器へ供給された原燃料の
燃焼により加熱しつつ前記改質器循環系に循環させ、前
記改質器を所定温度まで昇温させることを特徴とする燃
料電池プラントの昇温方法。
Claim 1: A method for increasing the temperature of a fuel cell plant equipped with a cathode circulation system and a reformer, in which an inert gas introduced into the cathode circulation system is heated by a heater during a fuel cell startup operation, and then the cathode gas is heated by a heater. The inert gas is circulated through a circulation system to raise the temperature of the fuel cell to a predetermined temperature, while the inert gas is introduced into a reformer circulation system formed to bypass the anode electrode of the fuel cell, and the inert gas is supplied to the reformer. A method for raising the temperature of a fuel cell plant, characterized in that the raw fuel is heated by combustion and circulated through the reformer circulation system to raise the temperature of the reformer to a predetermined temperature.
JP3050564A 1991-02-22 1991-02-22 How to raise the temperature of a fuel cell plant Pending JPH04269460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3050564A JPH04269460A (en) 1991-02-22 1991-02-22 How to raise the temperature of a fuel cell plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3050564A JPH04269460A (en) 1991-02-22 1991-02-22 How to raise the temperature of a fuel cell plant

Publications (1)

Publication Number Publication Date
JPH04269460A true JPH04269460A (en) 1992-09-25

Family

ID=12862501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3050564A Pending JPH04269460A (en) 1991-02-22 1991-02-22 How to raise the temperature of a fuel cell plant

Country Status (1)

Country Link
JP (1) JPH04269460A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140063A (en) * 1992-10-29 1994-05-20 Ishikawajima Harima Heavy Ind Co Ltd Pipe temperature raising method and device in fuel cell power generation equipment
WO2000054355A1 (en) * 1999-03-09 2000-09-14 Siemens Aktiengesellschaft Fuel cell battery with heating and improved cold start performance and method for cold starting a fuel cell battery
WO2005093885A3 (en) * 2004-03-25 2006-06-29 Nissan Motor Fuel gas substitution device for fuel cell stack
WO2010004092A1 (en) * 2008-07-10 2010-01-14 Wärtsilä Finland Oy Method and arrangement to enhance the preheating of a fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140063A (en) * 1992-10-29 1994-05-20 Ishikawajima Harima Heavy Ind Co Ltd Pipe temperature raising method and device in fuel cell power generation equipment
WO2000054355A1 (en) * 1999-03-09 2000-09-14 Siemens Aktiengesellschaft Fuel cell battery with heating and improved cold start performance and method for cold starting a fuel cell battery
WO2005093885A3 (en) * 2004-03-25 2006-06-29 Nissan Motor Fuel gas substitution device for fuel cell stack
WO2010004092A1 (en) * 2008-07-10 2010-01-14 Wärtsilä Finland Oy Method and arrangement to enhance the preheating of a fuel cell system

Similar Documents

Publication Publication Date Title
KR102319093B1 (en) Pressurized air supply system, fuel cell system comprising the pressurized air supply system, and starting method of the pressurized air supply system
US6519510B1 (en) Method and apparatus for operating a fuel cell system
CN108711631B (en) Solid oxide fuel cell system and method for starting the same
JP4666910B2 (en) Cooling turbine integrated fuel cell hybrid power generator
SK264690A3 (en) Method and device for generating electrical energy
JPS61168876A (en) Operation system of fuel cell
JP4254172B2 (en) Solid oxide fuel cell system
JP4568486B2 (en) Hybrid fuel cell system
JP4295500B2 (en) Fuel cell-gas turbine power generation facility
JP2889807B2 (en) Fuel cell system
JPH04269460A (en) How to raise the temperature of a fuel cell plant
JPH01124962A (en) Alkaline electrolyte fuel cell device
KR101678325B1 (en) Power generation system
JP2825285B2 (en) Fuel cell power generation system
JP3976575B2 (en) Fuel cell power generation system
JP2021048096A (en) Fuel cell system and its operation method
JP2005116257A (en) Starting method of fuel cell system
JP2004111129A (en) Combined power generation facility for fuel cell and micro gas turbine and its starting method
JP6025521B2 (en) Combined power generation system and method of operating combined power generation system
JPH06333585A (en) Fuel cell power generation device start-up operation method and device
JP2004087162A (en) Solid oxide fuel cell system
JPH04118865A (en) Temperature raising method of fuel cell
JPH05343088A (en) Fuel cell temperature control method
JP2006302678A (en) Fuel cell system
JPH03245468A (en) Fuel cell generating system