JPH04265216A - Production of carbide of plant - Google Patents
Production of carbide of plantInfo
- Publication number
- JPH04265216A JPH04265216A JP3046244A JP4624491A JPH04265216A JP H04265216 A JPH04265216 A JP H04265216A JP 3046244 A JP3046244 A JP 3046244A JP 4624491 A JP4624491 A JP 4624491A JP H04265216 A JPH04265216 A JP H04265216A
- Authority
- JP
- Japan
- Prior art keywords
- microspheres
- carbide
- plant
- heat
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000004005 microsphere Substances 0.000 claims abstract description 17
- 238000010438 heat treatment Methods 0.000 claims abstract description 15
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 12
- 239000011147 inorganic material Substances 0.000 claims abstract description 12
- 230000001590 oxidative effect Effects 0.000 claims abstract description 10
- 238000003763 carbonization Methods 0.000 claims description 20
- 238000007254 oxidation reaction Methods 0.000 claims description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- 230000003647 oxidation Effects 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052786 argon Inorganic materials 0.000 claims description 7
- 239000000741 silica gel Substances 0.000 claims description 7
- 229910002027 silica gel Inorganic materials 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 3
- 238000010000 carbonizing Methods 0.000 claims description 2
- 235000013311 vegetables Nutrition 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 241000196324 Embryophyta Species 0.000 description 28
- 238000000034 method Methods 0.000 description 9
- 239000003610 charcoal Substances 0.000 description 7
- 241000220317 Rosa Species 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 241000723353 Chrysanthemum Species 0.000 description 2
- 235000007516 Chrysanthemum Nutrition 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000005539 carbonized material Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Carbon And Carbon Compounds (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、植物の炭化物の製法に
関する。
【0002】
【従来技術とその問題点】従来からの技術として、樹木
などを半乾燥後、これを空気中で24時間以上加熱する
ことにより得られる枝炭、木炭等が植物の炭化物として
古くから知られていた。
【0003】一方、最近の植物の炭化物の製造方法に係
る技術としては、特開昭63−176199号に開示さ
れた方法、即ちドライフラワーを非酸化性雰囲気で加熱
・炭化させるという方法が知られている。しかしながら
、この方法で急速に温度を上げると有機物である植物(
ドライフラワー)が、急激且つ大幅な分解によって低分
子化を起こし、炭化物の強度が低下するという問題が生
じる。また、これを防ぐために上記方法では、炭化時間
に長時間(10時間)を要しており、しかもその炭化収
率も高いものではない。また、炭化物の形状保持手段と
して熱硬化性樹脂を含浸させる方法を用いているが充分
なものとはいえない。
【0004】
【問題点を解決するための手段】本発明者は、上記の問
題点に鑑み、鋭意研究を重ねた結果、乾燥した植物を炭
化処理に先立って酸化処理(予備酸化)することにより
上記の低分子化を防ぎ、得られる炭化物の強度を増大さ
せ、且つ炭化時間が短縮できることを見出し、さらには
乾燥した植物を耐熱性無機材料の微小球体中に埋包して
上記予備酸化あるいは炭化処理を施した場合には、均一
な加熱ができ、且つ植物の形状保持性が向上することを
見出した。
【0005】即ち、本発明は下記の植物の炭化物の製法
を提供するものである。
1.乾燥した植物を耐熱性無機材料の微小球体中に埋包
して200〜300℃で予備酸化処理し、次いで該植物
を該微小球体中に埋包したまま非酸化雰囲気の気流下で
加熱・炭化することを特徴とする植物の炭化物の製法。
2.乾燥した植物を耐熱性無機材料の微小球体中に埋包
して200〜300℃で予備酸化処理し、次いで該微小
球体を取り除いた後、非酸化雰囲気の気流下で加熱・炭
化することを特徴とする植物の炭化物の製法。
3.耐熱性無機材料の微小球体がシリカゲルである上記
第1項又は第2項に記載の炭化物の製法。
4.非酸化雰囲気の気流として窒素ガス、アルゴンガス
又は水素ガスのいずれかを用いる上記第1項又は第2項
に記載の植物の炭化物の製法。
【0006】以下、本発明について詳細に説明する。
【0007】本発明で対象とする植物は、乾燥したもの
であれば花、枝、葉、実又はこれらが一体となったもの
等、特に限定されるものではない。
【0008】まず、上記の植物を耐熱ガラス容器などに
入れた後、そこに耐熱性無機材料の微小球体をすきまな
く充填して植物を埋包する。この耐熱性無機材料の微小
球体としてはシリカゲルを用いることが好ましい。微小
球体の粒径は通常0.06〜0.5mm程度で使用する
。
【0009】次に、上記乾燥植物を炭化に先立って予備
酸化する。予備酸化は上記乾燥植物を空気中で200〜
300℃で加熱すればよい。加熱温度が200℃を下回
る場合には酸化に時間がかかり、しかも充分な酸化が行
えない。加熱温度が300℃を上回る場合には、炭化が
過度に進行し重量が大幅に減少ので好ましくない。また
、加熱時間及び昇温速度は、その植物の大きさ、種類等
によって一定ではないが、加熱時間は通常2〜6時間程
度である。
【0010】次いで、上記予備酸化での加熱温度を保持
したままで空気を窒素ガス、アルゴンガス、水素ガス等
で置換して非酸化雰囲気とする。置換したガスは、気流
として流入し続ける。
【0011】上記気流ガス中の乾燥植物を引き続き昇温
し炭化を行なう。炭化温度は植物の大きさ、種類等によ
って一定ではないが、通常600℃程度であり、必要に
応じて600℃以上まで昇温する場合もある。
【0012】昇温後、加熱を停止し、冷却されるまで気
流ガスを流入し続けることによって本発明の植物の炭化
物が御花炭等として得られる。この場合、炭化時におけ
るその植物の形状保持性を高めるために、その植物の大
きさ、種類等に応じて予備酸化から引き続いて耐熱性無
機材料の微小球体に埋包して炭化してもよい。
【0013】
【発明の効果】本発明によると、炭化に先立つ予備酸化
により有機物である植物の急激且つ大幅な分解による低
分子化を防ぐことにより、優れた強度の炭化物を比較的
高い炭化収率で得られ、且つ炭化時間も大幅に短縮され
、優れた生産性を発揮することができる。
【0014】さらに、予備酸化あるいは炭化をシリカゲ
ルなどの耐熱性無機材料の微小球体中に埋包して行うの
で、形状保持性に優れていて、花弁の厚みによる制限な
どを受けることなく炭化物をつくることができる。また
一方では、酸化および炭化時の温度制御を正確に行なう
ことができ、植物を均一に加熱することもできる。
【0015】また、炭化を気流下で行なうので、空気が
容器内に入って酸化されるようなことはなく、しかも分
解生成物は容器外へ排出され、きれいな炭化物表面を維
持することができる。
【0016】
【実施例】以下、実施例を示し、本発明の特徴とすると
ころをより一層明瞭にする。
【0017】
【実施例1】枝と葉の付いたバラの乾燥花をガラスビー
カーに入れ、その上からカラムクロマトグラフ用シリカ
ゲルを入れて花弁の間にすきまなく充填し、次いで乾燥
機中で室温から250℃まで1時間かけて加熱し、25
0℃で2時間保持し、さらに30分かけて300℃まで
加熱して酸化した。
【0018】300℃に到達した後、室温まで冷却しシ
リカゲルを取り除き、酸化したバラを石英容器に入れ、
アルゴンガスでその雰囲気を置換した。その後、300
℃から800℃まで120℃/hrで昇温し加熱・炭化
した。800℃に到達したと同時にアルゴンガスを流入
し続けながら200℃まで冷却して炭化物を取り出した
ところ、光沢のあるバラの御花炭が得られた。この全処
理工程の所要時間は、約7.7時間であった。
【0019】また、炭化物の炭化収率と寸法収率を調べ
た結果を表1に示す。
【0020】
表1
炭化収率
寸法収率
(%)
(%)
バラ 35
70 【0021】
【実施例2】花弁が、細長いものと少し幅のあるものの
2種類の乾燥したキクの花の部分を耐熱シャーレに入れ
、その上からカラムクロマトグラフ用球状シリカゲルを
入れて花弁の間にすき間のないように充填する。次いで
200℃に加熱してある乾燥機に入れ、30分かけて2
50℃まで昇温させ、その温度で5時間保持して酸化す
る。
【0022】次に、一度冷却した後、耐熱シャーレごと
石英容器に入れ、アルゴンガスを流入して雰囲気を置換
した後に250℃から600℃まで120℃/hrの昇
温速度で加熱・炭化する600℃に到達したと同時に加
熱を停止し、次いで200℃までアルゴンガスを流しな
がら冷却した後に炭化物を取り出したところ、美しい炭
化菊が得られた。この全処理工程の所要時間は、約8.
4時間であった。
【0023】また、炭化物の炭化収率と寸法収率を調べ
た結果を表2に示す。
【0024】Description: [0001] The present invention relates to a method for producing carbonized plant materials. [Prior art and its problems] As a conventional technology, branch charcoal, charcoal, etc. obtained by semi-drying trees and the like and then heating them in the air for 24 hours or more have been used as charcoal of plants for a long time. It was known. [0003] On the other hand, as a recent technique for producing carbonized plant materials, there is a method disclosed in Japanese Patent Application Laid-open No. 176199/1983, that is, a method in which dried flowers are heated and carbonized in a non-oxidizing atmosphere. ing. However, if the temperature is raised rapidly using this method, organic plants (
A problem arises in that dry flowers (dried flowers) undergo rapid and significant decomposition, resulting in lower molecular weight, and the strength of the carbide decreases. Further, in order to prevent this, the above method requires a long time (10 hours) for carbonization, and the carbonization yield is not high. In addition, a method of impregnating a thermosetting resin is used as a means for maintaining the shape of the carbide, but this method cannot be said to be sufficient. [Means for Solving the Problems] In view of the above-mentioned problems, the inventor of the present invention, as a result of extensive research, discovered that by subjecting dried plants to oxidation treatment (pre-oxidation) prior to carbonization treatment. We have discovered that it is possible to prevent the above-mentioned lower molecular weight, increase the strength of the resulting carbonized product, and shorten the carbonization time. Furthermore, we have found that the above-mentioned preoxidation or carbonization can be carried out by embedding dried plants in microspheres of heat-resistant inorganic material. It has been found that when the treatment is applied, uniform heating is possible and the shape retention of the plant is improved. [0005] That is, the present invention provides the following method for producing a carbonized plant. 1. Dried plants are embedded in microspheres made of heat-resistant inorganic material and pre-oxidized at 200 to 300°C, and then heated and carbonized under an air flow in a non-oxidizing atmosphere while the plants are embedded in the microspheres. A method for producing carbonized plant material, which is characterized by: 2. It is characterized by embedding dried plants in microspheres made of heat-resistant inorganic material, pre-oxidizing them at 200 to 300°C, then removing the microspheres, and then heating and carbonizing them in an air stream in a non-oxidizing atmosphere. A method for producing carbide from plants. 3. The method for producing a carbide according to item 1 or 2 above, wherein the microspheres of the heat-resistant inorganic material are silica gel. 4. The method for producing a carbide of a plant according to the above item 1 or 2, using either nitrogen gas, argon gas, or hydrogen gas as the non-oxidizing atmosphere airflow. The present invention will be explained in detail below. [0007] The plants targeted by the present invention are not particularly limited, and may include flowers, branches, leaves, fruits, or a combination of these as long as they are dried. [0008] First, the above-mentioned plant is placed in a heat-resistant glass container or the like, and then microspheres made of a heat-resistant inorganic material are filled in the container without any gaps to embed the plant. It is preferable to use silica gel as the microspheres of this heat-resistant inorganic material. The particle size of the microspheres is usually about 0.06 to 0.5 mm. Next, the dried plant is preoxidized prior to carbonization. Pre-oxidation is performed by oxidizing the above dried plants in the air to 200~
It may be heated at 300°C. If the heating temperature is lower than 200° C., oxidation takes time and sufficient oxidation cannot be achieved. If the heating temperature exceeds 300°C, carbonization will proceed excessively and the weight will decrease significantly, which is not preferable. Further, although the heating time and temperature increase rate are not constant depending on the size, type, etc. of the plant, the heating time is usually about 2 to 6 hours. Next, the air is replaced with nitrogen gas, argon gas, hydrogen gas, etc. to create a non-oxidizing atmosphere while maintaining the heating temperature in the preliminary oxidation. The replaced gas continues to flow in as an airflow. [0011] The temperature of the dried plant in the airflow gas is then raised to carbonize it. The carbonization temperature is not constant depending on the size, type, etc. of the plant, but is usually around 600°C, and may be raised to 600°C or higher if necessary. [0012] After the temperature has been raised, the heating is stopped and airflow gas is continued to flow until it is cooled, thereby obtaining the charcoal of the plant of the present invention as Ohana charcoal or the like. In this case, in order to enhance the shape retention of the plant during carbonization, depending on the size and type of the plant, the plant may be carbonized by being embedded in microspheres of heat-resistant inorganic material following preliminary oxidation. . [0013]According to the present invention, pre-oxidation prior to carbonization prevents the rapid and drastic decomposition of organic matter from plants, thereby producing carbonized materials with excellent strength at a relatively high carbonization yield. In addition, the carbonization time is significantly shortened, and excellent productivity can be achieved. Furthermore, since preliminary oxidation or carbonization is carried out by embedding it in microspheres of a heat-resistant inorganic material such as silica gel, it has excellent shape retention and can form a carbide without being limited by the thickness of the petal. be able to. On the other hand, it is possible to accurately control the temperature during oxidation and carbonization, and it is also possible to uniformly heat the plants. Furthermore, since the carbonization is carried out under an air flow, air will not enter the container and cause oxidation, and decomposition products will be discharged outside the container, allowing a clean carbide surface to be maintained. Examples [0016] Examples will be shown below to further clarify the features of the present invention. [Example 1] Dried rose flowers with branches and leaves are placed in a glass beaker, and silica gel for column chromatography is poured on top of the beaker, packed between the petals without any gaps, and then placed in a dryer at room temperature. Heat to 250℃ for 1 hour, and heat to 250℃.
The mixture was held at 0°C for 2 hours, and then heated to 300°C over 30 minutes for oxidation. After reaching 300°C, the silica gel was removed by cooling to room temperature, and the oxidized rose was placed in a quartz container.
The atmosphere was replaced with argon gas. After that, 300
The temperature was increased from 120°C to 800°C at a rate of 120°C/hr for heating and carbonization. As soon as the temperature reached 800°C, the charcoal was cooled to 200°C while continuing to flow argon gas and the carbide was taken out, resulting in shiny rose charcoal. The total time required for this entire process was approximately 7.7 hours. Table 1 shows the results of examining the carbonization yield and dimensional yield of the carbide. [0020]
Table 1
Carbonization yield
dimensional yield
(%)
(%)
rose 35
[Example 2] Two types of dried chrysanthemum flowers, one with elongated petals and one with slightly wide petals, are placed in a heat-resistant petri dish, and spherical silica gel for column chromatography is placed on top of the petals to separate the petals. Fill it so that there are no gaps. Next, put it in a dryer heated to 200℃ and dry it for 30 minutes.
The temperature is raised to 50°C and maintained at that temperature for 5 hours for oxidation. Next, after cooling once, the heat-resistant Petri dish was placed in a quartz container, argon gas was introduced to replace the atmosphere, and the mixture was heated and carbonized from 250°C to 600°C at a heating rate of 120°C/hr. As soon as the temperature reached ℃, the heating was stopped, and then the mixture was cooled to 200 ℃ while flowing argon gas, and the carbide was taken out, and a beautiful carbide chrysanthemum was obtained. The time required for this entire process is approximately 8.
It was 4 hours. Table 2 shows the results of examining the carbonization yield and dimensional yield of the carbide. [0024]
Claims (4)
中に埋包して200〜300℃で予備酸化処理し、次い
で該植物を該微小球体中に埋包したまま非酸化雰囲気の
気流下で加熱・炭化することを特徴とする植物の炭化物
の製法。Claim 1: Dried plants are embedded in microspheres made of a heat-resistant inorganic material and subjected to preliminary oxidation treatment at 200 to 300°C, and then the plants are exposed to air flow in a non-oxidizing atmosphere while being embedded in the microspheres. A method for producing charred vegetable products, which is characterized by heating and carbonizing them under water.
中に埋包して200〜300℃で予備酸化処理し、次い
で該微小球体を取り除いた後、非酸化雰囲気の気流下で
加熱・炭化することを特徴とする植物の炭化物の製法。Claim 2: Dried plants are embedded in microspheres made of a heat-resistant inorganic material and subjected to preliminary oxidation treatment at 200 to 300°C.Then, after removing the microspheres, heating and A method for producing carbonized plant materials characterized by carbonization.
ある請求項1又は2に記載の炭化物の製法。3. The method for producing a carbide according to claim 1 or 2, wherein the microspheres of the heat-resistant inorganic material are silica gel.
ゴンガス又は水素ガスのいずれかを用いる請求項1又は
2に記載の植物の炭化物の製法。4. The method for producing a carbide of a plant according to claim 1 or 2, wherein any one of nitrogen gas, argon gas, or hydrogen gas is used as the non-oxidizing atmosphere air stream.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3046244A JPH0772082B2 (en) | 1991-02-18 | 1991-02-18 | How to make plant charcoal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3046244A JPH0772082B2 (en) | 1991-02-18 | 1991-02-18 | How to make plant charcoal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04265216A true JPH04265216A (en) | 1992-09-21 |
JPH0772082B2 JPH0772082B2 (en) | 1995-08-02 |
Family
ID=12741735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3046244A Expired - Lifetime JPH0772082B2 (en) | 1991-02-18 | 1991-02-18 | How to make plant charcoal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0772082B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170044737A1 (en) * | 2015-08-14 | 2017-02-16 | Caterpillar Inc. | Recovering energy from hydraulic system of a machine |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0377365A (en) * | 1989-08-19 | 1991-04-02 | Sony Corp | Manufacture of semiconductor memory device |
-
1991
- 1991-02-18 JP JP3046244A patent/JPH0772082B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0377365A (en) * | 1989-08-19 | 1991-04-02 | Sony Corp | Manufacture of semiconductor memory device |
Also Published As
Publication number | Publication date |
---|---|
JPH0772082B2 (en) | 1995-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5133756A (en) | Process for producing a bone replacement material | |
JPH01305869A (en) | Fiber structure composite ceramic material and production thereof | |
CN107868998A (en) | A kind of silicon nitride fiber and preparation method thereof | |
CN103723703A (en) | Method for preparing helical carbon nanotube at low temperature | |
EP0133874B1 (en) | Process for the hot isostatic pressing of shaped ceramic parts | |
JPH04265216A (en) | Production of carbide of plant | |
DE60045130D1 (en) | METHOD FOR PRODUCING CELLULAR CARBON PRODUCTS | |
JP2664047B2 (en) | Method for producing carbon fiber reinforced carbon composite material | |
JP2633638B2 (en) | Method for producing highly oriented graphite crystal | |
CN106276897A (en) | A kind of preparation method of phosphoric acid activation monkey grass | |
US3082310A (en) | Furnace construction for drying garlic | |
JPH04264001A (en) | Production of carbide of plant | |
RU2007101389A (en) | HIGH DENSITY BORN CARBIDE PRODUCTION METHOD | |
JPH07304601A (en) | Production of dried flower | |
CN107877642B (en) | A kind of tin bismuth cadmium alloy of windmill palm vine material is modified to reduce wettable method | |
US1777943A (en) | Manufacture of activated carbon | |
JPH02258870A (en) | Polycarbosilane treating method,product thereby obtained,and utilization of said treatment for manufacture of fibrous silicon carbide ceramic product in particular | |
KR101828777B1 (en) | Manufacturing method for ball shape of bamboo charcoal | |
JP2001011469A (en) | Production of carbonized product | |
SU736942A1 (en) | Method of producing dry mashed potatoes | |
JP2535775B2 (en) | Hollow short fibrous carbon material and method for producing the same | |
JPS6338446B2 (en) | ||
US2548336A (en) | Method of producing fishing rods and the like | |
JPH04144908A (en) | Composite activated carbon molding produced from coconut fiber and its production | |
JPH02178201A (en) | Production of dried green plant resistant to discoloration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |