[go: up one dir, main page]

JP2633638B2 - Method for producing highly oriented graphite crystal - Google Patents

Method for producing highly oriented graphite crystal

Info

Publication number
JP2633638B2
JP2633638B2 JP63203032A JP20303288A JP2633638B2 JP 2633638 B2 JP2633638 B2 JP 2633638B2 JP 63203032 A JP63203032 A JP 63203032A JP 20303288 A JP20303288 A JP 20303288A JP 2633638 B2 JP2633638 B2 JP 2633638B2
Authority
JP
Japan
Prior art keywords
graphite
highly oriented
temperature
oriented graphite
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63203032A
Other languages
Japanese (ja)
Other versions
JPH0251412A (en
Inventor
一生 村松
由彦 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63203032A priority Critical patent/JP2633638B2/en
Publication of JPH0251412A publication Critical patent/JPH0251412A/en
Application granted granted Critical
Publication of JP2633638B2 publication Critical patent/JP2633638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はX線又は中性子線モノクロメータ及び黒鉛層
間化合物のホスト材料として好適の高配向性黒鉛結晶の
製造方法に関する。
The present invention relates to a method for producing highly oriented graphite crystals suitable as a host material for an X-ray or neutron beam monochromator and a graphite intercalation compound.

[従来の技術] 人造黒鉛は、通常、微細な結晶粒の集合体として得ら
れ、単結晶のものは得にくい。また、天然黒鉛の場合で
も、単結晶として確認されているものの結晶粒は高々2
乃至3mmの小さなものである。
[Prior Art] Artificial graphite is usually obtained as an aggregate of fine crystal grains, and it is difficult to obtain a single crystal. Also, even in the case of natural graphite, the crystal grains are confirmed to be a single crystal but at most 2 grains.
It is as small as ~ 3mm.

これは、黒鉛が常圧では溶融せず、蒸気圧が2500゜K
で約10-6気圧と著しく低いため、単結晶を育成すること
は極めて困難であるためである。
This is because graphite does not melt at normal pressure and the vapor pressure is 2500K
This is because it is extremely difficult to grow a single crystal since the pressure is about 10 −6 atm.

而して、学術的には、黒鉛の基礎物性及び結晶成長メ
カニズム等の解明にとって、また工業的には、X線又は
中性子線のモノクロメータ及び黒鉛層間化合物のホスト
材料としても、巨視的スケールの黒鉛結晶を有する材料
を得るということ、又は大きな黒鉛単結晶を育成すると
いうことは極めて重要な課題であり、従来から大きな感
心がもたれていた。
Thus, academically, it is necessary to elucidate the basic physical properties and crystal growth mechanism of graphite, and industrially, as a host material of X-ray or neutron monochromator and graphite intercalation compound, on a macroscopic scale. Obtaining a material having a graphite crystal or growing a large graphite single crystal is a very important task, and has been given great interest in the past.

このような背景のもとで、近時、黒鉛の単結晶を育成
する技術が2,3提案されているが、この単結晶育成技術
はその作成方法により、金属融体からの再結晶、金
属炭化物の分解、熱分解炭素の加圧熱処理に分類され
る。
Against this background, there have recently been proposed a few techniques for growing graphite single crystals. It is classified into the decomposition of carbides and the heat treatment under pressure of pyrolytic carbon.

の金属融体からの再結晶により単結晶黒鉛を得る方
法は、炭素−溶融Ni、炭素−溶融ホウ化チタン又は炭素
−溶融鉄から黒鉛結晶を析出させるものである。工業的
には、製鉄プラントの融鉄から析出する黒鉛がキッシュ
黒鉛として製造されている。
The method for obtaining single-crystal graphite by recrystallization from a metal melt is to precipitate graphite crystals from carbon-molten Ni, carbon-molten titanium boride or carbon-molten iron. Industrially, graphite precipitated from molten iron in an iron making plant is manufactured as quiche graphite.

一方、の金属化合物の分解によって単結晶黒鉛を得
る方法としては、タンタルカーバイド及びアルミニウム
カーバイドを熱処理して結晶を析出させる方法とか、炭
化ケイ素のハロゲンガスを使用した分解により結晶を得
る方法がある。
On the other hand, as a method of obtaining single-crystal graphite by decomposition of the metal compound, there are a method of heat-treating tantalum carbide and aluminum carbide to precipitate crystals, and a method of obtaining crystals by decomposition using silicon carbide halogen gas.

更に、の熱分解炭素の加圧熱処理方法は、1964年に
Moore等によって発表されて以来、黒鉛の基礎研究に広
く使用されると共に、その特異な性質を利用して特殊な
用途に実用化されている。この高配向性熱分解黒鉛の製
造方法においては、先ず熱分解炭素に対し3000℃で250k
g/cm2の応力を一軸方向に印加して一軸加圧・加熱し、
次いで3500℃以上に加熱して再熱処理する。この方法に
おいては3000℃の加圧熱処理によって黒鉛がクリープ
し、熱分解炭素特有のベブル及び円錐構造が消失する。
このようにして得られたHOPGは単結晶的物性を示し、X
線は中性子線モノクロメータ等に実用化される一方、高
導電率が期待されている黒鉛層化合物の研究にも利用さ
れている。
Furthermore, the pressurized heat treatment method of pyrolytic carbon was introduced in 1964.
Since it was announced by Moore et al., It has been widely used for basic research on graphite and has been put to practical use for special applications by utilizing its unique properties. In this method for producing highly oriented pyrolytic graphite, first, pyrolytic carbon is subjected to 250k at 3000 ° C.
g / cm 2 stress in uniaxial direction, uniaxial pressurization and heating,
Then, it is heated to 3500 ° C. or more and heat-treated again. In this method, graphite is creeped by the heat treatment under pressure at 3000 ° C., and the pebble and the cone structure peculiar to pyrolytic carbon disappear.
The HOPG thus obtained shows single crystal physical properties, and X
The wires are used in neutron monochromators and the like, and are also used for research on graphite layer compounds, which are expected to have high electrical conductivity.

[発明が解決しようとする課題] しかしながら、前述の及びの方法は、理想的な結
晶構造を有する単結晶が得られるものの、いずれも層面
の広がりが高々数mmのフレーク状で析出し、大きな形状
のものが得られないという難点がある。また、これらの
方法により製造された単結晶は金属融体と接触するの
で、純度が高いものが得にくい。従って、黒鉛材料とし
ての有用性に著しい制約がある。
[Problems to be Solved by the Invention] However, in the above-mentioned method and method, although a single crystal having an ideal crystal structure is obtained, in each case, flakes having a layer surface spread of at most several mm are deposited and a large shape is formed. There is a drawback that you can not get things. In addition, since the single crystal produced by these methods is in contact with the molten metal, it is difficult to obtain a single crystal having high purity. Therefore, the usefulness as a graphite material is significantly restricted.

一方、前述のの方法は、3000℃を超える超高温で処
理する必要があり、この超高温を得ることの困難性か
ら、大量生産が極めて難しく、その材料供給に不安があ
る。
On the other hand, the above-mentioned method requires processing at an ultra-high temperature exceeding 3000 ° C., and since it is difficult to obtain this ultra-high temperature, mass production is extremely difficult, and there is concern about material supply.

本発明はかかる問題点に鑑みてなされたものであっ
て、高配向性黒鉛結晶を迅速に且つ低コストで製造する
ことがてきる高配向性黒鉛結晶の製造方法を提供するこ
とを目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a method for producing a highly oriented graphite crystal, which can produce a highly oriented graphite crystal quickly and at low cost. .

[課題を解決するための手段] 本発明に係る高配向性黒鉛結晶の製造方法は、熱硬化
性樹脂の成形体を予備焼成し水素が残存する状態でこれ
を終了する工程と、この予備焼成品を熱間静水圧加圧処
理する工程と、を有することを特徴とする。
[Means for Solving the Problems] A method for producing a highly oriented graphite crystal according to the present invention comprises a step of pre-firing a molded article of a thermosetting resin and terminating the same in a state in which hydrogen remains, and a step of pre-firing. And subjecting the article to hot isostatic pressing.

[作用] 本願発明者等は、大形状の高配向性黒鉛結晶を迅速に
製造する方法を開発すべく鋭意研究した結果、加熱処理
により黒鉛結晶に成長し得る低分子炭化水素を内部に含
むガラス状炭素成形体を予備焼成した後、所定の条件で
熱間静水圧加圧(HIP)処理することにより、成形体内
部に高配向性黒鉛結晶を析出させることができることを
見出した。本願発明はこのような知見に基いてなされた
ものである。
[Action] The inventors of the present application have conducted intensive studies to develop a method for rapidly producing large-sized highly-oriented graphite crystals, and as a result, a glass containing a low-molecular hydrocarbon that can grow into graphite crystals by heat treatment. After pre-firing the shaped carbon compact, it was found that highly oriented graphite crystals could be precipitated inside the compact by performing hot isostatic pressing (HIP) treatment under predetermined conditions. The present invention has been made based on such findings.

本発明においては、フェノールホルムアルデヒド樹脂
又はフルフリルアルコール等の熱硬化性樹脂を成形した
後、所定の温度まで加熱して予備焼成する。これらの熱
硬化性樹脂は加熱された熱分解の過程で、H2O、CO2、C
O、CH4及びH2の各ガスを発生しながら炭素化していく。
そして、最終的に水素ガス発生が終了する温度まで焼成
すると、炭素−炭素結合は環化が進み、所謂ガラス状炭
素となる。
In the present invention, a thermosetting resin such as phenol formaldehyde resin or furfuryl alcohol is molded, and then heated to a predetermined temperature and pre-fired. These thermosetting resins in the course of pyrolysis, which is heated, H 2 O, CO 2, C
O, CH 4 and H 2 gas are generated while carbonizing.
Then, when firing is performed to a temperature at which hydrogen gas generation is finally completed, cyclization of the carbon-carbon bond proceeds, and so-called glassy carbon is formed.

而して、これらの熱硬化性樹脂成形体を熱処理する
際、未だ水素発生が可能の温度、換言すると、低分子炭
化水素が残存する温度以下の温度で予備焼成を停止し、
引き続いて超高温熱間静水圧加圧装置(超高温HIP)等
を使用してHIP処理することにより、成形体の内部に高
配向性黒鉛結晶が析出する。
Thus, when heat-treating these thermosetting resin molded bodies, pre-firing is stopped at a temperature at which hydrogen can still be generated, in other words, at a temperature equal to or lower than the temperature at which low-molecular hydrocarbons remain,
Subsequently, by performing HIP treatment using an ultra-high-temperature hot isostatic press (ultra-high-temperature HIP) or the like, highly oriented graphite crystals are precipitated inside the molded body.

このHIP処理における加熱温度は2000乃至3000℃、加
圧力は1000乃至3000気圧であることが好ましい。これに
より、ガラス状炭素に囲まれた状態で大形状の高配向性
黒鉛結晶が成形体内部に析出する。
The heating temperature in this HIP treatment is preferably 2000 to 3000 ° C., and the pressure is preferably 1000 to 3000 atm. As a result, large, highly oriented graphite crystals are precipitated inside the molded body while being surrounded by the glassy carbon.

結晶相発生の機構については明らかでない点も多い
が、予備焼成後の超高温HIP処理において、ガラス状炭
素成形体から発生した低分子炭化水素又は易黒鉛化成分
が高圧力下(等方的)で成形体外部に放出されずに内部
にて圧縮され、黒鉛結晶として析出及び成長したものと
推察される。
Although there are many unclear points about the mechanism of crystal phase generation, in ultra-high temperature HIP treatment after pre-firing, low molecular hydrocarbons or graphitizable components generated from the glassy carbon compact are subjected to high pressure (isotropic). It is presumed that they were not released to the outside of the compact but were compressed inside, and precipitated and grown as graphite crystals.

従来、HIPのように等方的圧力の下では、黒鉛結晶の
成長を阻害するものと考えられていたが、本発明のよう
に予備焼成した後、等方的加圧を行った場合は、ガラス
状炭素相に囲まれた成形体内部で水素ガスが発生するこ
とにより、このガス圧によって異方性が増加し、黒鉛結
晶の成長を促進するものと考えられる。
Conventionally, under isotropic pressure such as HIP, it was thought to inhibit the growth of graphite crystals, but after pre-baking as in the present invention, when isotropic pressing is performed, It is considered that the generation of hydrogen gas inside the molded body surrounded by the glassy carbon phase causes anisotropy to increase due to this gas pressure, thereby promoting the growth of graphite crystals.

予備焼成温度は水素ガスの発生が終了する温度以下で
あることが必要である。予備焼成温度がこの温度を超え
る場合は、残留水素濃度が低過ぎて次工程で超高温HIP
処理を行っても黒鉛結晶の析出が生じない。
The pre-firing temperature must be lower than the temperature at which the generation of hydrogen gas ends. If the pre-firing temperature exceeds this temperature, the residual hydrogen concentration is too low and
Even if the treatment is performed, no precipitation of graphite crystals occurs.

一方、予備焼成温度が低過ぎると、黒鉛結晶相を取り
囲むガラス状炭素相が脆弱であり、大形状の黒鉛結晶を
製造することができない。
On the other hand, if the pre-firing temperature is too low, the glassy carbon phase surrounding the graphite crystal phase is fragile, and large-size graphite crystals cannot be produced.

このため、予備焼成温度は残留水素濃度が50乃至5000
ppmの範囲になるようにすることが好ましい。
For this reason, the pre-firing temperature is such that the residual hydrogen concentration is 50 to 5000
It is preferable to be in the range of ppm.

[実施例] 以下、本発明の実施例について更に具体的に説明す
る。本発明においては、全表面がガラス状炭素に囲まれ
た状態で成形体内部に黒鉛の単結晶を析出させる。従っ
て、予備焼成によって成形体表面部をガラス状炭素にす
る必要があるが、このように予備焼成後にガラス状炭素
となる熱硬化性樹脂としては、粉末状で得られるものと
して、フェノール系樹脂、フラン系樹脂、キシレン系樹
脂、メラミン系樹脂及びアニリン系樹脂等があり、水性
又は油状で得られるものとして、レゾール及びノボラッ
ク型のフェノールホルムアルデヒド系樹脂、フラン系樹
脂、キシレン系樹脂、メラミン系樹脂及びアニリン系樹
脂等がある。
EXAMPLES Hereinafter, examples of the present invention will be described more specifically. In the present invention, a single crystal of graphite is deposited inside the molded body while the entire surface is surrounded by glassy carbon. Therefore, it is necessary to make the surface of the molded body vitreous carbon by pre-firing. As the thermosetting resin that becomes vitreous carbon after pre-firing, a phenolic resin, There are furan-based resins, xylene-based resins, melamine-based resins and aniline-based resins, and those obtained as aqueous or oily, such as resole and novolak phenol formaldehyde-based resins, furan-based resins, xylene-based resins, melamine-based resins and There are aniline-based resins and the like.

先ず、これらの熱硬化性樹脂を公知の方法により所定
形状に成形する。この成形方法としては、例えば、液状
の熱硬化性樹脂を枠に流しこんで型込めする方法とか、
粉末状の熱硬化性樹脂を金型を使用して冷間及び熱間に
てプレスする方法がある。
First, these thermosetting resins are formed into a predetermined shape by a known method. As a molding method, for example, a method of pouring a liquid thermosetting resin into a frame and embedding it,
There is a method in which a powdery thermosetting resin is pressed cold and hot using a mold.

次いで、この熱硬化性樹脂成形体をN2又はArガス等の
不活性ガス雰囲気で、成形体の残留水素濃度が50〜5000
ppmになるように加熱して予備焼成する。
Then, the thermosetting resin molded body in an inert gas atmosphere such as N 2 or Ar gas, residual hydrogen concentration of the molded body 50 to 5000
Pre-bake by heating to ppm.

その後、予備焼成後の試料を超高温HIPを使用して、2
000乃至3000℃、1000乃至3000気圧の条件でHIP処理す
る。この際、処理温度を予備焼成温度以下に保持した状
態で所定の圧力まで増圧した後、所定温度まで昇温する
圧力先行型パターンで処理することが有効である。昇温
及び昇圧を同時に行うと、加圧が不十分であるにも拘ら
ず水素等が発生する温度域に加熱されてしまい、これに
より低分子炭化水素から黒鉛化する成分が放出されてし
まうため、黒鉛結晶の析出が起こりにくい。
Then, the sample after pre-baking was processed using ultra-high temperature HIP,
The HIP process is performed under the conditions of 000 to 3000 ° C. and 1000 to 3000 atm. At this time, it is effective to increase the pressure to a predetermined pressure while maintaining the processing temperature at the pre-firing temperature or lower, and then perform the processing in a pressure leading pattern in which the temperature is raised to the predetermined temperature. If the temperature is raised and the pressure is increased at the same time, it is heated to a temperature range in which hydrogen and the like are generated in spite of insufficient pressurization, thereby releasing a component which is graphitized from low molecular hydrocarbons. In addition, precipitation of graphite crystals does not easily occur.

なお、熱硬化性樹脂単体から製造する方法以外に、石
油コークス、メソフェーズピッチ等の易黒鉛化性炭素前
駆体を熱硬化性樹脂等の難黒鉛化性炭素前駆体で囲んだ
形で成形した後、同様に予備焼成及び超高温HIPを行う
方法もある。
In addition, other than the method of manufacturing from a thermosetting resin alone, petroleum coke, after molding a graphitizable carbon precursor such as mesophase pitch in a form surrounded by a non-graphitizable carbon precursor such as a thermosetting resin Similarly, there is a method of performing pre-baking and ultra-high temperature HIP.

次に、本発明方法により実際に黒鉛結晶を製造した結
果について説明する。
Next, the results of actually producing graphite crystals by the method of the present invention will be described.

実施例1 粉末状のフェノールホルムアルデヒド樹脂をホットプ
レスにて直径が80mm、厚さが6mmの形状に成形した。次
いで、窒素ガス中で残留水素濃度が夫々(1)5100ppm
(2)200ppm(3)25ppmになるように3個の成形体を
予備焼成した後、これらの予備焼成品に対し超高温HIP
を使用して2550℃及び2000気圧の処理を行った。その結
果、黒鉛相の析出の有無等の種々の特性を下記第1表に
示す。予備焼成温度が残留水素濃度が5000ppmとなる温
度より低いと、ガラス状炭素相が脆弱であり、緻密な黒
鉛結晶相が得られない。また、残留水素濃度が50ppmよ
りも低濃度となるような高い温度では黒鉛相の析出は起
こらない。
Example 1 A powdery phenol formaldehyde resin was formed into a shape having a diameter of 80 mm and a thickness of 6 mm by hot pressing. Next, the residual hydrogen concentration in nitrogen gas was (1) 5100ppm respectively.
(2) 200 ppm (3) After pre-firing the three molded bodies to 25 ppm, these pre-fired products were subjected to ultra-high temperature HIP.
Was used at 2550 ° C. and 2000 atm. As a result, various characteristics such as the presence or absence of the graphite phase are shown in Table 1 below. If the pre-firing temperature is lower than the temperature at which the residual hydrogen concentration becomes 5000 ppm, the vitreous carbon phase is brittle and a dense graphite crystal phase cannot be obtained. At a high temperature at which the residual hydrogen concentration is lower than 50 ppm, no graphite phase precipitates.

実施例2 実施例1と同様に成形した成形体を残留水素濃度が20
0ppmになるように予備焼成した後、HIPを使用して2550
℃及び2000気圧の処理を行った。この際、昇温速度が50
0℃/hrで(1)予備焼成温度で2000気圧に増圧(圧力先
行)(2)1800℃で2000気圧(同時昇温昇圧)の各条件
でHIP処理を行った。その結果を下記第2表に示す。
Example 2 A molded article molded in the same manner as in Example 1 was produced with a residual hydrogen concentration of 20.
After pre-firing to 0 ppm, 2550 using HIP
C. and 2,000 atm. At this time, the heating rate is 50
The HIP treatment was performed at 0 ° C./hr under the following conditions: (1) increased pressure to 2000 atm at the pre-firing temperature (pressure precedent); The results are shown in Table 2 below.

実施例3 ピッチ中のメソフェース成分を抽出したメソカーボン
マイクロビーズをフェノールホルムアルデヒド樹脂で囲
んだ状態でホットプレス成形し、直径が50mm、厚さが6m
mの成形体を得た(メソカーボンマイクロビーズの部分
は直径が40mm、厚さが4mm)。この成形体を予備焼成し
た後、超高温HIPを使用して2500℃及び2000気圧の処理
を行い、直径が35mm、厚さが2.3mm、嵩密度が2.15の黒
鉛結晶を得た。
Example 3 Mesocarbon microbeads from which a mesophase component in a pitch was extracted were hot-pressed while being surrounded by a phenol formaldehyde resin, and had a diameter of 50 mm and a thickness of 6 m.
Thus, a m-shaped molded body was obtained (the portion of the mesocarbon microbeads was 40 mm in diameter and 4 mm in thickness). After preliminarily firing this compact, it was treated at 2500 ° C. and 2,000 atm using ultra-high temperature HIP to obtain graphite crystal having a diameter of 35 mm, a thickness of 2.3 mm and a bulk density of 2.15.

実施例4 フェノールホルムアルデヒド樹脂粉末をホットプレス
にて(1)外径が80mm、内径が60mm、高さが150mmのパ
イプ状、(2)幅が50mm、奥行が50mm、高さが150mm
(肉厚5mm)の箱状、(3)直径が200mm、厚さが6mmの
円板状の3種類に成形し、予備焼成した後、超高温HIP
処理を行った。得られた黒鉛結晶の形状は下記のとおり
である。
Example 4 A phenol formaldehyde resin powder was hot-pressed. (1) Pipe shape having an outer diameter of 80 mm, an inner diameter of 60 mm and a height of 150 mm, (2) a width of 50 mm, a depth of 50 mm and a height of 150 mm
(3) 200mm diameter, 6mm thick disk-shaped, 3mm shaped, pre-fired, ultra high temperature HIP
Processing was performed. The shape of the obtained graphite crystal is as follows.

(1)パイプ状に成形した場合 外径65mm、内径60mm、高さ115mm (2)箱状に成形した場合 幅が35mm、奥行が35mm、高さが115mm (3)円板状に成形した場合 直径が155mm、厚さが2.3mm このように、極めて大形状の黒鉛結晶が得られた。(1) When formed into a pipe shape Outer diameter 65 mm, Inner diameter 60 mm, Height 115 mm (2) When formed into a box shape Width 35 mm, Depth 35 mm, Height 115 mm (3) When formed into a disk shape Thus, a very large graphite crystal was obtained with a diameter of 155 mm and a thickness of 2.3 mm.

[発明の効果] 本発明によれば、予備焼成した後、熱間静水圧処理す
るから、X線又は中性子線のモノクロメータ及び黒鉛層
間化合物のホスト材料として使用される高配向性黒鉛結
晶を迅速に且つ低コストで製造することができる。
[Effects of the Invention] According to the present invention, since hot isostatic pressure treatment is performed after pre-firing, a highly oriented graphite crystal used as a monochromator for X-rays or neutrons and a host material for a graphite intercalation compound can be rapidly produced. And at low cost.

このため、本発明によれば、大形状の黒鉛結晶を安定
して供給することが可能になり、電子材料関係のスパッ
タリングターゲット、エピタキシャル成長用黒鉛ウェハ
ー、熱及び電気伝導性が優れた基板材料、血栓形成性が
低い人工心臓弁、磁気ヘッド基材等の摺動部材等の新し
い用途展開が可能になった。
For this reason, according to the present invention, it is possible to stably supply a large-sized graphite crystal, a sputtering target relating to electronic materials, a graphite wafer for epitaxial growth, a substrate material having excellent heat and electric conductivity, and a thrombus. New applications such as sliding members such as artificial heart valves and magnetic head base materials having low formability have become possible.

更に、パイプ状、箱状等又は異形状の黒鉛結晶の製造
が可能になり、従来不可能であった用途に対して極めて
有益な材料を供給することができる。
Further, it becomes possible to produce graphite crystals having a pipe shape, a box shape or the like or a different shape, and it is possible to supply a material that is extremely useful for applications that have not been possible in the past.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱硬化性樹脂の成形体を予備焼成し水素が
残存する状態でこれを終了する工程と、この予備焼成品
を熱間静水圧加圧処理する工程と、を有することを特徴
とする高配向性黒鉛結晶の製造方法。
1. A method comprising the steps of: preliminarily firing a molded article of a thermosetting resin and terminating it in a state in which hydrogen remains; and subjecting the prefired product to hot isostatic pressing. A method for producing highly oriented graphite crystals.
【請求項2】前記予備焼成工程は、前記成形体の残留水
素濃度が50乃至5000ppmであるときに終了することを特
徴とする請求項1に記載の高配向性黒鉛結晶の製造方
法。
2. The method for producing highly oriented graphite crystals according to claim 1, wherein said pre-firing step is completed when the residual hydrogen concentration of said compact is 50 to 5000 ppm.
【請求項3】前記熱間静水圧加圧処理は、2000乃至3000
℃の場合及び1000乃至3000気圧で処理することを特徴と
する請求項1又は2に記載の高配向性黒鉛結晶の製造方
法。
3. The method of claim 2, wherein the hot isostatic pressing is performed in a range of 2,000 to 3,000.
The method for producing highly oriented graphite crystals according to claim 1 or 2, wherein the treatment is performed at a temperature of 1000C and at a pressure of 1000 to 3000 atmospheres.
【請求項4】前記熱間静水圧加圧処理は、予備焼成温度
以下の高温で所定圧力まで増圧し、次いで所定温度まで
昇温することを特徴とする請求項1乃至3のいずれか1
項に記載の高配向性黒鉛結晶の製造方法。
4. The method according to claim 1, wherein in the hot isostatic pressing, the pressure is increased to a predetermined pressure at a high temperature equal to or lower than a pre-firing temperature, and then the temperature is increased to the predetermined temperature.
The method for producing a highly oriented graphite crystal according to the above item.
【請求項5】易黒鉛化性炭素前記駆体を熱硬化性樹脂炭
素前駆体で囲んだ形で成形した熱硬化性樹脂の成形体を
使用することを特徴とする請求項1乃至4のいずれか1
項に記載の高配向性黒鉛結晶の製造方法。
5. A thermosetting resin molded body obtained by molding the precursor to be graphitizable carbon in a form surrounded by a thermosetting resin carbon precursor. Or 1
The method for producing a highly oriented graphite crystal according to the above item.
JP63203032A 1988-08-15 1988-08-15 Method for producing highly oriented graphite crystal Expired - Lifetime JP2633638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63203032A JP2633638B2 (en) 1988-08-15 1988-08-15 Method for producing highly oriented graphite crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63203032A JP2633638B2 (en) 1988-08-15 1988-08-15 Method for producing highly oriented graphite crystal

Publications (2)

Publication Number Publication Date
JPH0251412A JPH0251412A (en) 1990-02-21
JP2633638B2 true JP2633638B2 (en) 1997-07-23

Family

ID=16467220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63203032A Expired - Lifetime JP2633638B2 (en) 1988-08-15 1988-08-15 Method for producing highly oriented graphite crystal

Country Status (1)

Country Link
JP (1) JP2633638B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128650A2 (en) 2009-05-06 2010-11-11 株式会社インキュベーション・アライアンス Carbon material and manufacturing method therefor
WO2010137592A1 (en) 2009-05-26 2010-12-02 株式会社インキュベーション・アライアンス Carbon material and method for producing the same
WO2011102473A1 (en) 2010-02-19 2011-08-25 株式会社インキュベーション・アライアンス Carbon material and method for producing same
KR20200022650A (en) * 2018-08-23 2020-03-04 한국화학연구원 Manufacturing method for producing graphite from waste PET

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543159B2 (en) * 1987-11-07 1996-10-16 株式会社神戸製鋼所 Carbon material and its manufacturing method
JPH03122007A (en) * 1989-10-03 1991-05-24 Kobe Steel Ltd Production of carbonaceous material
JPH06206716A (en) * 1993-01-08 1994-07-26 Kobe Steel Ltd Easily graphitizable high strength carbon material and its production
JP5183301B2 (en) * 2008-05-28 2013-04-17 地方独立行政法人 東京都立産業技術研究センター Mold and manufacturing method thereof
TWI485105B (en) * 2010-11-25 2015-05-21 Incubation Alliance Inc Novel carbon nanotube and rpoduction method of the same
JP5680261B1 (en) * 2013-05-15 2015-03-04 昭和電工株式会社 Flaky graphite containing boron and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128650A2 (en) 2009-05-06 2010-11-11 株式会社インキュベーション・アライアンス Carbon material and manufacturing method therefor
US8883112B2 (en) 2009-05-06 2014-11-11 Incubation Alliance, Inc. Carbon material and method for producing same
US9379385B2 (en) 2009-05-06 2016-06-28 Incubation Alliance, Inc. Carbon material and method for producing same
WO2010137592A1 (en) 2009-05-26 2010-12-02 株式会社インキュベーション・アライアンス Carbon material and method for producing the same
US8951451B2 (en) 2009-05-26 2015-02-10 Incubation Alliance, Inc. Carbon material and method for producing same
US9783422B2 (en) 2009-05-26 2017-10-10 Incubation Alliance, Inc. Carbon material and method for producing same
US9783423B2 (en) 2009-05-26 2017-10-10 Incubation Alliance, Inc. Carbon material and method for producing same
WO2011102473A1 (en) 2010-02-19 2011-08-25 株式会社インキュベーション・アライアンス Carbon material and method for producing same
JP2015044737A (en) * 2010-02-19 2015-03-12 株式会社インキュベーション・アライアンス Carbon material and manufacturing method thereof
US9221686B2 (en) 2010-02-19 2015-12-29 Incubation Alliance, Inc. Carbon material and method for producing same
KR20200022650A (en) * 2018-08-23 2020-03-04 한국화학연구원 Manufacturing method for producing graphite from waste PET
KR102158039B1 (en) 2018-08-23 2020-09-21 한국화학연구원 Manufacturing method for producing graphite from waste PET

Also Published As

Publication number Publication date
JPH0251412A (en) 1990-02-21

Similar Documents

Publication Publication Date Title
CN103209923B (en) Single-crystal silicon carbide manufacture silicon carbide powder and manufacture method thereof
KR100487262B1 (en) Silicon carbide sintered body and process for making the same
US4226900A (en) Manufacture of high density, high strength isotropic graphite
JP2633638B2 (en) Method for producing highly oriented graphite crystal
WO2013015347A1 (en) Polycrystalline diamond and manufacturing method therefor
JP4012287B2 (en) Sputtering target panel
US7150850B2 (en) Process for producing silicon carbide sinter jig
JP5071406B2 (en) Composite bonding method of seed crystal for SiC single crystal growth by solution method
JPS5935099A (en) Method for growing silicon carbide crystal
US5783255A (en) Method for producing shaped article of silicon carbide
WO2009098997A1 (en) Process for producing silicon carbide single crystal
JPH0678193B2 (en) Carbon fiber reinforced carbon composite material excellent in thermal shock resistance and method for producing the same
JP2591967B2 (en) Processed carbonaceous felt product and method for producing the same
EP0575748B1 (en) Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom
EP2113497A2 (en) High purity carbon fiberreinforced carbon composite for semiconductor manufacturing apparatus and method for producing the same
JP5987629B2 (en) Polycrystalline diamond and method for producing the same
JP5891634B2 (en) Polycrystalline diamond and method for producing the same
JP2919901B2 (en) Melting crucible equipment
Borodina et al. Shock‐induced transformations of carbyne
US20020071803A1 (en) Method of producing silicon carbide power
WO2002021575A2 (en) Method of producing silicon carbide and various forms thereof
JPH1179847A (en) Production of silicon carbide sintered compact
JPH0798333B2 (en) Binderless molding method for anisotropic carbon products
WO1991004954A1 (en) Carbon fiber-reinforced composite carbon material having excellent thermal shock resistance and production thereof
Jung et al. Preparation of particle-size-controlled SiC powder for single-crystal growth