[go: up one dir, main page]

JPH0426217B2 - - Google Patents

Info

Publication number
JPH0426217B2
JPH0426217B2 JP58146394A JP14639483A JPH0426217B2 JP H0426217 B2 JPH0426217 B2 JP H0426217B2 JP 58146394 A JP58146394 A JP 58146394A JP 14639483 A JP14639483 A JP 14639483A JP H0426217 B2 JPH0426217 B2 JP H0426217B2
Authority
JP
Japan
Prior art keywords
capacitor
recess
insulating film
substrate
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58146394A
Other languages
Japanese (ja)
Other versions
JPS6038855A (en
Inventor
Tokuo Kure
Hideo Sunami
Yoshifumi Kawamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58146394A priority Critical patent/JPS6038855A/en
Publication of JPS6038855A publication Critical patent/JPS6038855A/en
Publication of JPH0426217B2 publication Critical patent/JPH0426217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置およびその製造方法に関
し、詳しくは凹形キヤパシタを含む半導体装置お
よびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a semiconductor device including a concave capacitor and a method for manufacturing the same.

〔発明の背景〕[Background of the invention]

1記憶単位あたり1つのキヤパシタと1つの電
界効果トランジスタより成る1トランジスタ型メ
モリセルにおいて、近年、第1図に示すように、
キヤパシタ部1に凹部2を設けて実効キヤパシタ
面積を増大したものが提案された。(特開昭51−
130178号)なお、第1図において、メモリセル1
個分は第1図波線aで示されている。
In recent years, in one-transistor memory cells consisting of one capacitor and one field-effect transistor per memory unit, as shown in Fig. 1,
It has been proposed that a concave portion 2 is provided in the capacitor portion 1 to increase the effective capacitor area. (Unexamined Japanese Patent Publication No. 1973-
130178) Note that in Figure 1, memory cell 1
The individual portions are indicated by dotted lines a in FIG.

第2図は、第1図のA−A断面である。(第1
図ではワード線9、ビツト線12の配線パターン
等を省略した。)このような凹形キヤパシタのメ
モリセルでは、従来の平面キヤパシタのものに比
べ、キヤパシタ面積は大幅に縮小できるが、この
セルを高密度に配置して大規模メモリを構成しよ
うとすると次の問題が生じる。すなわち、凹形キ
ヤパシタを近接して配置すると、矢印13で示し
たようなキヤパシタ間のリーク電流が流れ易くな
り、メモリ動作が不安定になるという現象が起こ
る。素子間を分離しているフイールドSiO27の
直下にはチヤネルカツト用の不純物拡散が通常行
われるので、リーク電流はポテンジヤルの鞍部が
できる矢印13近傍で流れ易い。また、キヤパシ
タ間(ソース間)だけではなく、キヤパシタと隣
接セルのコンタクト部3の間(ソース・ドレーン
間)でも同様のリーク電流が生じる。
FIG. 2 is a cross section taken along the line AA in FIG. 1. (1st
In the figure, the wiring patterns of the word line 9, bit line 12, etc. are omitted. ) In memory cells with such concave capacitors, the capacitor area can be significantly reduced compared to those with conventional planar capacitors, but when trying to configure large-scale memories by arranging these cells in high density, the following problem arises: occurs. That is, when concave capacitors are placed close to each other, a leakage current as shown by arrow 13 tends to flow between the capacitors, resulting in unstable memory operation. Since impurity diffusion for channel cutting is normally performed directly under the field SiO 2 7 separating the elements, leakage current tends to flow near the arrow 13 where the saddle of the potential is formed. Further, a similar leakage current occurs not only between the capacitors (between the sources) but also between the capacitors and the contact portions 3 of the adjacent cells (between the sources and drains).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記キヤパシタ間(メモリセ
ル間)のリーク電流を防止した半導体装置および
その製造方法を提供することにある。
An object of the present invention is to provide a semiconductor device and a method for manufacturing the same in which leakage current between capacitors (between memory cells) is prevented.

〔発明の概要〕[Summary of the invention]

凹形キヤパシタをもとにして発生するリーク電
流を防止する本発明は、凹形キヤパシタと半導体
基板間に絶縁膜を挿入するか、または凹形キヤパ
シタよりも深い溝でセル間を分離することによつ
て、リーク電流通路を断ち切るものである。
The present invention, which prevents leakage current caused by a concave capacitor, involves inserting an insulating film between the concave capacitor and the semiconductor substrate, or separating cells with a groove deeper than the concave capacitor. Therefore, the leakage current path is cut off.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第3図は、本発明の一実施例を示す工程図であ
る。
FIG. 3 is a process diagram showing one embodiment of the present invention.

まず、第3図1に示すように、周知のLOCOS
法によつて、フイールドSiO27を形成した後、
Si3N415とPSG(リンガラス)16の膜を被着
し、キヤパシタの凹部を形成する部分を開口した
ホトレジストパターン17を形成した。開口部
は、フイールドSiO27の端部に位置させる。
First, as shown in Figure 3, the well-known LOCOS
After forming the field SiO 2 7 by the method,
A film of Si 3 N 4 15 and PSG (phosphorus glass) 16 was deposited, and a photoresist pattern 17 was formed with openings in the areas where the concave portions of the capacitor were to be formed. The opening is located at the end of the field SiO 2 7.

続いて、CF4にH2を約5%混合したガスを用い
た反応性スパツタエツチング法で、PSG16、
Si3N415、フイードSiO27およびパツドSiO2
4とSi基板4をエツチした。この際、各材料のエ
ツチング速度比は、Si3N4:SiO2:Si=2:2:
1程度になるようエツチング条件を選び、フイー
ルドSiO27のエツチングが完了した時点でエツ
チングを終了した。次に、ホトレジスト17を除
去し、Si3N418を被着した。(第3図2) CH2F2ガスでの反応性スパツタエツチングを用
いて、Si3N418を方向的に選択エツチして、側
壁に被着したSi3N419を残し、続いて、CCl4
O2混合ガスの反応性スパツタエツチングでSi基
板4に凹部20を形成した。(第3図3)この時
のエツチング法としては、Si3N418とSi基板4
をそれぞれ方向的かつ選択的にエツチできるもの
であれば上記以外のものでもよい。なお、PSG
16はSi3N415を保護のためもうけたものであ
り、省略することも可能である。
Next , PSG16 ,
Si 3 N 4 15, feed SiO 2 7 and pad SiO 2 1
4 and Si substrate 4 were etched. At this time, the etching rate ratio of each material is Si 3 N 4 :SiO 2 :Si=2:2:
The etching conditions were selected so that the etching value was approximately 1, and the etching was terminated when the etching of the field SiO 2 7 was completed. Next, the photoresist 17 was removed and Si 3 N 4 18 was deposited. (Figure 3 2) Using reactive sputter etching with CH 2 F 2 gas, Si 3 N 4 18 is directionally selectively etched leaving Si 3 N 4 19 deposited on the sidewalls, followed by and CCl 4
A recess 20 was formed in the Si substrate 4 by reactive sputter etching using an O 2 mixed gas. (Fig. 3) The etching method used at this time was to use Si 3 N 4 18 and Si substrate 4.
Any material other than those described above may be used as long as it can selectively and directionally etch each of the materials. In addition, PSG
16 is added for protection of Si 3 N 4 15, and can be omitted.

次に、PSG16をフツ酸溶液で除去し、凹部
20のSi面を酸化した後、側壁および表面の
Si3N415,19をリン酸溶液で除去し、PolySi
(多結晶シリコン)22を、凹部が完全に埋まら
ないように被着した。(第3図4)ここで、凹部
のSiO221の下には、寄生チヤネルの発生を防
止するため、基板4と同導電型の不純物拡散層を
イオン打込み法によつて形成しておくことが望ま
しい。
Next, after removing the PSG 16 with a hydrofluoric acid solution and oxidizing the Si surface of the recess 20, the side wall and surface
Si 3 N 4 15,19 was removed with phosphoric acid solution and PolySi
(Polycrystalline silicon) 22 was deposited so that the recesses were not completely filled. (Fig. 3 4) Here, in order to prevent the generation of parasitic channels, an impurity diffusion layer of the same conductivity type as the substrate 4 is formed by ion implantation under the SiO 2 21 in the recess. is desirable.

PolySi22に、基板4と異なる導電型の不純
物を拡散し抵抵抗化した後、CCl4ガスの反応性
スパツタエツチングによつてPolySi22をエツ
チした。こうすることによつて、凹部側壁の
PolySi23のみが残存し、しかもこのPolySiは、
フイールドSiO27のない側の凹部側壁24で基
板4と接続している。
After diffusing impurities of a conductivity type different from that of the substrate 4 into the PolySi 22 to make it resistive, the PolySi 22 was etched by reactive sputter etching using CCl 4 gas. By doing this, the side walls of the recess can be
Only PolySi23 remains, and this PolySi is
It is connected to the substrate 4 at the concave side wall 24 on the side where the field SiO 2 7 is not provided.

次に、絶縁膜25(例えば、SiO2、Si3N4また
はその多層膜)と、PolySi26を被着し、第3
図6に示すようなMOS型キヤパシタを形成した。
Next, an insulating film 25 (for example, SiO 2 , Si 3 N 4 or a multilayer film thereof) and PolySi 26 are deposited, and the third
A MOS type capacitor as shown in FIG. 6 was formed.

以上のようにして形成したキヤパシタは、第3
図6で明らかなように、基板4との境界にSiO2
21が挿入されており、キヤパシタ間のリーク電
流が極めて流れにくい構造になつている。
The capacitor formed as above is the third
As is clear from FIG. 6, SiO 2 is present at the boundary with the substrate 4.
21 is inserted, and the structure is such that leakage current between the capacitors is extremely difficult to flow.

第4図は、上記製造工程を平面的に見た図であ
る。フイールドSiO2で囲われた島状領域30に
対し凹部を形成するパターン31は、第4図1に
示したように配置する。凹部のパターン31は島
状領域30に少しでもかかつていれば良いので、
リングラフイにおけるパターンの合わせ余裕は大
きい。また、第4図2に示すように、形成された
キヤパシタ部1はSiO221で周辺部と底部を囲
まれており、矢印32,33で示したキヤパシタ
間のリーク電流や矢印34で示したキヤパシタと
ビツト線コンタクト部とのリーク電流が生じにく
いことは明らかである。なお、キヤパシタを囲つ
ているSiO221は、隣接セル間で接続してしま
つても良い。
FIG. 4 is a plan view of the above manufacturing process. The pattern 31 forming a recess in the island region 30 surrounded by the SiO 2 field is arranged as shown in FIG. It is sufficient that the concave pattern 31 overlaps the island region 30 even a little.
There is a large margin for matching patterns in ring graphs. In addition, as shown in FIG. 42, the formed capacitor part 1 is surrounded by SiO 2 21 at the periphery and bottom, and the leakage current between the capacitors shown by arrows 32 and 33 and the leakage current shown by arrow 34 occur. It is clear that leakage current between the capacitor and the bit line contact portion is less likely to occur. Note that the SiO 2 21 surrounding the capacitor may be connected between adjacent cells.

第5図は、Si基板に形成した溝を絶縁材で充填
する素子分離法によつて、厚いSiO235でフイ
ールドを形成した例である。このような場合に
は、キヤパシタ電極23と基板4との接続部24
を大きくすることができる。
FIG. 5 shows an example in which a field is formed with thick SiO 2 35 by an element isolation method in which a groove formed in a Si substrate is filled with an insulating material. In such a case, the connecting portion 24 between the capacitor electrode 23 and the substrate 4
can be made larger.

第6図は、さらに分離溝を深くした場合で、こ
のようにキヤパシタの凹部よりも深い絶縁材36
を形成したときには、第7図に示すように凹部2
を配置し、従来通り基板をキヤパシタの一方の電
極とすればよい。(第6図は第7図のB−B断面
である。)なお、このような場合には、島状領域
30と凹部2のパターン間の合わせ余裕は小さく
なるが、絶縁材36か凹部2の断面形状がV字形
になるようにしておけば、凹部2のパターンが島
状領域30の端部にかかつても、キヤパシタ面積
が急激に減少するようなことはない。
Figure 6 shows a case where the separation groove is made even deeper, and the insulating material 36 is deeper than the concave part of the capacitor.
When the recess 2 is formed as shown in FIG.
, and use the substrate as one electrode of the capacitor as before. (FIG. 6 is a cross section taken along line B-B in FIG. 7.) In such a case, the alignment margin between the patterns of the island-like regions 30 and the recesses 2 will be small, but if the insulation material 36 or the recesses 2 By making the cross-sectional shape of the capacitor V-shaped, even if the pattern of the recess 2 is located at the end of the island region 30, the capacitor area will not be suddenly reduced.

〔発明の効果〕〔Effect of the invention〕

上記のように、本発明によれば、凹形キヤパシ
タの周囲に絶縁膜が形成されるので、隣接キヤパ
シタ間などで生じるリーク電流を無くすことがで
きる。したがつて、凹形キヤパシタを含むメモリ
セルを近接して配置することができ、大規模集積
回路を構成できる。
As described above, according to the present invention, since an insulating film is formed around the concave capacitor, leakage current generated between adjacent capacitors can be eliminated. Therefore, memory cells including concave capacitors can be placed closely together, making it possible to construct a large-scale integrated circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のメモリセルの平面図、第2図は
第1図のA−A断面図、第3図、第4図は本発明
の実施例を示す工程図、第5図、第6図は本発明
の他の実施例を示す断面図、第7図は第6図の平
面図である。 1……キヤパシタ部、2,20……凹部、3…
…コンタクト部、4……Si基板、5,25……キ
ヤパシタ用絶縁膜、6,22,23,26……
PolySi、7,35,36……フイールドSiO2
9……ワード線、12……ビツト線、13……リ
ーク電流経路、15,18,19……Si3N4、2
1……SiO2、30……島状領域、31……凹部
パターン。
FIG. 1 is a plan view of a conventional memory cell, FIG. 2 is a sectional view taken along line AA in FIG. 1, FIGS. 3 and 4 are process diagrams showing an embodiment of the present invention, and FIGS. The figure is a sectional view showing another embodiment of the present invention, and FIG. 7 is a plan view of FIG. 6. 1... Capacitor part, 2, 20... Recessed part, 3...
...Contact part, 4...Si substrate, 5, 25...Insulating film for capacitor, 6, 22, 23, 26...
PolySi, 7, 35, 36...field SiO 2 ,
9... Word line, 12... Bit line, 13... Leak current path, 15, 18, 19... Si 3 N 4 , 2
1...SiO 2 , 30... Island-like region, 31... Concave pattern.

Claims (1)

【特許請求の範囲】 1 半導体基板表面に互いに近接して形成され、
側壁が該基板表面に対してほぼ垂直な2つ以上の
凹部と、該凹部上端における側壁部以外の該凹部
上に形成された絶縁膜と、該絶縁膜上に形成さ
れ、かつ、該凹部上端における側壁部で該基板と
電気的に接続された第1電極と該第1電極上に形
成された絶縁膜と該絶縁膜上の所定の位置に形成
された第2電極とを有するキヤパシタとを備えた
ことを特徴とする半導体装置。 2 絶縁膜で分離された島状領域の端部にかかる
ように半導体基板に凹部を形成する工程と、該凹
部内面を絶縁膜で被覆する工程と、該絶縁膜上に
キヤパシタの下部電極用の膜を形成し、該島状領
域の半導体基板と該凹部上端の側壁部で電気的に
接続する工程と、該下部電極用の膜上にキヤパシ
タ用絶縁膜および上部電極用の膜を形成する工程
とを含むことを特徴とする半導体装置の製造方
法。
[Claims] 1. formed close to each other on the surface of a semiconductor substrate,
two or more recesses whose sidewalls are substantially perpendicular to the substrate surface, an insulating film formed on the recess other than the sidewall at the upper end of the recess, and an upper end of the recess formed on the insulating film; a capacitor having a first electrode electrically connected to the substrate at a side wall portion of the capacitor, an insulating film formed on the first electrode, and a second electrode formed at a predetermined position on the insulating film. A semiconductor device characterized by: 2. A step of forming a recess in a semiconductor substrate so as to span the edge of an island region separated by an insulating film, a step of covering the inner surface of the recess with an insulating film, and a step of forming a recess for a lower electrode of a capacitor on the insulating film. A step of forming a film and electrically connecting the semiconductor substrate in the island-like region with the side wall portion of the upper end of the recess, and a step of forming an insulating film for a capacitor and a film for an upper electrode on the film for the lower electrode. A method for manufacturing a semiconductor device, comprising:
JP58146394A 1983-08-12 1983-08-12 Semiconductor device and manufacture thereof Granted JPS6038855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58146394A JPS6038855A (en) 1983-08-12 1983-08-12 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58146394A JPS6038855A (en) 1983-08-12 1983-08-12 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6038855A JPS6038855A (en) 1985-02-28
JPH0426217B2 true JPH0426217B2 (en) 1992-05-06

Family

ID=15406704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58146394A Granted JPS6038855A (en) 1983-08-12 1983-08-12 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6038855A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184861A (en) * 1985-02-12 1986-08-18 Matsushita Electronics Corp Semiconductor device
JPS61208256A (en) * 1985-03-13 1986-09-16 Toshiba Corp Semiconductor memory device
JP2604705B2 (en) * 1985-04-03 1997-04-30 松下電子工業株式会社 Method of manufacturing MOS capacitor
JPH01287956A (en) * 1987-07-10 1989-11-20 Toshiba Corp Semiconductor memory and manufacture thereof
JPH0793378B2 (en) * 1988-02-26 1995-10-09 株式会社東芝 Method for manufacturing semiconductor device
US5422294A (en) * 1993-05-03 1995-06-06 Noble, Jr.; Wendell P. Method of making a trench capacitor field shield with sidewall contact

Also Published As

Publication number Publication date
JPS6038855A (en) 1985-02-28

Similar Documents

Publication Publication Date Title
KR0165398B1 (en) Vertical transistor manufacturing method
US6544839B1 (en) Semiconductor integrated circuit device and a method of manufacturing the same
US20100197123A1 (en) Method for fabricating semiconductor device
EP0190928A2 (en) Integrated MOS transistor and method of manufacturing it
KR100221115B1 (en) Manufacturing Method of Semiconductor Device
KR100673673B1 (en) DRAM cell apparatus and its manufacturing method
KR100214917B1 (en) Semiconductor device and method of manufacturing the same
KR100423765B1 (en) Integrated circuit comprising vertical transistors, and a method for the production thereof
JPS63228742A (en) 3D 1-transistor memory cell structure and its manufacturing method
JPH0648719B2 (en) Semiconductor memory device
US6818505B2 (en) Non-volatile semiconductor memory device and manufacturing method thereof
JPH0412563A (en) Semiconductor device and its manufacture
JPH0426217B2 (en)
US6833293B2 (en) Semiconductor device and method for manufacturing the same
US5055904A (en) Semiconductor device
US5962908A (en) Contact regions for narrow trenches in semiconductor devices and method
US6593189B2 (en) Semiconductor memory reducing current consumption and narrow channel effect and method of manufacturing the same
KR0170509B1 (en) Method of making mask rom
JP3063203B2 (en) Semiconductor memory and manufacturing method thereof
KR0144915B1 (en) Semiconductor device using trench and manufacturing method thereof
KR930010824B1 (en) Method for manufacturing memory device using nmos cell
JPH0582637A (en) Semiconductor device
KR100280526B1 (en) Semiconductor Memory Manufacturing Method
JPH0729992A (en) Memory cell structure of dynamic ram and its manufacturing method
KR100325286B1 (en) Semiconductor memory device manufacturing method