[go: up one dir, main page]

JPH0425804A - Optical connecting structure - Google Patents

Optical connecting structure

Info

Publication number
JPH0425804A
JPH0425804A JP2129193A JP12919390A JPH0425804A JP H0425804 A JPH0425804 A JP H0425804A JP 2129193 A JP2129193 A JP 2129193A JP 12919390 A JP12919390 A JP 12919390A JP H0425804 A JPH0425804 A JP H0425804A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
graded index
fibers
optical fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2129193A
Other languages
Japanese (ja)
Inventor
Kaoru Yoshino
薫 吉野
Shinji Nagaoka
長岡 新二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2129193A priority Critical patent/JPH0425804A/en
Publication of JPH0425804A publication Critical patent/JPH0425804A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/22Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the back-rest being adjustable
    • B60N2/235Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the back-rest being adjustable by gear-pawl type mechanisms
    • B60N2/2352Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the back-rest being adjustable by gear-pawl type mechanisms with external pawls
    • B60N2/2354Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the back-rest being adjustable by gear-pawl type mechanisms with external pawls and provided with memory locks

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To improve a packaging density and to facilitate a connecting operation by inserting short-sized graded index type optical fibers to the incident and exit ends of respective single mode optical fibers and having a capillary to hold the end faces opposite to each other. CONSTITUTION:The assembly is executed by first connecting the long-sized graded index type optical fibers (GIF) 4a, 4b by welding or an adhesive matched in refractive index to the end faces of the single mode optical fibers 3a, 3b to assemble a module, then resistering the fibers by a microscope with a fine adjustment micrometr to the length of odd times the 1/4 of the pitch length determined by the refractive index distribution of the core and cutting the fibers with sufficiently high accuracy of about <=+ or -5mum. The cut GIFs 4a, 4b are inserted into the glass capillary 5 packed with an optical adhesive 5 from both sides and are fixed by adhering. The allowance for the optical axis misalignment at the connection point is increased in this way by using the GIFs and the connecting operation is facilitated.

Description

【発明の詳細な説明】 〈産業上の利用3舒〉 本発明は光学接続構造に関し、単一モード光ファイバを
入出力端子とする光部品同志を光接続する場合に用いて
有用なものである。
[Detailed Description of the Invention] <3 Industrial Applications> The present invention relates to an optical connection structure, and is useful when optically connecting optical components using single mode optical fibers as input/output terminals. .

〈従来の技術〉 従来、光部品間の光学接続は次の様にして実現していた
<Conventional technology> Conventionally, optical connections between optical components have been realized as follows.

^) 光入出力端子に光コネクタを装着し、コネクタ用
アダプタを介して接続する。
^) Attach an optical connector to the optical input/output terminal and connect via the connector adapter.

B)光フアイバ同志を直接融着することにより実現する
B) Realized by directly fusing optical fibers together.

C) 光フアイバ同志を高精度なキャピラリーに挿入し
て接続する。
C) Connect the optical fibers by inserting them into a high-precision capillary.

〈発明が解決しようとする課題〉 上述の如き従来技術においては次の様な問題がある。<Problem that the invention seeks to solve> The prior art as described above has the following problems.

a)前記入)の場合には、光コネクタ自身のサイズが大
きいため、光部品の実装密度が低下する。
In the case of a) above, the optical connector itself is large in size, so the mounting density of the optical components is reduced.

b)前記B)の場合には、接続時に、通常数10anの
接続余長が必要となるので、接続点自体は小さくても余
長ファイバを収納するスペースのために実装密度を向上
させることができない。
b) In the case of B) above, an extra connection length of several tens of anns is usually required at the time of connection, so even if the connection point itself is small, it is possible to improve the packaging density due to the space to accommodate the extra length fiber. Can not.

C〕光ファイバがシングルモード光ファイバ(9下SM
Fと称す)の場合、SMF同志の軸ずれ許容量が±1〜
2μm(ロス増;0.5dB時)と厳しいので、実際に
低損失で接続するのが困難となる。
C] The optical fiber is a single mode optical fiber (9 lower SM
(referred to as F), the allowable amount of axis misalignment between the SMFs is ±1 to
Since the thickness is 2 μm (loss increase; at 0.5 dB), it is difficult to actually connect with low loss.

本発明は、上記従来技術の問題点に鑑み、接続部が小さ
くて実装密度が向上する光学接続構造を提供することを
目的とする。
SUMMARY OF THE INVENTION In view of the problems of the prior art described above, it is an object of the present invention to provide an optical connection structure in which the connection portion is small and the packaging density is improved.

〈課題を解決するための手段〉 上記目的を達成する本発明の構成は、 出射側及び入射側の光部品に接続してあるシングルモー
ド光ファイバと、 各シングルモード光ファイバの出射端及び入射端に夫々
接続してある短尺のグレーテッドインデックス型光ファ
イバと、 両端部から夫々挿入されたグレーテッドインデックス型
光ファイバを、両者の端面同志を相対向させて保持する
キャピラリーとを有することを特徴とする。
<Means for Solving the Problems> The configuration of the present invention that achieves the above object includes: a single-mode optical fiber connected to optical components on the output side and the input side; and an output end and an input end of each single-mode optical fiber. and a capillary that holds the graded index optical fibers inserted from both ends thereof with their end faces facing each other. do.

く作   用〉 上記構成の本発明によれば、出射側のSMFを伝搬され
てきた光はその出射端で出射側のグレーテッドインデッ
クス型光ファイバ(以下GIFと称す)に入射してこの
GIFで拡散され、その後入射側のGIFで絞られて入
射側のSMFの入射端に入射する。したがっテ、入出射
端、即ち接続点でのビームスポットサイズを、SMF同
志で接続点を形成する場合よりも拡大することができる
ので、ファイバ同志の軸ずれ許容量を大きくすることが
できる。
According to the present invention having the above configuration, the light propagated through the SMF on the output side enters the graded index optical fiber (hereinafter referred to as GIF) on the output side at the output end, and is transmitted by this GIF. The light is diffused, then narrowed down by the GIF on the incident side, and enters the incident end of the SMF on the incident side. Therefore, the beam spot size at the input/output end, that is, at the connection point can be enlarged compared to the case where the connection point is formed between SMFs, so the tolerance for axis misalignment between the fibers can be increased.

〈実 施 例〉 息下本発明の実施例を図面に基づき詳細に説明する。<Example> Embodiments of the present invention will now be described in detail based on the drawings.

〈第1実施例〉 第1図に示すように、光部品実装用のプリント基板1に
夫々配設してある出射側の光部品モジュール2a及び入
射側の光部品モジュール2bにはSMF3a、3bが夫
々接続してある。これらSMF 3 a、3 bの出射
端及び入射端にば短尺のGIF4a、4bが、融着若し
くは屈折率整合した接着剤により接続してある。このと
きGIF4a、4bの長さはコアの屈折率分布によって
定まるピッチ長の1/4の奇数倍の長さとする。また、
GIF4a、4bはガラスキャピラリー5の両端開口部
から夫々挿入して端面同志を相対向させるとともに、接
着剤によりガラスキャピラリー5に固定してある。
<First Embodiment> As shown in FIG. 1, SMFs 3a and 3b are installed in the optical component module 2a on the output side and the optical component module 2b on the input side, which are respectively arranged on the printed circuit board 1 for mounting optical components. They are connected to each other. Short GIFs 4a and 4b are connected to the output ends and input ends of these SMFs 3a and 3b by fusion bonding or an adhesive whose refractive index is matched. At this time, the lengths of GIFs 4a and 4b are set to be an odd multiple of 1/4 of the pitch length determined by the refractive index distribution of the core. Also,
The GIFs 4a and 4b are inserted through openings at both ends of the glass capillary 5, with their end surfaces facing each other, and are fixed to the glass capillary 5 with an adhesive.

なお、図中6はガラスキャピラリー5に形成された空気
抜き用の孔、7は光学接着剤充填部である。
In the figure, 6 is an air vent hole formed in the glass capillary 5, and 7 is an optical adhesive filling part.

かかる本実施例構造を組立てるには、先ずSMF3a、
3bの一端面に長尺のG I F4a。
To assemble the structure of this embodiment, first, SMF3a,
A long GIF4a is provided on one end surface of 3b.

4bを融着若しくは屈折率整合した接着剤により接続し
、その後これらを光入出力端子としてモジュールを組立
てる。そしてモジュール組立後、GIF4a、4bをコ
アの屈折率分布によって定まるピッチ長の1/4の奇数
倍になる長さで切断する。このG I F4 m。
4b are connected by fusion bonding or a refractive index-matched adhesive, and then a module is assembled using these as optical input/output terminals. After the module is assembled, the GIFs 4a and 4b are cut into lengths that are an odd multiple of 1/4 of the pitch length determined by the refractive index distribution of the core. This G I F4 m.

4bの切断は、縁にカッターで傷を入れて応力を加えて
へき関することによって行うが、この傷入れを行なう際
、微動マイク口付の顕微鏡で位置合せすることで、GI
F4a、4b長を±5μrn以下の十分高い精度で規定
できる。そして切断したGIF4a、4bを光学接着剤
(ファイバに対し屈折率整合した接着剤)を充てんした
ガラスキャピラリー5に両側から挿入して接着固定する
。最後に補強のためガラスキャピラリー自身を基板に接
着や、板バネ等によって固定しても良い。
The cutting of 4b is done by making a cut on the edge with a cutter and applying stress to tighten it. When making the cut, the GI
The lengths of F4a and 4b can be defined with sufficiently high accuracy of ±5 μrn or less. Then, the cut GIFs 4a and 4b are inserted from both sides into a glass capillary 5 filled with an optical adhesive (adhesive whose refractive index is matched to the fiber) and fixed by adhesive. Finally, for reinforcement, the glass capillary itself may be fixed to the substrate by adhesive, plate springs, or the like.

ここで、GIF4a、4bによる軸ずれ許容量拡大の原
理を説明しておく。
Here, the principle of increasing the axis misalignment tolerance using the GIFs 4a and 4b will be explained.

信号光は基本的にはSMF3g、3b内を伝搬するので
、単一モードのガウシアンビームと考えて良い。このガ
ウシアンビームの伝搬を光線行列(例えば、YARIV
著「光エレクトロニクスの基礎」等)により解析すると
以下の式が導出される。
Since the signal light basically propagates within the SMFs 3g and 3b, it can be considered as a single mode Gaussian beam. The propagation of this Gaussian beam is expressed as a ray matrix (for example, YARIV
The following formula is derived from the analysis by the author "Fundamentals of Optoelectronics" etc.).

即ちGIF4a、4bのパラメータとしてコア半径: 
r、コア屈折*: n、コアとクラッドの屈折車差:Δ
、SMF3a、3b内のビームスポットサイズ:ω。、
信号光波長;λとすると、 GIF4a、4bのピッチ長:P=2π42Δ/rこの
Pに対し GIF4m、4b長: L=P/4 ・(2n−1)(
但し nは自創頃幻 の時、G I F4 a、 4 b内のビームスポット
上式に代表的な通信用光ファイバの値、λ=1.3μm
、 n=1.45.ω。=5μm、r六25ump Δ
=0.01を代入するとQl、、、= 10 μmとω
。02倍に拡大されることが解る。
That is, the core radius as a parameter of GIF4a, 4b:
r, core refraction*: n, refraction wheel difference between core and cladding: Δ
, beam spot size in SMF 3a, 3b: ω. ,
When the signal light wavelength is λ, the pitch length of GIF4a and 4b: P=2π42Δ/r, and the length of GIF4m and 4b for this P: L=P/4 ・(2n-1)(
However, n is the value of a typical communication optical fiber in the above formula, λ = 1.3 μm, when the beam spot in GIF4 a, 4 b is a self-created vision.
, n=1.45. ω. =5μm, r625ump Δ
By substituting =0.01, Ql,,, = 10 μm and ω
. It can be seen that the image is enlarged by 2 times.

一方、光軸垂直方向にXの軸ずれがある時のビームスポ
ットサイズ:ωのガウシアンビームの結合効率: ηo
c exp (−x” / ω2) テある( reL
猿渡、綿量、“Sem1eonduetor La5e
rto single−mode fiber cou
pler” APPLIEDOPT■CS vol、 
18. h 11. pp、 1847〜1856) 
。したがって、0.5dB損失増加の軸ずれ:x  =
0.8d6 0.34のが導かれる。即ち、軸ずれ許容量はωに比例
する。
On the other hand, when there is an axis deviation of X in the direction perpendicular to the optical axis, the beam spot size: ω Gaussian beam coupling efficiency: ηo
c exp (-x” / ω2)
Saruwatari, Wataya, “Sem1eonduetor La5e
rto single-mode fiber cou
pler”APPLIEDOPT■CS vol,
18. h11. pp, 1847-1856)
. Therefore, 0.5 dB loss increase off-axis: x =
0.8d6 0.34 is derived. That is, the axis misalignment tolerance is proportional to ω.

前述のように、GIF4a、4bを付けた時のω6.8
ばω。の2倍になっているので、軸ずれ許容量も2倍に
拡大されることが分がる。
As mentioned above, ω6.8 when attaching GIF4a and 4b
Baω. It can be seen that the axis misalignment tolerance is also doubled.

またωM、、は、GIF4m、4bのパラメータである
。コア半径+ rp屈折率差:Δを変えることによりさ
らに拡大できるので、軸ずれ許容量もさらに拡大するこ
ともできる。
Also, ωM, , are parameters of GIF4m and 4b. Since it can be further expanded by changing the core radius + rp refractive index difference: Δ, the axis misalignment tolerance can also be further expanded.

かくて、軸ずれ許容量が拡大されると、ガラスキャビラ
グ−5の加工精度や、組立時の精度が緩和され、容易に
低損失な接続が実現できろ。
In this way, if the axis misalignment tolerance is expanded, the processing accuracy of the glass cabi lug-5 and the accuracy during assembly will be relaxed, and a low-loss connection can be easily realized.

なお、本実施例では、光モジュール2a。Note that in this embodiment, the optical module 2a.

2bを組立てるに際し、長尺のG I F4 a。When assembling 2b, the long G I F4 a.

4bを光入出力信号端子として用いたが、これが組立て
に不都合ならば、G I F4a、4bの切断工程を先
に行い、一方別の長尺SMF3a、3bに同様のGIF
4a、4bを融着したものを準備して、接着剤の代りに
マツチングオイルを充て九したガラスキャピラリー5で
仮接続して組立てを行うことも可能である。
4b is used as an optical input/output signal terminal, but if this is inconvenient for assembly, perform the cutting process of GIF4a and 4b first, while cutting a similar GIF to another long SMF 3a and 3b.
It is also possible to assemble the parts 4a and 4b fused together by preparing them and temporarily connecting them with a glass capillary 5 filled with matting oil instead of adhesive.

く第2実施例〉 第2図は本発明の第二の実施例を説明する図であって1
〜7までは第1図と共通、8はGIF4aのコアを凸球
面加工した凸部、9はGIF4bのコアを凹球面加工し
た凹部である。これらの組立は第1実施例に準するが、
GIF4a、4bを切断した後、端面を選択エツチング
法により凸または凹球面加工する。
Second Embodiment> FIG. 2 is a diagram illustrating a second embodiment of the present invention.
7 to 7 are the same as in FIG. 1, 8 is a convex portion obtained by processing the core of GIF 4a into a convex spherical surface, and 9 is a concave portion obtained by processing the core of GIF 4b into a concave spherical surface. These assemblies are based on the first embodiment, but
After cutting the GIFs 4a and 4b, the end faces are processed into convex or concave spherical surfaces by selective etching.

このためのエツチング液としては、例えば凸球面加工に
は緩衝ぶつ酸液(ぶつ酸とふっ化アンモニウムの混酸)
、凹球面加工にはふり酸液を用いることにより、GIF
のコア部を選択的に球面加工できる。
As an etching solution for this purpose, for example, for machining a convex spherical surface, a buffered acid solution (a mixed acid of acid and ammonium fluoride) is used.
, by using fluoric acid solution for machining the concave spherical surface, GIF
The core can be selectively processed into a spherical surface.

本実施例によれば、前記凸凹部8,9を嵌合させること
によって自動的にコア中心が揃うので、より確実な光軸
合せが実現できる。
According to this embodiment, since the core centers are automatically aligned by fitting the convex and concave portions 8 and 9, more reliable optical axis alignment can be realized.

く第3実施例〉 第3図は本発明の第三の実施例を説明する図であって、
1〜7は実施例1と共通、10はGIF4a若しくは4
bの端面に貼着された誘電体膜である。この誘電体膜1
0は光波長フィルタ効果を有する。
Third Embodiment> FIG. 3 is a diagram illustrating a third embodiment of the present invention,
1 to 7 are common to Example 1, 10 is GIF4a or 4
This is a dielectric film attached to the end surface of b. This dielectric film 1
0 has an optical wavelength filter effect.

これらの組立も、基本的に、第1実施例に準じて進め、
GrF4m、4bを切断した後、片側(第3図では出射
側)のモジュールのG!F4bの端面に誘電体膜10を
蒸着もしくはスパッターにより形成する。この際GIF
4bの端面以外は余分な膜が付いたり、熱が加わらない
よう被いをかける等の注意を払って行う。その後、ガラ
スキャピラリー5に挿入して光学接着剤で固定する工程
は第1実施例と同様である。
These assemblies are also basically proceeded according to the first embodiment,
After cutting GrF4m and 4b, the G! of the module on one side (the output side in Figure 3). A dielectric film 10 is formed on the end face of F4b by vapor deposition or sputtering. At this time, GIF
Care must be taken to cover the surfaces other than the end surfaces of 4b to prevent excess film from being applied and heat from being applied. Thereafter, the steps of inserting it into the glass capillary 5 and fixing it with an optical adhesive are the same as in the first embodiment.

なお本実施例ではGIF4b端面に直接膜付けしたが、
別のガラス板に誘電体膜10を付けて、それを小さく切
ってGIF4bの端面に貼着しても良い。この場合GI
F4a。
In this example, the film was directly attached to the end surface of GIF4b, but
Alternatively, the dielectric film 10 may be attached to another glass plate, cut into small pieces, and attached to the end face of the GIF 4b. In this case G.I.
F4a.

4b間の寸法がガラス板の板厚弁だけ広がるのでロスが
増大する。
Since the dimension between 4b increases by the thickness of the glass plate, loss increases.

先の軸ずれトレランスと同じ論文からガウシアンビーム
の光軸(Z軸)方向のずれに対する結合効率の式を導く
と、 但し ωはスポットサイズ、λは信号光波長。
From the same paper as the axis misalignment tolerance mentioned above, we derive the formula for the coupling efficiency for the misalignment of the Gaussian beam in the optical axis (Z-axis) direction: where ω is the spot size and λ is the signal wavelength.

2は軸ずれ量 上式から、ωは拡大されるにつれZ軸トレランスも緩和
されることが分かる。例えば0213μmならZ、−1
00μmでのロス増は価か0.2dBであるのに対し、
通常のSMF3 a、 3 b ((,1= 5 μm
)では、約2 dBのロス増になる。
2 is the amount of axis deviation From the above equation, it can be seen that as ω is expanded, the Z-axis tolerance is also relaxed. For example, if it is 0213 μm, Z, -1
While the loss increase at 00 μm is only 0.2 dB,
Normal SMF3 a, 3 b ((,1=5 μm
), the loss increases by approximately 2 dB.

一方、このロス増を積極的に、光減衰器として利用する
ことも可能である。即ち、GIF4m、4bの間に、適
当な長さの石英棒をはさむことで簡単に光減衰器を構成
できろ。この減衰量で減衰した光は放射モードとなるた
め、反射戻粉光が少ないという利点も有している。
On the other hand, it is also possible to actively utilize this increase in loss as an optical attenuator. That is, an optical attenuator can be easily constructed by inserting a quartz rod of an appropriate length between GIFs 4m and 4b. Since the light attenuated by this amount of attenuation becomes a radiation mode, it also has the advantage of less reflected back powder light.

なお、この場合にも、スポットサイズを拡大した方が減
衰量を調整しやすいので有利である。
Note that in this case as well, it is advantageous to enlarge the spot size because it is easier to adjust the amount of attenuation.

〈発明の効果〉 す上実施例とともに具体的に説明したように、本発明に
よれば、作業性の良いキャピラリーを用いた接続構造を
採用することができるばかりでなく、接続点での光軸ず
れ許容量を大きくすることができるので、実装密度を向
上させることができ、しかも接続作業も容易になる。
<Effects of the Invention> As specifically explained in conjunction with the above embodiments, according to the present invention, not only can a connection structure using a capillary with good workability be adopted, but also the optical axis at the connection point can be Since the displacement tolerance can be increased, the packaging density can be improved, and the connection work can also be made easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は夫々本発明の第1〜第3の実施例を概
念的に示す説明図である。 図 面 中、 2m、2bは光部品モジュール、 3a、3bはシングルモード光ファイバ(SMF)、4
m、4bはグレーテッドインデックス型光ファイバ(G
 I F)、 5はガラスキャピラリー 8は凸部、 9は凹部、 10は誘電体膜である。 特  許  出  願  人 日本電信電話株式会社 代    理    人
1 to 3 are explanatory diagrams conceptually showing first to third embodiments of the present invention, respectively. In the drawing, 2m and 2b are optical component modules, 3a and 3b are single mode optical fibers (SMF), and 4
m, 4b are graded index optical fibers (G
IF), 5 is a glass capillary 8 with a convex portion, 9 is a concave portion, and 10 is a dielectric film. Patent applicant: Agent of Nippon Telegraph and Telephone Corporation

Claims (5)

【特許請求の範囲】[Claims] (1)出射側及び入射側の光部品に接続してあるシング
ルモード光ファイバと、 各シングルモード光ファイバの出射端及び入射端に夫々
接続してある短尺のグレーテッドインデックス型光ファ
イバと、 両端部から夫々挿入されたグレーテッドインデックス型
光ファイバを、両者の端面同志を相対向させて保持する
キャピラリーとを有することを特徴とする光学接続構造
(1) A single-mode optical fiber connected to the optical components on the output side and the input side, a short graded-index optical fiber connected to the output end and input end of each single-mode optical fiber, and both ends. 1. An optical connection structure comprising: a capillary that holds graded index optical fibers inserted from the respective portions with their end surfaces facing each other.
(2)一方のグレーテッドインデックス型光ファイバの
相対向する端面に凸部を形成する一方、他方のグレーテ
ッドインデックス型光ファイバの相対向する端面に前記
凸部が嵌入される凹部を設け、これら凹凸部に調心機能
を持たせたことを特徴とする特許請求の範囲第1項に記
載の光学接続構造。
(2) A convex portion is formed on the opposing end face of one graded index type optical fiber, and a recess into which the convex portion is fitted is provided on the opposite end face of the other graded index type optical fiber; The optical connection structure according to claim 1, wherein the uneven portion has an alignment function.
(3)一方のグレーテッドインデックス型光ファイバの
他と相対向する面に誘電体膜を形成したことを特徴とす
る特許請求の範囲第1項に記載の光学接続構造。
(3) The optical connection structure according to claim 1, characterized in that a dielectric film is formed on a surface of one graded index type optical fiber that faces the other.
(4)相対向するグレーテッドインデックス型光ファイ
バ間にガラス片を介在させたことを特徴とする特許請求
の範囲第1項及び第3項に記載の光学接続構造。
(4) The optical connection structure according to claims 1 and 3, characterized in that a piece of glass is interposed between the opposing graded index optical fibers.
(5)グレーテッドインデックス型光ファイバの長さは
、このグレーテッドインデックス型光ファイバの構造と
信号波長とで定まるピッチ長の1/4の奇数倍としたこ
とを特徴とする特許請求の範囲第1〜4項に記載の光学
接続構造。
(5) The length of the graded index optical fiber is an odd multiple of 1/4 of the pitch length determined by the structure of the graded index optical fiber and the signal wavelength. Optical connection structure according to items 1 to 4.
JP2129193A 1990-05-21 1990-05-21 Optical connecting structure Pending JPH0425804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2129193A JPH0425804A (en) 1990-05-21 1990-05-21 Optical connecting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129193A JPH0425804A (en) 1990-05-21 1990-05-21 Optical connecting structure

Publications (1)

Publication Number Publication Date
JPH0425804A true JPH0425804A (en) 1992-01-29

Family

ID=15003447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129193A Pending JPH0425804A (en) 1990-05-21 1990-05-21 Optical connecting structure

Country Status (1)

Country Link
JP (1) JPH0425804A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522643A (en) * 1993-04-28 1996-06-04 Fuji Kiko Co., Ltd. Reclining device with angular position memory mechanism for seat back
JP2005017702A (en) * 2003-06-26 2005-01-20 Kyocera Corp Optical connector and connection structure thereof
JP2011008014A (en) * 2009-06-25 2011-01-13 Fujifilm Corp Optical fiber connection structure and endoscope system
WO2019207902A1 (en) * 2018-04-26 2019-10-31 株式会社フジクラ Glass block, optical fiber termination structure, laser device, and laser system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522643A (en) * 1993-04-28 1996-06-04 Fuji Kiko Co., Ltd. Reclining device with angular position memory mechanism for seat back
JP2005017702A (en) * 2003-06-26 2005-01-20 Kyocera Corp Optical connector and connection structure thereof
JP2011008014A (en) * 2009-06-25 2011-01-13 Fujifilm Corp Optical fiber connection structure and endoscope system
WO2019207902A1 (en) * 2018-04-26 2019-10-31 株式会社フジクラ Glass block, optical fiber termination structure, laser device, and laser system
JP2019192834A (en) * 2018-04-26 2019-10-31 株式会社フジクラ Glass block, optical fiber termination structure, laser device, and laser system

Similar Documents

Publication Publication Date Title
EP0192164B1 (en) Optical coupling device
KR0132579B1 (en) Optical fiber functional element and manufacturing method thereof
KR20040015330A (en) High power expanded beam connector and methods for using and making the high power expanded beam connector
US9575257B2 (en) Optical device, optical processing device, method for fabricating optical device
US20030063853A1 (en) Wavelength division multiplexed coupler
US20230350135A1 (en) Optical fiber termination structure, optical connection component and hollow-core optical fiber
JP3285166B2 (en) Optical fiber functional component and method of manufacturing the same
JPH09189821A (en) Optical device using optical fiber and its manufacture
JPH06509427A (en) optical coupler housing
JPH0425804A (en) Optical connecting structure
CA2059861C (en) Terminal structure for an optical device
JP3229142B2 (en) Optical device
JPH0735958A (en) Parallel transmission module
JP2002243971A (en) Method for splicing photonic crystal fiber, its splicing structure, and structural member of the splicing structure
CA1185469A (en) Fixed optical attenuator
JPH10300957A (en) Optical waveguide body and optical device using the same
JPH03269505A (en) Optical fiber connector
US6826319B2 (en) Optical isolator
JPH0498206A (en) Optical fiber terminal optical connector
JPH04110807A (en) Waveguide type optical device
JP3266376B2 (en) Optical package
JPH05288963A (en) Waveguide device
JP3142028B2 (en) Optical attenuator
JPH05188234A (en) Optical fiber connection method
JPS5981618A (en) Optical coupler