JPH04253385A - Thin film laminated device - Google Patents
Thin film laminated deviceInfo
- Publication number
- JPH04253385A JPH04253385A JP3028058A JP2805891A JPH04253385A JP H04253385 A JPH04253385 A JP H04253385A JP 3028058 A JP3028058 A JP 3028058A JP 2805891 A JP2805891 A JP 2805891A JP H04253385 A JPH04253385 A JP H04253385A
- Authority
- JP
- Japan
- Prior art keywords
- film
- thin film
- hard carbon
- plastic
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 45
- 239000010408 film Substances 0.000 claims abstract description 80
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 239000004033 plastic Substances 0.000 claims abstract description 27
- 229920003023 plastic Polymers 0.000 claims abstract description 27
- 239000000126 substance Substances 0.000 claims abstract description 16
- 229910021385 hard carbon Inorganic materials 0.000 claims description 40
- 238000002834 transmittance Methods 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 12
- 238000004544 sputter deposition Methods 0.000 abstract description 12
- -1 polyethylene terephthalate Polymers 0.000 abstract description 11
- 239000002985 plastic film Substances 0.000 abstract description 7
- 229920006255 plastic film Polymers 0.000 abstract description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 4
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 abstract description 4
- 239000004695 Polyether sulfone Substances 0.000 abstract description 3
- 239000004642 Polyimide Substances 0.000 abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052593 corundum Inorganic materials 0.000 abstract description 3
- 229920006393 polyether sulfone Polymers 0.000 abstract description 3
- 229920001721 polyimide Polymers 0.000 abstract description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 abstract description 2
- 229910003465 moissanite Inorganic materials 0.000 abstract description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 abstract description 2
- 229920000515 polycarbonate Polymers 0.000 abstract description 2
- 239000004417 polycarbonate Substances 0.000 abstract description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 abstract description 2
- 239000005020 polyethylene terephthalate Substances 0.000 abstract description 2
- 239000004926 polymethyl methacrylate Substances 0.000 abstract description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 abstract description 2
- 229910010271 silicon carbide Inorganic materials 0.000 abstract description 2
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 abstract description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract 2
- 229910017083 AlN Inorganic materials 0.000 abstract 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N germanium monoxide Inorganic materials [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 abstract 1
- 229920000058 polyacrylate Polymers 0.000 abstract 1
- 229910052950 sphalerite Inorganic materials 0.000 abstract 1
- 229910052984 zinc sulfide Inorganic materials 0.000 abstract 1
- 238000000034 method Methods 0.000 description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 239000004973 liquid crystal related substance Substances 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000004020 conductor Substances 0.000 description 10
- 229910010272 inorganic material Inorganic materials 0.000 description 10
- 229910052681 coesite Inorganic materials 0.000 description 9
- 229910052906 cristobalite Inorganic materials 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- 235000012239 silicon dioxide Nutrition 0.000 description 9
- 229910052682 stishovite Inorganic materials 0.000 description 9
- 229910052905 tridymite Inorganic materials 0.000 description 9
- 238000007740 vapor deposition Methods 0.000 description 8
- 239000011147 inorganic material Substances 0.000 description 7
- 230000000737 periodic effect Effects 0.000 description 7
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 7
- 229910021480 group 4 element Inorganic materials 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 229910052798 chalcogen Inorganic materials 0.000 description 5
- 150000001787 chalcogens Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- 150000002367 halogens Chemical class 0.000 description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 229910021478 group 5 element Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- LZDSILRDTDCIQT-UHFFFAOYSA-N dinitrogen trioxide Chemical compound [O-][N+](=O)N=O LZDSILRDTDCIQT-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000002329 infrared spectrum Methods 0.000 description 3
- 150000002484 inorganic compounds Chemical class 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910017009 AsCl3 Inorganic materials 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- OEYOHULQRFXULB-UHFFFAOYSA-N arsenic trichloride Chemical compound Cl[As](Cl)Cl OEYOHULQRFXULB-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- ZWWCURLKEXEFQT-UHFFFAOYSA-N dinitrogen pentaoxide Chemical compound [O-][N+](=O)O[N+]([O-])=O ZWWCURLKEXEFQT-UHFFFAOYSA-N 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 230000007261 regionalization Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- RFONJRMUUALMBA-UHFFFAOYSA-N 2-methanidylpropane Chemical compound CC(C)[CH2-] RFONJRMUUALMBA-UHFFFAOYSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- 229910017011 AsBr3 Inorganic materials 0.000 description 1
- 229910017050 AsF3 Inorganic materials 0.000 description 1
- 229910017049 AsF5 Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910015148 B2H6 Inorganic materials 0.000 description 1
- 229910015845 BBr3 Inorganic materials 0.000 description 1
- 229910015844 BCl3 Inorganic materials 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910005267 GaCl3 Inorganic materials 0.000 description 1
- 229910006113 GeCl4 Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- QZRGKCOWNLSUDK-UHFFFAOYSA-N Iodochlorine Chemical compound ICl QZRGKCOWNLSUDK-UHFFFAOYSA-N 0.000 description 1
- 229910019438 Mg(OC2H5)2 Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910020667 PBr3 Inorganic materials 0.000 description 1
- 229910019213 POCl3 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910003910 SiCl4 Inorganic materials 0.000 description 1
- 229910004014 SiF4 Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 229910020776 SixNy Inorganic materials 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- XMIJDTGORVPYLW-UHFFFAOYSA-N [SiH2] Chemical compound [SiH2] XMIJDTGORVPYLW-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910000074 antimony hydride Inorganic materials 0.000 description 1
- FAPDDOBMIUGHIN-UHFFFAOYSA-K antimony trichloride Chemical compound Cl[Sb](Cl)Cl FAPDDOBMIUGHIN-UHFFFAOYSA-K 0.000 description 1
- GUNJVIDCYZYFGV-UHFFFAOYSA-K antimony trifluoride Chemical compound F[Sb](F)F GUNJVIDCYZYFGV-UHFFFAOYSA-K 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 229910000070 arsenic hydride Inorganic materials 0.000 description 1
- YBGKQGSCGDNZIB-UHFFFAOYSA-N arsenic pentafluoride Chemical compound F[As](F)(F)(F)F YBGKQGSCGDNZIB-UHFFFAOYSA-N 0.000 description 1
- JMBNQWNFNACVCB-UHFFFAOYSA-N arsenic tribromide Chemical compound Br[As](Br)Br JMBNQWNFNACVCB-UHFFFAOYSA-N 0.000 description 1
- JCMGUODNZMETBM-UHFFFAOYSA-N arsenic trifluoride Chemical compound F[As](F)F JCMGUODNZMETBM-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- MZJUGRUTVANEDW-UHFFFAOYSA-N bromine fluoride Chemical compound BrF MZJUGRUTVANEDW-UHFFFAOYSA-N 0.000 description 1
- CODNYICXDISAEA-UHFFFAOYSA-N bromine monochloride Chemical compound BrCl CODNYICXDISAEA-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- OMRRUNXAWXNVFW-UHFFFAOYSA-N fluoridochlorine Chemical compound ClF OMRRUNXAWXNVFW-UHFFFAOYSA-N 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229910000043 hydrogen iodide Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- CBEQRNSPHCCXSH-UHFFFAOYSA-N iodine monobromide Chemical compound IBr CBEQRNSPHCCXSH-UHFFFAOYSA-N 0.000 description 1
- PDJAZCSYYQODQF-UHFFFAOYSA-N iodine monofluoride Chemical compound IF PDJAZCSYYQODQF-UHFFFAOYSA-N 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000005426 magnetic field effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- WXEHBUMAEPOYKP-UHFFFAOYSA-N methylsulfanylethane Chemical compound CCSC WXEHBUMAEPOYKP-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- IPNPIHIZVLFAFP-UHFFFAOYSA-N phosphorus tribromide Chemical compound BrP(Br)Br IPNPIHIZVLFAFP-UHFFFAOYSA-N 0.000 description 1
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- SPVXKVOXSXTJOY-UHFFFAOYSA-N selane Chemical compound [SeH2] SPVXKVOXSXTJOY-UHFFFAOYSA-N 0.000 description 1
- 229910000058 selane Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- OUULRIDHGPHMNQ-UHFFFAOYSA-N stibane Chemical compound [SbH3] OUULRIDHGPHMNQ-UHFFFAOYSA-N 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000003011 styrenyl group Chemical class [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- VTLHPSMQDDEFRU-UHFFFAOYSA-N tellane Chemical compound [TeH2] VTLHPSMQDDEFRU-UHFFFAOYSA-N 0.000 description 1
- 229910000059 tellane Inorganic materials 0.000 description 1
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 1
- RWWNQEOPUOCKGR-UHFFFAOYSA-N tetraethyltin Chemical compound CC[Sn](CC)(CC)CC RWWNQEOPUOCKGR-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- AJSTXXYNEIHPMD-UHFFFAOYSA-N triethyl borate Chemical compound CCOB(OCC)OCC AJSTXXYNEIHPMD-UHFFFAOYSA-N 0.000 description 1
- AQRLNPVMDITEJU-UHFFFAOYSA-N triethylsilane Substances CC[SiH](CC)CC AQRLNPVMDITEJU-UHFFFAOYSA-N 0.000 description 1
- QXTIBZLKQPJVII-UHFFFAOYSA-N triethylsilicon Chemical compound CC[Si](CC)CC QXTIBZLKQPJVII-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
【0001】0001
【技術分野】本発明は、薄膜積層デバイスに関し、詳し
くはOA機器用やTV用等のフラットパネルディスプレ
イなどに好適に使用しうるスイッチング素子に関する。TECHNICAL FIELD The present invention relates to a thin film laminated device, and more particularly to a switching element that can be suitably used in flat panel displays for office automation equipment, TVs, and the like.
【0002】0002
【従来技術】OA機器端末機や液晶TVは大面積液晶パ
ネルの使用の要望が強く、そのため、アクティブマトリ
ックス方式では各画素ごとにスイッチを設け、電圧を保
持するように工夫されている。また、近年液晶パネルの
軽量化、低コスト化が盛んに行なわれており、スイッチ
ング素子の基板にプラスチックを用いることが検討され
ている。しかし、プラスチック上に、薄膜積層スイッチ
ング素子を形成するとプラスチック基板の変形やカール
を生じ、膜ハガレ等の問題があった。また、薄膜積層ス
イッチング素子を作製する際、酸、アルカリ、水等の溶
液中にプラスチックを浸漬するフォトリソグラフィーの
工程があり、プラスチック内に酸、アルカリ、水等が残
存し、素子劣化の原因となった。薄膜積層デバイスを微
細パターン化する場合、基板の伸縮によってパターンず
れを生じ、大面積を一括露光することが困難であった。
また、基板伸縮の異方性は、パターン形成をさらに困難
なものとした。プラスチックフィルム基板を用いた液晶
表示装置の作製において、配向処理の際、プラスチック
特有の配向方法を行なう必要があった。しかしSiO2
層をプラスチックフィルムの片面に形成することによっ
て、ガラス基板と同様の方法で配向処理ができるように
したことが特公平1−47769号公報に開示されてい
る。しかし、SiO2をプラスチックフィルムにコート
し、その上に薄膜積層デバイスを作製した場合、作製時
の熱を伴う工程でSiO2のクラックを生じることがし
ばしば認められ、薄膜積層デバイスの信頼性を不充分な
ものとした。2. Description of the Related Art There is a strong demand for the use of large-area liquid crystal panels in office automation equipment terminals and liquid crystal TVs, and for this reason, in the active matrix system, a switch is provided for each pixel to maintain the voltage. Further, in recent years, there have been active efforts to reduce the weight and cost of liquid crystal panels, and the use of plastic for the substrates of switching elements is being considered. However, when a thin film laminated switching element is formed on plastic, there are problems such as deformation and curling of the plastic substrate, and film peeling. Additionally, when manufacturing thin film laminated switching elements, there is a photolithography process in which plastic is immersed in a solution of acid, alkali, water, etc., and acid, alkali, water, etc. remain in the plastic, which can cause element deterioration. became. When finely patterning a thin film stacked device, expansion and contraction of the substrate causes pattern shift, making it difficult to expose a large area at once. Furthermore, the anisotropy of substrate expansion and contraction made pattern formation even more difficult. In manufacturing a liquid crystal display device using a plastic film substrate, it is necessary to use an alignment method unique to plastics during alignment treatment. However, SiO2
Japanese Patent Publication No. 1-47769 discloses that by forming a layer on one side of a plastic film, alignment treatment can be performed in the same manner as for glass substrates. However, when SiO2 is coated on a plastic film and a thin film laminated device is fabricated on it, cracks are often observed in the SiO2 during the manufacturing process that involves heat, resulting in insufficient reliability of the thin film laminated device. I took it as a thing.
【0003】0003
【目 的】本発明は前記従来の課題を解決し、軽
量、低コスト、膜ハガレ、カール等がなく、信頼性の良
好な薄膜積層デバイスを提供することを目的としている
。[Objective] The present invention aims to solve the above-mentioned conventional problems and provide a thin film laminated device that is lightweight, low cost, free from peeling, curling, etc., and has good reliability.
【0004】0004
【構 成】前記の目的を達成させるため、本発明
者らは、軽量、安価なプラスチック上にスイッチング素
子を作製することを検討し、研究を重ねた結果、素子作
製プロセスにおけるプラスチツク基板の変形がプラスチ
ックフィルムの場合ではカールが最大の問題であること
が明らかとなった。また、プラスチックの変形やプラス
チックフィルムのカールの原因は、積層する薄膜の内部
応力、プラスチックの熱伸縮、酸、アルカリ、水による
膨潤などであることを知見し、無機物質からなる非晶質
薄膜を両面に形成したプラスチック基板を用いることが
効果的であることが明らかとなり、本発明を完成するに
至った。すなわち、本発明は、基板と該基板上に形成さ
れた薄膜積層デバイスにおいて、基板がその両面に無機
物質からなる非晶質薄膜を形成したプラスチックである
ことを特徴としている。[Structure] In order to achieve the above object, the present inventors have considered fabricating switching elements on lightweight and inexpensive plastic, and as a result of repeated research, they have found that the deformation of the plastic substrate during the element fabrication process is Curl has proven to be the biggest problem with plastic films. In addition, we discovered that the causes of plastic deformation and plastic film curling are internal stress in laminated thin films, thermal expansion and contraction of plastic, and swelling due to acids, alkalis, and water. It has become clear that it is effective to use a plastic substrate formed on both sides, and the present invention has been completed. That is, the present invention is characterized in that, in a substrate and a thin film laminated device formed on the substrate, the substrate is made of plastic with amorphous thin films made of an inorganic substance formed on both surfaces thereof.
【0005】無機物質からなる非晶質薄膜は波長400
〜850nmにおいて透過率が75%以上であることが
好ましい。
無機物質としては、SiO2,Si3N4,Si:N:
O,Si:O:H,Si:N:H,Si:O:N:H,
AlNよりなる群から選ばれたものであることが好まし
い。また、薄膜積層デバイスとしては、硬質炭素膜を絶
縁層とするMIM型素子が本発明の特徴を極めて有効に
発揮することができる。プラスチック基板へのSiO2
等の無機物質薄膜の形成はその上に作製する薄膜積層デ
バイスのはがれなどの問題解決のため重要である。プラ
スチック基板(フィルム)の片面のみに前記薄膜を形成
したのでは無機物質薄膜の内部応力に応じたカールが発
生し、ハンドリングなどの問題を生じる。また、前記無
機物質薄膜が結晶性である場合には、プラスチック基板
に内在する水分等が結晶粒界を通って薄膜積層デバイス
下に達し、素子の劣化をもたらすことが判明した。さら
に、薄膜積層デバイス作製プロセスにおける熱工程にお
いて結晶粒界を核として無機物質薄膜にクラックが生じ
た。さらに、薄膜積層デバイスを微細加工する際に、無
機物質の熱膨張異方性に基づく基板伸縮の異方性を生じ
、パターンの形成を困難なものとすることも判明した。
これらの問題を回避するため、プラスチック基板(フィ
ルム)の両面に無機物質からなる非晶質薄膜を形成する
ことが大切である。本発明の薄膜積層デバイスを液晶表
示駆動素子に用いる場合、表示コントラストを確保する
ため、無機物質の透過率が波長400〜850nmにお
いて75%以上有することが好ましい。本発明の薄膜積
層デバイスを作製するためには、まずポリエチレンテレ
フタレート、ポリアリレート、ポリエーテルサルフォン
、ポリカーボネート、ポリエチレン、ポリメチルメタク
リレート、ポリイミドなどのプラスチックあるいはプラ
スチックフィルム両面にSiOx(1≦×≦2),Si
:O:N,Si:O:H,Si:N:H,Si:O:N
:H,SixNy(y=1−x),TiO2,ZnS,
ZnO,Al2O3,AlN,MgO,GeO,ZrO
2,Nb2O5,SiC,Ta2O5などの無機物質を
スパッタ法、蒸着法、プラズマCVD法等により300
〜15000Å、好ましくは1000〜10000Åの
厚さで形成する。これら無機物質を非晶質にするために
は基板温度を200℃以下、好ましくは150℃以下に
し、スパッタ法あるいはプラズマCVD法で作製するこ
とが好ましい。形成される薄膜は、必ずしも両面の無機
物質が同一である必要はなく、また膜厚も同一である必
要はない。特に好ましい無機物質としては、パッシベー
ション効果の大きいSiO2,Si3N4,Si:N:
O,Si:O:H,Si:N:H,Si:O:N:H,
AlNなどがある。プラスチックの厚さは、50μm〜
2mmのものを使用するが、500μm以下、特に30
0μm以下が好ましい。さらに、無機物質で両面コート
されたプラスチックの上に、薄膜積層デバイスを形成す
る。薄膜積層デバイスとしては、金属−絶縁体−金属層
構成のMIM型素子、特開昭61−275811号公報
でいうところのMSI素子(Metal−Semi−I
nsulator)、半導体−絶縁体−半導体層構成の
SIS素子、特開昭64−7577号公報に記載の金属
−絶縁体−金属−絶縁体−金属のMIMIM素子などが
ある。
なかでも、絶縁体に硬質炭素膜を用いたMIM型素子が
有利である。硬質炭素膜を絶縁層に用いた場合プラスチ
ック基板(フィルム)は大きくカールするので基板両面
に無機物質膜を形成し基板の剛性を大きくすることによ
り対応する。[0005] Amorphous thin films made of inorganic substances have a wavelength of 400 nm.
It is preferable that the transmittance is 75% or more in the range of 850 nm to 850 nm. Inorganic substances include SiO2, Si3N4, Si:N:
O, Si:O:H, Si:N:H, Si:O:N:H,
Preferably, it is selected from the group consisting of AlN. Further, as a thin film laminated device, an MIM type element having a hard carbon film as an insulating layer can exhibit the features of the present invention extremely effectively. SiO2 on plastic substrate
The formation of inorganic thin films such as these is important for solving problems such as peeling of thin film laminated devices fabricated thereon. If the thin film is formed only on one side of the plastic substrate (film), curling will occur depending on the internal stress of the inorganic thin film, resulting in problems such as handling. Furthermore, it has been found that when the inorganic material thin film is crystalline, moisture etc. inherent in the plastic substrate reach the bottom of the thin film stacked device through the crystal grain boundaries, causing deterioration of the device. Furthermore, cracks occurred in the inorganic material thin film with crystal grain boundaries as nuclei during the thermal step in the thin film laminated device fabrication process. Furthermore, it has been found that when fine-fabricating a thin film stacked device, anisotropy of expansion and contraction of the substrate occurs due to the anisotropy of thermal expansion of the inorganic material, making pattern formation difficult. In order to avoid these problems, it is important to form amorphous thin films made of inorganic substances on both sides of the plastic substrate (film). When the thin film laminated device of the present invention is used in a liquid crystal display driving element, in order to ensure display contrast, it is preferable that the inorganic substance has a transmittance of 75% or more at a wavelength of 400 to 850 nm. In order to produce the thin film laminated device of the present invention, first, SiOx (1≦x≦2) is applied to both sides of a plastic or plastic film such as polyethylene terephthalate, polyarylate, polyethersulfone, polycarbonate, polyethylene, polymethyl methacrylate, or polyimide. ,Si
:O:N, Si:O:H, Si:N:H, Si:O:N
:H, SixNy (y=1-x), TiO2, ZnS,
ZnO, Al2O3, AlN, MgO, GeO, ZrO
2. Inorganic materials such as Nb2O5, SiC, and Ta2O5 are deposited by sputtering, vapor deposition, plasma CVD, etc.
It is formed to a thickness of ~15,000 Å, preferably 1,000 to 10,000 Å. In order to make these inorganic substances amorphous, it is preferable to lower the substrate temperature to 200° C. or lower, preferably 150° C. or lower, and to manufacture by sputtering or plasma CVD. The formed thin film does not necessarily need to have the same inorganic substance on both sides, nor does it need to have the same film thickness. Particularly preferable inorganic substances include SiO2, Si3N4, and Si:N, which have a large passivation effect.
O, Si:O:H, Si:N:H, Si:O:N:H,
Examples include AlN. The thickness of the plastic is 50 μm ~
2 mm is used, but it is less than 500 μm, especially 30 μm.
It is preferably 0 μm or less. Furthermore, a thin film laminated device is formed on the plastic coated on both sides with an inorganic substance. As a thin film stacked device, an MIM type element with a metal-insulator-metal layer structure, an MSI element (Metal-Semi-I
SIS devices having a semiconductor-insulator-semiconductor layer structure, and MIMIM devices having a metal-insulator-metal-insulator-metal structure described in Japanese Patent Application Laid-open No. 7577/1983. Among these, an MIM type element using a hard carbon film as an insulator is advantageous. When a hard carbon film is used as an insulating layer, the plastic substrate (film) will curl significantly, so this can be countered by forming an inorganic film on both sides of the substrate to increase the rigidity of the substrate.
【0006】次に前記素子の製法について詳細に説明す
る。まず、前記の無機物質を両面にコート(2a,2b
)したプラスチック基板1上に画素電極用透明電極材料
を蒸着、スパッタリング等の方法で堆積し、所定のパタ
ーンにパターニングし、画素電極4とする。次に、蒸着
、スパッタリング等の方法で下部電極用導体薄膜を形成
し、ウエット又はドライエッチングにより所定のパター
ンにパターニングして下部電極となる第1導体7とし、
その上にプラズマCVD法、イオンビーム法等により硬
質炭素膜2を被覆後、ドライエッチング、ウエットエッ
チング又はレジストを用いるリフトオフ法により所定の
パターンにパターニングして絶縁膜とし、次にその上に
蒸着、スパッタリング等の方法によりバスライン用導体
薄膜を被覆し、所定のパターンにパターニングしてバス
ラインとなる第2導体6を形成し、最後に下部電極の不
必要部分を除去し、透明電極パターンを露出させ、画素
電極4とする。この場合、MIM素子の構成はこれに限
られるものではなく、MIM素子の作製後、最上層に透
明電極を設けたもの、透明電極が上部又は下部電極を兼
ねた構成のもの、下部電極の側面にMIM素子を形成し
たもの等、種々の変形が可能である。ここで下部電極、
上部電極及び透明電極の厚さは通常、夫々数百〜数千Å
、数百〜数千Å、数百〜数千Åの範囲である。硬質炭素
膜の厚さは、100〜8000Å、望ましくは200〜
6000Å、さらに望ましくは300〜4000Åの範
囲である。又プラスチック基板の場合、いままでその耐
熱性から能動素子を用いたアクティブマトリックス装置
の作製が非常に困難であった。しかし硬質炭素膜は室温
程度の基板温度で良質な膜の作製が可能であり、プラス
チック基板においても作製が可能であり、非常に有効な
画質向上手段である。[0006] Next, a method for manufacturing the above-mentioned element will be explained in detail. First, coat both sides with the above-mentioned inorganic substance (2a, 2b
) A transparent electrode material for a pixel electrode is deposited on the plastic substrate 1 by a method such as vapor deposition or sputtering, and patterned into a predetermined pattern to form a pixel electrode 4. Next, a conductor thin film for the lower electrode is formed by a method such as vapor deposition or sputtering, and patterned into a predetermined pattern by wet or dry etching to form the first conductor 7 that will become the lower electrode,
A hard carbon film 2 is coated thereon by a plasma CVD method, an ion beam method, etc., and then patterned into a predetermined pattern by dry etching, wet etching, or a lift-off method using a resist to form an insulating film. A conductive thin film for the bus line is coated by a method such as sputtering, and patterned into a predetermined pattern to form the second conductor 6 that will become the bus line.Finally, unnecessary portions of the lower electrode are removed to expose the transparent electrode pattern. This is used as the pixel electrode 4. In this case, the configuration of the MIM element is not limited to this, but after the MIM element is fabricated, a transparent electrode is provided on the top layer, a transparent electrode also serves as an upper or lower electrode, a side surface of the lower electrode, etc. Various modifications are possible, such as one in which an MIM element is formed on the top. Here the bottom electrode,
The thickness of the upper electrode and transparent electrode is usually several hundred to several thousand Å each.
, in the range of several hundred to several thousand Å, and in the range of several hundred to several thousand Å. The thickness of the hard carbon film is 100 to 8000 Å, preferably 200 to 8000 Å.
The thickness is preferably 6000 Å, more preferably 300 to 4000 Å. Furthermore, in the case of plastic substrates, it has been extremely difficult to fabricate active matrix devices using active elements due to their heat resistance. However, a hard carbon film can be produced at a substrate temperature of about room temperature, and can also be produced on a plastic substrate, making it a very effective means for improving image quality.
【0007】次に本発明で使用されるMIM素子の材料
について更に詳しく説明する。下部電極となる第1導体
7の材料としては、Al,Ta,Cr,W,Mo,Pt
,Ni,Ti,Cu,Au,ITO,ZnO:Al,I
n2O3,SnO2等種々の導電体が使用される。次に
バスラインとなる第2導体6の材料としては、Al,C
r,Ni,Mo,Pt,Ag,Ti,Cu,Au,W,
Ta,ITO,ZnO:Al,In2O3,SnO2等
種々の導電体が使用されるが、I−V特性の安定性及び
信頼性が特に優れている点からNi,Pt,Agが好ま
しい。絶縁膜として硬質炭素膜2を用いたMIM素子は
電極の種類を変えても対称性が変化せず、またlnI∝
√vの関係からプールフレンケル型の伝導をしているこ
とが判る。またこの事からこの種のMIM素子の場合、
上部電極と下部電極との組合せをどのようにしてもよい
ことが判る。しかし硬質炭素膜と電極との密着力や界面
状態により素子特性(I−V特性)の劣化及び変化が生
じる。これらを考慮すると、Ni,Pt,Agが良いこ
とがわかった。本発明のMIM素子の電流−電圧特性は
図4のように示され、近似的には以下に示すような伝導
式で表わされる。Next, the material of the MIM element used in the present invention will be explained in more detail. The material of the first conductor 7 serving as the lower electrode includes Al, Ta, Cr, W, Mo, and Pt.
, Ni, Ti, Cu, Au, ITO, ZnO: Al, I
Various conductors such as n2O3 and SnO2 are used. Next, the material of the second conductor 6 which becomes the bus line is Al, C.
r, Ni, Mo, Pt, Ag, Ti, Cu, Au, W,
Various conductors can be used, such as Ta, ITO, ZnO:Al, In2O3, SnO2, etc., but Ni, Pt, and Ag are preferred because of their particularly excellent stability and reliability of IV characteristics. In the MIM device using the hard carbon film 2 as an insulating film, the symmetry does not change even if the type of electrode is changed, and lnI∝
From the relationship √v, it can be seen that Poole-Frenkel type conduction is occurring. Also, from this fact, in the case of this type of MIM element,
It can be seen that the upper electrode and lower electrode may be combined in any way. However, the device characteristics (IV characteristics) deteriorate and change depending on the adhesion between the hard carbon film and the electrode and the state of the interface. Considering these, it was found that Ni, Pt, and Ag are good. The current-voltage characteristics of the MIM element of the present invention are shown in FIG. 4, and are approximately expressed by the conduction equation shown below.
【0008】[0008]
【数1】[Math 1]
【0009】I:電流 V:印加電圧 κ:導電係数
β:プールフレンケル係数
n:キャリヤ密度 μ:キャリヤモビリティ q:
電子の電荷量
Φ:トラップ深さ ρ:比抵抗 d:硬質炭素の膜
厚(Å)k:ボルツマン定数 T:雰囲気温度 ε
1:硬質炭素の誘電率
ε2:真空誘電率I: Current V: Applied voltage κ: Conductivity coefficient
β: Poole-Frenkel coefficient n: Carrier density μ: Carrier mobility q:
Electron charge Φ: Trap depth ρ: Specific resistance d: Hard carbon film thickness (Å) k: Boltzmann constant T: Ambient temperature ε
1: Dielectric constant of hard carbon ε2: Vacuum dielectric constant
【0010】次に図3により液晶表示装置の作製法を述
べる。まず、絶縁基板1´上に共通電極4´用の透明導
体、例えばITO,ZnO:Al,ZnO:Si,Sn
O2,In2O3等をスパッタリング、蒸着等で数百Å
から数μm堆積させ、ストライプ状にパターニングして
共通電極4´とする。この共通電極4´を設けた基板1
´と先にMIM素子をマトリックス状に設けた基板1の
各々の表面にポリイミドのような配向材8を付け、ラビ
ング処理を行ない、シール材を付け、ギャップ材9を入
れてギャップを一定にし、液晶3を封入して液晶表示装
置とする。このようにして液晶表示装置が得られる。Next, a method for manufacturing a liquid crystal display device will be described with reference to FIG. First, a transparent conductor for the common electrode 4', such as ITO, ZnO:Al, ZnO:Si, Sn, is placed on the insulating substrate 1'.
O2, In2O3, etc. are sputtered, vapor-deposited, etc. to a thickness of several hundred Å.
The common electrode 4' is deposited to a thickness of several μm and patterned into stripes. Substrate 1 provided with this common electrode 4'
', an alignment material 8 such as polyimide is applied to the surface of each substrate 1 on which MIM elements are provided in a matrix, a rubbing treatment is performed, a sealing material is applied, a gap material 9 is inserted to make the gap constant, The liquid crystal 3 is sealed to form a liquid crystal display device. In this way, a liquid crystal display device is obtained.
【0011】本発明デバイスのMIM素子に使用する硬
質炭素膜について詳しく説明する。硬質炭素膜を形成す
るためには有機化合物ガス、特に炭化水素ガスが用いら
れる。これら原料における相状態は常温常圧において必
ずしも気相である必要はなく、加熱或は減圧等により溶
融、蒸発、昇華等を経て気化し得るものであれば、液相
でも固相でも使用可能である。原料ガスとしての炭化水
素ガスについては、例えばCH4,C2H6,C3H8
,C4H10等のパラフィン系炭化水素、C2H4等の
オレフィン系炭化水素、ジオレフィン系炭化水素、さら
には芳香族炭化水素などすベての炭化水素を少なくとも
含むガスが使用可能である。さらに、炭化水素以外でも
、例えば、アルコール類、ケトン類、エーテル類、エス
テル類、CO,CO2等、少なくとも炭素元素を含む化
合物であれば使用可能である。本発明における原料ガス
からの硬質炭素膜の形成方法としては、成膜活性種が、
直流、低周波、高周波、或いはマイクロ波等を用いたプ
ラズマ法により生成されるプラズマ状態を経て形成され
る方法が好ましいが、より大面積化、均一性向上、低温
成膜の目的で、低圧下で堆積を行なうため、磁界効果を
利用する方法がさらに好ましい。また高温における熱分
解によっても活性種を形成できる。その他にも、イオン
化蒸着法、或いはイオンビーム蒸着法等により生成され
るイオン状態を経て形成されてもよいし、真空蒸着法、
或いはスパッタリング法等により生成される中性粒子か
ら形成されてもよいし、さらには、これらの組み合せに
より形成されてもよい。The hard carbon film used in the MIM element of the device of the present invention will be explained in detail. An organic compound gas, especially a hydrocarbon gas, is used to form a hard carbon film. The phase state of these raw materials does not necessarily have to be a gas phase at normal temperature and pressure; they can be used in either a liquid or solid phase as long as they can be vaporized through melting, evaporation, sublimation, etc. by heating or reduced pressure. be. Regarding hydrocarbon gas as raw material gas, for example, CH4, C2H6, C3H8
, C4H10, etc., olefinic hydrocarbons such as C2H4, diolefinic hydrocarbons, and even aromatic hydrocarbons. Furthermore, other than hydrocarbons, compounds containing at least the carbon element can be used, such as alcohols, ketones, ethers, esters, CO, and CO2. In the method of forming a hard carbon film from a raw material gas in the present invention, the film-forming active species is
It is preferable to use a plasma state generated by a plasma method using direct current, low frequency, high frequency, microwave, etc., but for the purpose of increasing the area, improving uniformity, and forming a film at a low temperature, A method using a magnetic field effect is more preferable. Active species can also be formed by thermal decomposition at high temperatures. In addition, it may be formed through an ion state generated by an ionization vapor deposition method, an ion beam vapor deposition method, etc., or a vacuum vapor deposition method,
Alternatively, it may be formed from neutral particles produced by a sputtering method or the like, or may be formed from a combination of these.
【0012】こうして作製される硬質炭素膜の堆積条件
の一例はプラズマCVD法の場合、次の通りである。
RF出力:0.1〜50W/cm2
圧 力:1/103〜10Torr堆積
温度:室温〜350℃
このプラズマ状態により原料ガスがラジカルとイオンと
に分解され反応することによって、基板上に炭素原子C
と水素原子Hとからなるアモルファス(非晶質)及び微
結晶質(結晶の大きさは数10Å〜数μm)の少くとも
一方を含む硬質炭素膜が堆積する。また、硬質炭素膜の
諸特性を表1に示す。An example of the deposition conditions for the hard carbon film produced in this manner is as follows in the case of the plasma CVD method. RF output: 0.1 to 50 W/cm2 Pressure: 1/103 to 10 Torr Deposition temperature: Room temperature to 350°C Due to this plasma state, the raw material gas is decomposed into radicals and ions and reacts, thereby forming carbon atoms C on the substrate.
A hard carbon film containing at least one of amorphous (amorphous) and microcrystalline (crystal size is several tens of angstroms to several μm) is deposited. Further, Table 1 shows various properties of the hard carbon film.
【0013】[0013]
【表1】[Table 1]
【0014】注)測定法;
比抵抗(ρ) :コプレナー型セルによるI−V特
性より求める。光学的バンドギャップ(Egopt):
分光特性から吸収係数(α)を求め、数2式の関係より
決定。Note) Measuring method: Specific resistance (ρ): Obtained from the IV characteristics using a coplanar cell. Optical bandgap (Egopt):
Obtain the absorption coefficient (α) from the spectral characteristics and determine it from the relationship shown in Equation 2.
【0015】[0015]
【数2】
膜中水素量〔C(H)〕:赤外吸収スペクトルから29
00/cm近のピークを積分し、吸収断面積Aを掛けて
求める。すなわち、
〔C(H)〕=A・∫α(v)/v・dvSP3/SP
2比:赤外吸収スペクトルを、SP3,SP2にそれぞ
れ帰属されるガウス関数に分解し、その面積比より求め
る。
ヒ゛ッカース硬度(H):マイクロビッカース計による
。
屈折率(n) :エリプソメーターによる。
欠陥密度 :ESRによる。[Equation 2] Amount of hydrogen in the film [C(H)]: 29 from the infrared absorption spectrum
It is determined by integrating the peak near 00/cm and multiplying it by the absorption cross section A. That is, [C(H)]=A・∫α(v)/v・dvSP3/SP
2 ratio: The infrared absorption spectrum is decomposed into Gaussian functions assigned to SP3 and SP2, respectively, and determined from the area ratio. Vickers hardness (H): Based on a micro Vickers meter. Refractive index (n): By ellipsometer. Defect density: Based on ESR.
【0016】こうして形成される硬質炭素膜はラマン分
光法及びIR吸収法による分析の結果、夫々、図6及び
図7に示すように炭素原子がSP3の混成軌道とSP2
の混成軌道とを形成した原子間結合が混在していること
が明らかになっている。SP3結合とSP2結合の比率
は、IRスペクトルをピーク分離することで概ね推定で
きる。IRスペクトルには、2800〜3150/cm
に多くのモードのスペクトルが重なって測定されるが、
夫々の波数に対応するピークの帰属は明らかになってお
り、図5の如くガウス分布によってピーク分離を行ない
、夫々のピーク面積を算出し、その比率を求めればSP
3/SP2を知ることができる。また、X線及び電子回
折分析によればアモルファス状態(a−C:H)、及び
/又は約50Å〜数μm程度の微結晶粒を含むアモルフ
ァス状態にあることが判っている。一般に量産に適して
いるプラズマCVD法の場合には、RF出力が小さいほ
ど膜の比抵抗値および硬度が増加し、低圧力なほど活性
種の寿命が増加するために基板温度の低温化、大面積で
の均一化が図れ、かつ比抵抗、硬度が増加する傾向にあ
る。更に、低圧力ではプラズマ密度が減少するため、磁
場閉じ込め効果を利用する方法は比抵抗の増加には特に
効果的である。さらに、この方法は常温〜150℃程度
の比較的低い温度条件でも同様に良質の硬質炭素膜を形
成できるという特徴を有しているため、MIM素子製造
プロセスの低温化には最適である。従って、使用する基
板材料の選択自由度が広がり、基板温度をコントロール
し易いために大面積に均一な膜が得られるという特徴を
もっている。また硬質炭素膜の構造、物性は表1に示し
たように、広範囲に制御可能であるため、デバイス特性
を自由に設計できる利点もある。さらには膜の比誘電率
も2〜6と従来のMIM素子に使用されていたTa2O
5,Al2O3,SiNxと比較して小さいため、同じ
電気容量を持った素子を作る場合、素子サイズが大きく
てすむので、それほど微細加工を必要とせず、歩留りが
向上する(駆動条件の関係からLCDとMIM素子の容
量比はC(LCD)/C(MIM)=10:1程度必要
である)。また、素子急峻性β∝1/√ε・√dである
ため、比誘電率εが小さければ急峻性は大きくなり、オ
ン電流Ionとオフ電流Ioffとの比が大きくとれる
ようになる。このためより低デューティ比でのLCD駆
動が可能となり、高密度のLCDが実現できる。さらに
膜の硬度が高いため、液晶材料封入時のラビング工程に
よる損傷が少なくこの点からも歩留りが向上する。以上
の点を顧みるに、硬質炭素膜を使用することで、低コス
ト、階調性(カラー化)、高密度LCDが実現できる。
さらにこの硬質炭素膜が炭素原子及び水素原子の他に、
周期律表第III族元素、同第IV族元素、同第V族元
素、アルカリ金属元素、アルカリ土類金属元素、窒素原
子、酸素元素、カルコゲン系元素又はハロゲン原子を構
成元素として含んでもよい。構成元素の1つとして周期
律表第III族元素、同じく第V族元素、アルカリ金属
元素、アルカリ土類金属元素、窒素原子又は酸素原子を
導入したものは硬質炭素膜の膜厚をノンドープのものに
比べて約2〜3倍に厚くすることができ、またこれによ
り素子作製時のピンホールの発生を防止すると共に、素
子の機械的強度を飛躍的に向上することができる。更に
窒素原子又は酸素原子の場合は以下に述べるような周期
律表第IV族元素等の場合と同様な効果がある。同様に
周期律表第IV族元素、カルコゲン系元素又はハロゲン
元素を導入したものは硬質炭素膜の安定性が飛躍的に向
上すると共に、膜の硬度も改善されることも相まって高
信頼性の素子が作製できる。これらの効果が得られるの
は第IV族元素及びカルコゲン系元素の場合は硬質炭素
膜中に存在する活性な2重結合を減少させるからであり
、またハロゲン元素の場合は、1)水素に対する引抜き
反応により原料ガスの分解を促進して膜中のダングリン
グボンドを減少させ、2)成膜過程でハロゲン元素Xが
C−H結合中の水素を引抜いてこれと置換し、C−X結
合として膜中に入り、結合エネルギーが増大する(C−
H間及びC−X間の結合エネルギーはC−X間の方が大
きい)からである。これらの元素を膜の構成元素とする
ためには、原料ガスとしては炭化水素ガス及び水素の他
に、ドーパントとして膜中に周期律表第III族元素、
同第IV族元素、同第V族元素、アルカリ金属元素、ア
ルカリ土類金属元素、窒素原子、酸素原子、カルコゲン
系元素又はハロゲン元素を含有させるために、これらの
元素又は原子を含む化合物(又は分子)(以下、これら
を「他の化合物」ということもある)のガスが用いられ
る。ここで周期律表第III族元素を含む化合物として
は、例えばB(OC2H5)3,B2H6,BCl3,
BBr3,BF3,Al(O−i−C3H7)3,(C
H3)3Al,(C2H5)3Al,(i−C4H9)
3Al,AlCl3,Ga(O−i−C3H7)3,(
CH3)3Ga,(C2H5)3Ga,GaCl3,G
aBr3,(O−i−C3H7)3In,(C2H5)
3In等がある。
周期律表第IV族元素を含む化合物としては、例えばS
i2H6,(C2H5)3SiH,SiF4,SiH2
Cl2,SiCl4,Si(OCH3)4,Si(OC
2H5)4,Si(OC3H7)4,GeCl4,Ge
H4,Ge(OC2H5)4,Ge(C2H5)4,(
CH3)4Sn,(C2H5)4Sn,SnCl4等が
ある。
周期律表第V族元素を含む化合物としては、例えばPH
3,PF3,PF5,PCl2F3,PCl3,PCl
2F,PBr3,PO(OCH3)3,P(C2H5)
3,POCl3,AsH3,AsCl3,AsBr3,
AsF3,AsF5,AsCl3,SbH3,SbF3
,SbCl3,Sb(OC2H5)3等がある。
アルカリ金属原子を含む化合物としては、例えばLiO
−i−C3H7,NaO−i−C3H7,KO−i−C
3H7等がある。
アルカリ土類金属原子を含む化合物としては、例えばC
a(OC2H5)3,Mg(OC2H5)2,(C2H
5)2Mg等がある。
窒素原子を含む化合物としては、例えば窒素ガス、アン
モニア等の無機化合物、アミノ基、シアノ基等の官能基
を有する有機化合物及び窒素を含む複素環等がある。
酸素原子を含む化合物としては、例えば酸素ガス、オゾ
ン、水(水蒸気)、過酸化水素、一酸化炭素、二酸化炭
素、亜酸化炭素、一酸化窒素、二酸化窒素、三酸化二窒
素、五酸化二窒素、三酸化窒素等の無機化合物、水酸基
、アルデヒド基、アシル基、ケトン基、ニトロ基、ニト
ロソ基、スルホン基、エーテル結合、エステル結合、ペ
プチド結合、酸素を含む複素環等の官能基或いは結合を
有する有機化合物、更には金属アルコキシド等が挙げら
れる。
カルコゲン系元素を含む化合物としては、例えばH2S
,(CH3)(CH2)4S(CH2)4CH3,CH
2=CHCH2SCH2CH=CH2,C2H5SC2
H5,C2H5SCH3,チオフェン、H2Se,(C
2H5)2Se,H2Te等がある。
またハロゲン元素を含む化合物としては、例えば弗素、
塩素、臭素、沃素、弗化水素、弗化炭素、弗化塩素、弗
化臭素、弗化沃素、塩化水素、塩化臭素、塩化沃素、臭
化水素、臭化沃素、沃化水素等の無機化合物、ハロゲン
化アルキル、ハロゲン化アリール、ハロゲン化スチレン
、ハロゲン化ポリメチレン、ハロホルム等の有機化合物
が用いられる。液晶駆動MIM素子として好適な硬質炭
素膜は、駆動条件から膜厚が100〜8000Å、比抵
抗が106〜1013Ω・cmの範囲であることが有利
である。なお、駆動電圧と耐圧(絶縁破壊電圧)とのマ
ージンを考慮すると膜厚は200Å以上であることが望
ましく、また、画素部と薄膜二端子素子部の段差(セル
ギャップ差)に起因する色むらが実用上問題とならない
ようにするには膜厚は6000Å以下であることが望ま
しいことから、硬質炭素膜の膜厚は200〜6000Å
、比抵抗は5×106〜1013Ω・cmであることが
より好ましい。硬質炭素膜のピンホールによる素子の欠
陥数は膜厚の減少にともなって増加し、300Å以下で
は特に顕著になること(欠陥率は1%を越える)、及び
、膜厚の面内分布の均一性(ひいては素子特性の均一性
)が確保できなくなる(膜厚制御の精度は30Å程度が
限度で、膜厚のバラツキが10%を越える)ことから、
膜厚は300Å以上であることがより望ましい。また、
ストレスによる硬質炭素膜の剥離が起こりにくくするた
め、及び、より低デューティ比(望ましくは1/100
0以下)で駆動するために、膜厚は4000Å以下であ
ることがより望ましい。これらを総合して考慮すると、
硬質炭素膜の膜厚は300〜4000Å、比抵抗率は1
07〜1011Ω・cmであることが一層好ましい。As a result of analysis by Raman spectroscopy and IR absorption method, the hard carbon film thus formed shows that the carbon atoms have SP3 hybrid orbitals and SP2 hybrid orbitals, as shown in FIGS. 6 and 7, respectively.
It has become clear that there are interatomic bonds that form a hybrid orbital. The ratio of SP3 bonds to SP2 bonds can be approximately estimated by peak-separating the IR spectrum. 2800-3150/cm for IR spectrum
Although the spectra of many modes overlap and are measured,
The attribution of peaks corresponding to each wave number is clear, and if we perform peak separation using a Gaussian distribution as shown in Figure 5, calculate the area of each peak, and find the ratio, we can obtain SP.
3/SP2 can be known. Moreover, according to X-ray and electron diffraction analysis, it has been found that it is in an amorphous state (a-C:H) and/or an amorphous state containing microcrystalline grains of about 50 Å to several μm. In the case of the plasma CVD method, which is generally suitable for mass production, the lower the RF output, the higher the specific resistance and hardness of the film, and the lower the pressure, the longer the life of active species, so lowering the substrate temperature and increasing the The area can be made uniform, and the specific resistance and hardness tend to increase. Furthermore, since the plasma density decreases at low pressures, methods using magnetic field confinement effects are particularly effective in increasing resistivity. Furthermore, this method has the characteristic that it can form a hard carbon film of good quality even under relatively low temperature conditions of about room temperature to 150° C., so it is optimal for lowering the temperature of the MIM element manufacturing process. Therefore, the degree of freedom in selecting the substrate material to be used is increased, and the substrate temperature can be easily controlled, so that a uniform film can be obtained over a large area. Furthermore, as shown in Table 1, the structure and physical properties of the hard carbon film can be controlled over a wide range, so there is an advantage that device characteristics can be designed freely. Furthermore, the dielectric constant of the film is 2 to 6, which is Ta2O, which is used in conventional MIM devices.
5.Since it is smaller than Al2O3 and SiNx, when making an element with the same capacitance, the element size only needs to be larger, so it does not require much fine processing and the yield improves (because of the driving conditions, LCD The capacitance ratio of C(LCD)/C(MIM) = approximately 10:1 is required between C(LCD) and MIM element. Furthermore, since the element steepness β∝1/√ε·√d, the smaller the dielectric constant ε, the greater the steepness, and the ratio between the on-current Ion and the off-current Ioff can be increased. Therefore, it becomes possible to drive the LCD at a lower duty ratio, and a high-density LCD can be realized. Furthermore, since the film has high hardness, there is less damage caused by the rubbing process during encapsulation of the liquid crystal material, which also improves the yield. Considering the above points, by using a hard carbon film, a low-cost, gradation (color), and high-density LCD can be realized. In addition to carbon atoms and hydrogen atoms, this hard carbon film
It may contain a Group III element, a Group IV element, a Group V element, an alkali metal element, an alkaline earth metal element, a nitrogen atom, an oxygen element, a chalcogen element, or a halogen atom as a constituent element. If a group III element of the periodic table, a group V element, an alkali metal element, an alkaline earth metal element, nitrogen atom, or oxygen atom is introduced as one of the constituent elements, the thickness of the hard carbon film is non-doped. It can be made about 2 to 3 times thicker than that of 100%, and this can prevent the occurrence of pinholes during device fabrication and dramatically improve the mechanical strength of the device. Further, in the case of a nitrogen atom or an oxygen atom, the same effect as in the case of a group IV element of the periodic table as described below can be obtained. Similarly, devices incorporating Group IV elements of the periodic table, chalcogen elements, or halogen elements dramatically improve the stability of the hard carbon film and improve the hardness of the film, resulting in highly reliable elements. can be made. These effects can be obtained because Group IV elements and chalcogen elements reduce the active double bonds present in the hard carbon film, and in the case of halogen elements, 1) abstraction for hydrogen The reaction promotes the decomposition of the raw material gas and reduces dangling bonds in the film, and 2) during the film formation process, the halogen element X pulls out hydrogen in the C-H bond and replaces it, forming a C-X bond. enters the membrane and increases the binding energy (C-
This is because the bond energy between H and between C-X is larger for C-X. In order to use these elements as constituent elements of the film, in addition to hydrocarbon gas and hydrogen as raw material gases, group III elements of the periodic table,
In order to contain Group IV elements, Group V elements, alkali metal elements, alkaline earth metal elements, nitrogen atoms, oxygen atoms, chalcogen elements, or halogen elements, compounds containing these elements or atoms (or molecules) (hereinafter these may also be referred to as "other compounds") gases are used. Examples of compounds containing Group III elements of the periodic table include B(OC2H5)3, B2H6, BCl3,
BBr3, BF3, Al(O-i-C3H7)3, (C
H3)3Al, (C2H5)3Al, (i-C4H9)
3Al, AlCl3, Ga(O-i-C3H7)3, (
CH3)3Ga, (C2H5)3Ga, GaCl3,G
aBr3, (O-i-C3H7)3In, (C2H5)
There are 3In etc. Examples of compounds containing Group IV elements of the periodic table include S
i2H6, (C2H5)3SiH, SiF4, SiH2
Cl2, SiCl4, Si(OCH3)4, Si(OC
2H5)4, Si(OC3H7)4, GeCl4, Ge
H4,Ge(OC2H5)4,Ge(C2H5)4,(
There are CH3)4Sn, (C2H5)4Sn, SnCl4, etc. Examples of compounds containing Group V elements of the periodic table include PH
3, PF3, PF5, PCl2F3, PCl3, PCl
2F, PBr3, PO(OCH3)3, P(C2H5)
3, POCl3, AsH3, AsCl3, AsBr3,
AsF3, AsF5, AsCl3, SbH3, SbF3
, SbCl3, Sb(OC2H5)3, etc. As a compound containing an alkali metal atom, for example, LiO
-i-C3H7, NaO-i-C3H7, KO-i-C
There are 3H7 etc. Examples of compounds containing alkaline earth metal atoms include C
a(OC2H5)3, Mg(OC2H5)2, (C2H
5) There are 2Mg, etc. Examples of compounds containing nitrogen atoms include nitrogen gas, inorganic compounds such as ammonia, organic compounds having functional groups such as amino groups and cyano groups, and nitrogen-containing heterocycles. Examples of compounds containing oxygen atoms include oxygen gas, ozone, water (steam), hydrogen peroxide, carbon monoxide, carbon dioxide, suboxide, nitrogen monoxide, nitrogen dioxide, dinitrogen trioxide, and dinitrogen pentoxide. , inorganic compounds such as nitrogen trioxide, hydroxyl groups, aldehyde groups, acyl groups, ketone groups, nitro groups, nitroso groups, sulfone groups, ether bonds, ester bonds, peptide bonds, and functional groups or bonds such as heterocycles containing oxygen. Further, examples thereof include organic compounds having a metal alkoxide, metal alkoxides, and the like. Examples of compounds containing chalcogen elements include H2S
, (CH3)(CH2)4S(CH2)4CH3,CH
2=CHCH2SCH2CH=CH2,C2H5SC2
H5, C2H5SCH3, thiophene, H2Se, (C
2H5) 2Se, H2Te, etc. Compounds containing halogen elements include, for example, fluorine,
Inorganic compounds such as chlorine, bromine, iodine, hydrogen fluoride, carbon fluoride, chlorine fluoride, bromine fluoride, iodine fluoride, hydrogen chloride, bromine chloride, iodine chloride, hydrogen bromide, iodine bromide, hydrogen iodide, etc. Organic compounds such as halogenated alkyl, halogenated aryl, halogenated styrene, halogenated polymethylene, and haloform are used. It is advantageous for a hard carbon film suitable as a liquid crystal driving MIM element to have a film thickness in a range of 100 to 8000 Å and a specific resistance in a range of 10 6 to 10 13 Ω·cm in view of driving conditions. In addition, considering the margin between drive voltage and withstand voltage (dielectric breakdown voltage), it is desirable that the film thickness be 200 Å or more, and color unevenness due to the step difference (cell gap difference) between the pixel part and the thin film two-terminal element part should be avoided. In order to prevent this from becoming a practical problem, it is desirable that the film thickness be 6000 Å or less, so the thickness of the hard carbon film should be 200 to 6000 Å.
It is more preferable that the specific resistance is 5×10 6 to 10 13 Ω·cm. The number of device defects due to pinholes in hard carbon films increases as the film thickness decreases, and becomes especially noticeable below 300 Å (defect rate exceeds 1%), and the uniformity of the in-plane distribution of film thickness (The accuracy of film thickness control is limited to about 30 Å, and the variation in film thickness exceeds 10%).
More preferably, the film thickness is 300 Å or more. Also,
In order to prevent the hard carbon film from peeling off due to stress, the duty ratio should be lower (preferably 1/100).
0 or less), the film thickness is more desirably 4000 Å or less. Taking these into consideration,
The thickness of the hard carbon film is 300 to 4000 Å, and the specific resistivity is 1.
More preferably, it is 07 to 1011 Ω·cm.
【0017】[0017]
【実施例】本発明の実施例を説明するが、本発明はこれ
らに限定されるものではない。
実施例1
図1に示すように、100μm厚のポリアリレートフィ
ルム1両面に基板温度50℃でスパッタリング法によっ
て6000Åの厚さのSiO2層(2a,2b)を作製
した。X線回折によりSiO2膜が非晶質であることが
わかった。
また、波長400〜850nmにおいて80%以上の透
過率を示した。次にSiO2上にITOをスパッタリン
グ法により約1000Å厚に堆積後、パターン化して画
素電極を形成した。次に、MIM素子を次のようにして
設けた。まず、Alを蒸着法により約1000Å厚に堆
積後パターン化して下部電極7を形成し、その上に、絶
縁層2として、硬質炭素膜をプラズマCVD法により約
1000Å厚に堆積させたのち、ドライエッチングによ
りパターン化した。この時の硬質炭素膜の成膜条件は以
下の通りである。
圧 力:0.035TorrCH4 流量:
10 SCCM
RFパワー:0.2W/cm2
更にこの上にNiをEB蒸着法により約1000Å
厚に堆積後パターン化して上部電極6を形成した。EXAMPLES Examples of the present invention will be described, but the present invention is not limited thereto. Example 1 As shown in FIG. 1, SiO2 layers (2a, 2b) with a thickness of 6000 Å were formed on both sides of a polyarylate film 1 with a thickness of 100 μm by a sputtering method at a substrate temperature of 50° C. X-ray diffraction revealed that the SiO2 film was amorphous. Further, it exhibited a transmittance of 80% or more in the wavelength range of 400 to 850 nm. Next, ITO was deposited on SiO2 to a thickness of about 1000 Å by sputtering, and then patterned to form a pixel electrode. Next, an MIM element was provided as follows. First, Al was deposited to a thickness of about 1000 Å by vapor deposition and patterned to form the lower electrode 7. On top of that, a hard carbon film was deposited to a thickness of about 1000 Å by plasma CVD as an insulating layer 2, and then dried. Patterned by etching. The conditions for forming the hard carbon film at this time are as follows. Pressure: 0.035TorrCH4 Flow rate:
10 SCCM RF power: 0.2 W/cm2 Furthermore, Ni is deposited on this by approximately 1000 Å by EB evaporation method.
The upper electrode 6 was formed by depositing it thickly and patterning it.
【0018】実施例2
図1に示すように250μm厚のポリエーテルサルフォ
ンフィルム両面に基板温度30℃でスパッタリング法に
よって5000Åの厚さのSi3N4層2a,2bを作
製した。X線回折によってSi3N4層が非晶質である
ことがわかった。また、波長400〜850nmにおい
て80%以上の透過率を示した。次にSi3N4上にI
TOをスパッタリング法により約1000Å厚に堆積後
、パターン化して画素電極を形成した。次に、MIM素
子を次のようにして設けた。まず、Alを蒸着法により
約1000Å厚に堆積後パターン化して下部電極7を形
成し、その上に、絶縁層2として、硬質炭素膜をプラズ
マCVD法により約1000Å厚に堆積させたのち、ド
ライエッチングによりパターン化した。
この時の硬質炭素膜の成膜条件は以下の通りである。
圧 力:0.035TorrCH4 流量:
10 SCCM
RFパワー:0.2W/cm2
更にこの上にNiをEB蒸着法により約1000Å
厚に堆積後パターン化して上部電極6を形成した。実施
例1,2に示したMIM型素子は膜ハガレ、基板の変形
、基板のカール、無機物質のクラツクはみられなかった
。また、80℃、1000時間の高温保存でも劣化はみ
られなかった。Example 2 As shown in FIG. 1, Si3N4 layers 2a and 2b with a thickness of 5000 Å were formed on both sides of a 250 μm thick polyether sulfone film by sputtering at a substrate temperature of 30°C. The Si3N4 layer was found to be amorphous by X-ray diffraction. Further, it exhibited a transmittance of 80% or more in the wavelength range of 400 to 850 nm. Next, I
TO was deposited to a thickness of about 1000 Å by sputtering, and then patterned to form a pixel electrode. Next, an MIM element was provided as follows. First, Al was deposited to a thickness of about 1000 Å by vapor deposition and patterned to form the lower electrode 7. On top of that, a hard carbon film was deposited to a thickness of about 1000 Å by plasma CVD as an insulating layer 2, and then dried. Patterned by etching. The conditions for forming the hard carbon film at this time are as follows. Pressure: 0.035TorrCH4 Flow rate:
10 SCCM RF power: 0.2 W/cm2 Furthermore, Ni is deposited on this by approximately 1000 Å by EB evaporation method.
The upper electrode 6 was formed by depositing it thickly and patterning it. In the MIM type devices shown in Examples 1 and 2, no peeling of the film, deformation of the substrate, curling of the substrate, or cracking of the inorganic material was observed. Further, no deterioration was observed even after high temperature storage at 80° C. for 1000 hours.
【0019】[0019]
【効果】本発明は、以上説明したように構成されている
から、本発明の薄膜積層デバイスは、基板の変形、カー
ル等がなく、かつ低コスト、軽量化を達成でき、さらに
薄膜積層デバイスを絶縁層に硬質炭素膜を用いたMIM
型素子にすると、硬質炭素膜が、1) プラズマCV
D法等の気相合成法で作製されるため、成膜条件によっ
て物性が広範に制御でき、従ってデバイス設計上の自由
度が大きい、2) 硬質でしかも厚膜にできるため、
機械的損傷を受け難く、また厚膜化によるピンホールの
減少も期待できる、3) 室温付近の低温においても
良質な膜を形成できるので、基板材質に制約がない、4
) 膜厚、膜質の均一性に優れているため、薄膜デバ
イス用として適している、5) 誘電率が低いので、
高度の微細加工技術を必要とせず、従って素子の大面積
化に有利であり、さらに誘電率が低いので素子の急峻性
が高くIon/Ioff比がとれるので、低デューティ
比での駆動が可能である、等の特長を有し、このため特
に信頼性の高い液晶表示用スイッチング素子として好適
であって、産業上極めて有用である。[Effects] Since the present invention is constructed as described above, the thin film laminated device of the present invention does not cause deformation or curling of the substrate, and can achieve low cost and weight reduction. MIM using hard carbon film as insulating layer
When used as a type element, the hard carbon film is 1) Plasma CV
Because it is produced using a vapor phase synthesis method such as the D method, its physical properties can be controlled over a wide range of conditions depending on the film formation conditions, and there is therefore a large degree of freedom in device design.2) It can be made into a hard and thick film;
It is less susceptible to mechanical damage and can be expected to reduce pinholes due to thicker films; 3) It is possible to form high-quality films even at low temperatures near room temperature, so there are no restrictions on the substrate material; 4)
) Excellent uniformity in film thickness and film quality, making it suitable for thin film devices; 5) Low dielectric constant,
It does not require advanced microfabrication technology, and is therefore advantageous for increasing the area of the device.Furthermore, since the dielectric constant is low, the steepness of the device is high, and the Ion/Ioff ratio can be maintained, so it can be driven at a low duty ratio. Therefore, it is suitable as a particularly reliable switching element for liquid crystal display, and is extremely useful industrially.
【図1】本発明の薄膜デバイスの構造を示す断面図であ
る。FIG. 1 is a cross-sectional view showing the structure of a thin film device of the present invention.
【図2】本発明の薄膜デバイスにより構成されたMIM
素子の要部説明図である。[Figure 2] MIM configured by the thin film device of the present invention
FIG. 3 is an explanatory diagram of the main parts of the element.
【図3】本発明の薄膜デバイスを組込んだ液晶表示装置
の一部断面斜視図である。FIG. 3 is a partially cross-sectional perspective view of a liquid crystal display device incorporating the thin film device of the present invention.
【図4】a,bはそれぞれMIM素子のI−V特性曲線
、lnI−√v特性曲線を示すグラフである。FIGS. 4a and 4b are graphs showing an IV characteristic curve and an lnI-√v characteristic curve, respectively, of the MIM element.
【図5】本発明のMIM素子の絶縁層に使用した硬質炭
素膜のIRスペクトルのガウス分布を示す。FIG. 5 shows the Gaussian distribution of the IR spectrum of the hard carbon film used as the insulating layer of the MIM device of the present invention.
【図6】本発明のMIM素子の絶縁層に使用した硬質炭
素膜をIR吸収法で分光した分析結果を示すスペクトル
図である。FIG. 6 is a spectrum diagram showing the results of spectroscopic analysis of the hard carbon film used as the insulating layer of the MIM element of the present invention using an IR absorption method.
【図7】本発明のMIM素子の絶縁層に使用した硬質炭
素膜をラマンスペクトル法で分析した分析結果を示すス
ペクトル図である。FIG. 7 is a spectrum diagram showing the results of Raman spectroscopy analysis of the hard carbon film used for the insulating layer of the MIM element of the present invention.
1 プラスチツク基板
1´ プラスチツク基板
2 硬質炭素膜
2a 無機物質層
2b 無機物質層
3 液晶
4 画素電極
4´ 共通電極
5 能動素子(MIM素子)
6 第2導体(バスライン)(上部電極)7 第1
導体(下部電極)
8 配向膜
9 ギャップ材1 Plastic substrate 1' Plastic substrate 2 Hard carbon film 2a Inorganic material layer 2b Inorganic material layer 3 Liquid crystal 4 Pixel electrode 4' Common electrode 5 Active element (MIM element) 6 Second conductor (bus line) (upper electrode) 7 First
Conductor (lower electrode) 8 Alignment film 9 Gap material
Claims (3)
たプラスチック基板と該基板上に形成された薄膜積層デ
バイスにおいて無機物質からなる薄膜が非晶質であるこ
とを特徴とする薄膜積層デバイス。1. A thin film laminated device comprising: a plastic substrate having thin films made of an inorganic substance formed on both sides; and a thin film laminated device formed on the substrate, wherein the thin film made of the inorganic substance is amorphous.
0〜850nmにおいて透過率が75%以上である請求
項1記載の薄膜積層デバイス。2. The thin film made of the inorganic substance has a wavelength of 40
The thin film laminated device according to claim 1, having a transmittance of 75% or more in the range of 0 to 850 nm.
層とするMIM型素子である請求項1または2記載の薄
膜積層デバイス。3. The thin film stacked device according to claim 1, wherein the thin film stacked device is an MIM type element having a hard carbon film as an insulating layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3028058A JP2986933B2 (en) | 1991-01-29 | 1991-01-29 | Thin film stacking device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3028058A JP2986933B2 (en) | 1991-01-29 | 1991-01-29 | Thin film stacking device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04253385A true JPH04253385A (en) | 1992-09-09 |
JP2986933B2 JP2986933B2 (en) | 1999-12-06 |
Family
ID=12238162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3028058A Expired - Fee Related JP2986933B2 (en) | 1991-01-29 | 1991-01-29 | Thin film stacking device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2986933B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100473225B1 (en) * | 2001-12-31 | 2005-03-08 | 엘지.필립스 엘시디 주식회사 | Contact structure between Al metal layer and transparent metal layer and method of manufacturing the same |
-
1991
- 1991-01-29 JP JP3028058A patent/JP2986933B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100473225B1 (en) * | 2001-12-31 | 2005-03-08 | 엘지.필립스 엘시디 주식회사 | Contact structure between Al metal layer and transparent metal layer and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2986933B2 (en) | 1999-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3090979B2 (en) | Thin film laminated device with substrate and method of manufacturing the same | |
JPH05313210A (en) | Thin-film laminated device | |
JPH04253385A (en) | Thin film laminated device | |
JP3074209B2 (en) | Thin film laminated device with substrate | |
JPH0618908A (en) | Liquid crystal display device | |
JPH04298722A (en) | Thin film laminated device with substrate and production thereof | |
JPH04249366A (en) | Thin film laminated device with substrate | |
JPH04348090A (en) | Thin film laminated device with substrate | |
JPH04223431A (en) | Plastic film substrate for thin film laminated device and the device using the substrate | |
JPH04245229A (en) | Thin film two-terminal element | |
JPH04113324A (en) | Liquid crystal display device | |
JPH04299318A (en) | Plastic substrate of thin-film laminated device and thin-film laminated device formed by using the substrate | |
JPH04299312A (en) | Liquid crystal display device | |
JPH04242717A (en) | Plastic substrate for thin film lamination device and device for thin film lamination using same | |
JPH0486808A (en) | Liquid crystal display device | |
JPH04331917A (en) | Liquid crystal display device | |
JPH04283724A (en) | Liquid crystal display device | |
JPH05273600A (en) | Plastic substrate for thin-film laminated device and thin-film laminated device with the same | |
JPH0486810A (en) | Liquid crystal display device | |
JPH04356025A (en) | Thin film two-terminal element | |
JPH04278918A (en) | Plastic substrate for thin film laminating device and device for thin film lamination using this device | |
JPH0411227A (en) | Thin film two-terminal element | |
JPH04290481A (en) | Plastic substrate for thin film laminated device and thin film laminated device using the same | |
JP2994056B2 (en) | Thin-film two-terminal element | |
JPH03192326A (en) | Liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |