[go: up one dir, main page]

JPH03192326A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH03192326A
JPH03192326A JP1333288A JP33328889A JPH03192326A JP H03192326 A JPH03192326 A JP H03192326A JP 1333288 A JP1333288 A JP 1333288A JP 33328889 A JP33328889 A JP 33328889A JP H03192326 A JPH03192326 A JP H03192326A
Authority
JP
Japan
Prior art keywords
film
liquid crystal
insulating
substrate
hard carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1333288A
Other languages
Japanese (ja)
Other versions
JP2869436B2 (en
Inventor
Hidekazu Ota
英一 太田
Yuji Kimura
裕治 木村
Hitoshi Kondo
均 近藤
Takamichi Enomoto
孝道 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP33328889A priority Critical patent/JP2869436B2/en
Publication of JPH03192326A publication Critical patent/JPH03192326A/en
Application granted granted Critical
Publication of JP2869436B2 publication Critical patent/JP2869436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To use a high polymer plate as an insulating substrate which enables film formation at a lower temperature by using a hard carbonaceous film for an insulating film as an active element. CONSTITUTION:The insulating film of the MIM element consists of the hard carbonaceous film (called i-Ci film, diamond carbonaceous film, or amorphous diamond thin film) which contains carbon atoms and hydrogen atoms as main structure forming elements and also contains at least either of amorphous crystal and fine crystal. This hard carbonaceous film can be formed at the low temperature, so a high polymer material is used for the insulating film to obtain the low cost liquid crystal panel which is thin and light in weight and has shock resistance. Further, polyester, polysulfone, polyamide, polyimide, polycarbonate, poylyacetate, etc., are used effectively as the material of the high polymer substrate (insulating substrate).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶表示装置に関し、詳しくは、能動素子とし
てMIM(導体−絶縁体−導体)S子を使用したアクテ
ィブ・マトリクス型液晶表示装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a liquid crystal display device, and more particularly to an active matrix type liquid crystal display device using an MIM (conductor-insulator-conductor) S element as an active element. .

〔従来の技術〕[Conventional technology]

液晶表示装置の主流は、今では、単純マトリクス方式の
パネルからアクティブ・マトリクス方式に移行している
。その理由は大面積の液晶パネルへの要望がOA機器や
液晶TVなどから出されているのに由来している。そし
て、このアクティブ・マトリクス方式では各画素ごとに
能動素子を設ける手段が採られている。
The mainstream of liquid crystal display devices is now shifting from simple matrix type panels to active matrix type panels. The reason for this is that there is a demand for large-area LCD panels for office automation equipment, LCD TVs, etc. This active matrix method employs a method of providing an active element for each pixel.

ところで、前記能動素子の一つとしてHIM素子が多く
用いられている。これはスイッチングに良好な非線形な
電流−電圧特性を示すためである。にIh素子としては
、従来より、ガラス板のような絶縁基板上に下部電極と
してTa、 A4. Ti等の金属電極を設け、その上
に前記金属の酸化物又は5iO1,5iNz等からなる
絶縁膜を設け、更にその上に、上部電極としてkQ、 
Cr等の金属電極を設けたものが知られている。
By the way, HIM elements are often used as one of the active elements. This is because it exhibits nonlinear current-voltage characteristics that are good for switching. Conventionally, as an Ih element, Ta, A4. A metal electrode such as Ti is provided, an insulating film made of an oxide of the metal or 5iO1, 5iNz, etc. is provided thereon, and further, kQ, kQ, etc. are provided as an upper electrode.
A device provided with a metal electrode such as Cr is known.

しかし、絶縁体(絶a膜)に金属酸化物を用いたMI工
阿子(特開昭57−196589号、同61−2326
89号、同62−62333号等の公報に記載)の場合
、絶縁膜は下部電極の陽極酸化又は熱酸化により形成さ
れるため、工程が複雑であり、しかも高温熱処理を必要
としく陽極酸化法でも不純物の除去等を確実にするには
、高温熱処理が必要である)、また膜制御性(膜質及び
膜厚の均−性及び再現性)に劣る上。
However, MI technology using metal oxide as an insulator (deadline film)
No. 89, No. 62-62333, etc.), the insulating film is formed by anodic oxidation or thermal oxidation of the lower electrode, so the process is complicated and requires high-temperature heat treatment. However, high-temperature heat treatment is required to ensure removal of impurities, etc.), and film controllability (uniformity and reproducibility of film quality and film thickness) is poor.

基板が耐熱材料に限られること、及び、絶縁膜は物性が
一定な金属酸化物からなること等から、デバイスの材料
やデバイス特性を自由に変えることができず、設計上の
自由度が狭いという欠点がある。これはMIM素子を組
込んだ液晶表示装置からの仕様を十分に満たすデバイス
を設計・作製することが極めて困離であることを意味し
ている。さらに、後述のごとく、比誘電率εrと素子の
急峻性βとにはβccl/西コの関係があり、εrが高
いと急峻性は小さくまってしまい高密度の表示には不適
となる、等の欠点を有している。
Because the substrate is limited to heat-resistant materials and the insulating film is made of metal oxides with fixed physical properties, it is not possible to freely change device materials and device characteristics, and the degree of freedom in design is limited. There are drawbacks. This means that it is extremely difficult to design and manufacture a device that fully satisfies the specifications of a liquid crystal display device incorporating an MIM element. Furthermore, as will be explained later, there is a relationship between the relative dielectric constant εr and the steepness β of the element, which is βccl/West; when εr is high, the steepness decreases, making it unsuitable for high-density display, etc. It has the following disadvantages.

また、絶縁膜に5iO1や5iNzを用いたにIN素子
(特開昭61−275819号公報)の場合、絶縁膜は
プラズマCvO法、スパッタ法等の気相法で成膜するが
、基板温度が通常300℃程度必要であるため、低コス
ト基板は使用できず、また大面積化の際、基板温度分布
のため膜厚、膜質が不均一になり易いという欠点がある
。また、これらの絶縁膜を合成する際には気相でなされ
ることから、ダストが多く発生し、膜のピンホールが多
いため素子の歩留りが低下する。更には、膜ストレスが
大きく、膜剥離が起こり、この点からも素子の歩留りが
低下する。
In addition, in the case of an IN element using 5iO1 or 5iNz for the insulating film (Japanese Unexamined Patent Publication No. 61-275819), the insulating film is formed by a gas phase method such as plasma CvO method or sputtering method, but the substrate temperature Since a temperature of about 300° C. is usually required, a low-cost substrate cannot be used, and when the area is increased, the film thickness and film quality tend to become non-uniform due to the substrate temperature distribution. Furthermore, since these insulating films are synthesized in a gas phase, a large amount of dust is generated and the film has many pinholes, which reduces the yield of devices. Furthermore, the film stress is large and film peeling occurs, which also reduces the yield of the device.

一方、絶縁基板には、前記のように、ガラス板が通常用
いられている。これは、これまでの能動素子における絶
縁膜の形成では300−600℃の熱処理が必要である
ことに由来している。
On the other hand, as described above, a glass plate is usually used as the insulating substrate. This is because the formation of insulating films in conventional active elements requires heat treatment at 300-600°C.

従って、もし室温程度の低温でNZN素子の絶縁膜が成
膜できるのであれば、絶縁基板をガラス板から高分子板
にかえることが可能である。
Therefore, if the insulating film of the NZN element can be formed at a low temperature of about room temperature, it is possible to change the insulating substrate from a glass plate to a polymer plate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はMIN素子における絶縁膜を前述の金属醸化物
や5iO1,5iN1などでなく、低温で成膜しつる特
定のものにかえ、同時に、絶縁基板として高分子板が用
いられるようにした液晶表示装置を提供するものである
The present invention is a liquid crystal display in which the insulating film in the MIN element is changed from the above-mentioned metal compound, 5iO1, 5iN1, etc. to a specific film that is formed at a low temperature, and at the same time, a polymer plate is used as the insulating substrate. It provides equipment.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、一対の絶縁基板間に液晶材料を挟持してなり
、かつ、少なくとも一方の基板上に設けられた複数個の
画素電橋の各々に少なくとも1つの導体−絶agI−導
体からなる能動素子が接続されているアクティブ・マト
リクス型液晶表示装置において、前記絶縁基板はその少
なくとも一方が厚さ700趨以上、ガラス転移温度60
℃以上、可視光透過率80%以上である高分子板であり
、また、前記絶縁膜は硬質炭素膜であることを特徴とし
ている。
The present invention provides an active active conductor comprising a liquid crystal material sandwiched between a pair of insulating substrates, and each of a plurality of pixel electric bridges provided on at least one of the substrates. In an active matrix liquid crystal display device in which elements are connected, at least one of the insulating substrates has a thickness of 700 mm or more and a glass transition temperature of 60 mm.
℃ or higher and visible light transmittance of 80% or higher, and the insulating film is a hard carbon film.

本発明者らは、以前より液晶表示装置について多くの研
究検討を行なってきたが、能動素子として絶縁膜が硬質
炭素膜であるMIM素子を用い、こうしたMIX素子が
形成されるのであれば絶縁基板としてガラス板でなく特
定の高分子板が使用され得ることを確めた。本発明はこ
れに基づいてなされたものである。
The present inventors have conducted a lot of research and consideration on liquid crystal display devices, and found that if an MIM element whose insulating film is a hard carbon film is used as an active element, and such a MIX element is formed, an insulating substrate It was confirmed that certain polymer plates can be used instead of glass plates. The present invention has been made based on this.

〔実施例〕〔Example〕

以下に、本発明を添付の図面を参照しながらさらに詳細
に説明する。
In the following, the invention will be explained in more detail with reference to the accompanying drawings.

本発明の液晶表示装置は、前記のように、能動素子(M
IM素子)の絶縁膜を室温程度の堆積温度で形成しうる
硬質炭素膜で成膜し、また、絶縁基板の少なくとも一方
を高分子板(厚さ7001Js以上、ガラス転移温度(
Tg)60℃以上、可視光透過率80%以上)で構成し
てなるものである。
As described above, the liquid crystal display device of the present invention has an active element (M
The insulating film of the IM element) is formed with a hard carbon film that can be formed at a deposition temperature of about room temperature, and at least one of the insulating substrates is made of a polymer plate (thickness of 7001 Js or more, glass transition temperature (
Tg) 60° C. or higher, visible light transmittance 80% or higher).

本発明での−IM素子における絶縁膜は、炭素原子及び
水素原子を主要な組織形成元素とし非晶質及び微結晶の
少なくとも一方を含む硬質炭素膜(i−cBg、ダイヤ
モンド状炭素膜、アモルファスダイヤモンド膜、ダイヤ
モンド薄膜とも呼ばれる)からなっている。
The insulating film in the -IM element of the present invention is a hard carbon film (i-cBg, diamond-like carbon film, amorphous diamond film) containing carbon atoms and hydrogen atoms as main structure-forming elements and at least one of amorphous and microcrystalline materials. (also called diamond film).

硬質炭素膜の一つの特長は気相成長膜であるがために、
後述するように、その諸物性が製膜条件によって広範囲
に制御できることである。従って、絶縁膜といってもそ
の抵抗値は半11!林体〜絶総体領域までをカバーして
おり、この意味では本発明で用いられるMIM素子は、
特開昭61−275819号公報に記載されているとこ
ろのMSI素子(Metal−3emi−Insula
tor)や、SIS素子(半導体−絶縁体一半導体から
なる素子であり、ここでの半導体は不純物を高濃度でド
ープさせたものである)等を含めて位置付けられるもの
である。
One of the features of the hard carbon film is that it is a vapor-phase grown film.
As will be described later, the various physical properties can be controlled over a wide range by controlling the film forming conditions. Therefore, even though it is an insulating film, its resistance value is half 11! The MIM element used in the present invention covers the range from forest body to absolute body area, and in this sense, the MIM element used in the present invention is
The MSI element (Metal-3emi-Insula) described in JP-A-61-275819
tor) and SIS elements (an element consisting of a semiconductor-insulator-semiconductor, where the semiconductor is doped with impurities at a high concentration).

また1本発明での絶縁基板には高分子材料が用いられ、
より低コスト、薄型、軽量、耐衝撃性の液晶パネルが得
られる。しかし、その反面、高分子材料の特質として剛
性が弱く薄過ぎると基板が撓んでしまい、或いは、ハン
ドリングが難しいため微細加工(HIM作製時あるいは
コモンライン作製時)に■寸法精度が悪くなる、■加工
(エツチング)不良が多くなる等の問題がある。
In addition, a polymer material is used for the insulating substrate in the present invention,
A liquid crystal panel that is lower cost, thinner, lighter, and more impact resistant can be obtained. However, on the other hand, due to the characteristics of polymer materials, rigidity is weak and if the substrate is too thin, the substrate may bend, or it may be difficult to handle, resulting in poor dimensional accuracy during microfabrication (when making HIM or common line). There are problems such as an increase in processing (etching) defects.

第1図に高分子基板の厚さと寸法精度及び不良発生率と
の関係を示した。これより高分子基板の厚さが700μ
−以上であれば実用上特に問題を生じさせないことがわ
かる。
FIG. 1 shows the relationship between the thickness of the polymer substrate, dimensional accuracy, and failure rate. From this, the thickness of the polymer substrate is 700μ
It can be seen that if it is above -, no particular problem arises in practical use.

さらににプロセス上80℃、20分程度の熱処理をする
ために、少なくとも高分子基板のガラス転移温度(Tg
)は60℃以上でなければ基板が著しく変形し微細パタ
ーンの形成は不可能に近い。また、液晶パネルとして表
示のコントラスト比を20:1以上数るには、画素電極
、偏光板、カラーフィルターの光透過率などを考慮する
と、少なくとも高分子基板の透過率は80%以上(全可
視光領域)であることが望ましい。
Furthermore, in order to perform heat treatment at 80°C for about 20 minutes during the process, at least the glass transition temperature (Tg) of the polymer substrate is required.
), unless the temperature is 60° C. or higher, the substrate will be significantly deformed and it will be almost impossible to form a fine pattern. In addition, in order to achieve a display contrast ratio of 20:1 or more as a liquid crystal panel, the transmittance of the polymer substrate must be at least 80% (total visible (light area) is desirable.

これらの観点からすると、高分子基板(絶縁基板)の具
体的な材料としてはポリエステル(PET)、ポリサル
フォン(PES)、ポリアミド、ポリイミド、ポリカー
ボネート、ポリアセテート等の使用が有利である。
From these viewpoints, it is advantageous to use polyester (PET), polysulfone (PES), polyamide, polyimide, polycarbonate, polyacetate, etc. as specific materials for the polymer substrate (insulating substrate).

次に第2図、第3図により能動素子(HIM素子)及び
これを用いた液晶表示装置の作製について述べる。
Next, the production of an active element (HIM element) and a liquid crystal display device using the same will be described with reference to FIGS. 2 and 3.

第2図は画像電極4力鴇工に素子に接続されている様子
を表わしたものである。このものは、まず、高分子基板
(図示されていない)上に1画素電極用透明電極材料を
蒸着、スパッタリング等の方法で堆積し、所定のパター
ンにパターニングして画素電極4を形成し1次に、蒸着
、スパッタリング等の方法で下部電極用導体薄膜を形成
し、ウェット又はドライエツチングにより所定のパター
ンにパターニングして下部電極となる第1導体7とし、
その上にプラズマCvD法、イオンビーム法等により硬
質炭素膜2を被覆後、ドライエツチング、ウェットエツ
チング又はレジストを用いるリフトオフ法により所定の
パターンにパターニングして絶縁膜とし、次にその上に
蒸着、スパッタリング等の方法によりパスライン用導体
薄膜を被覆し、所定のパターンにパターニングしてパス
ラインとなる第2導体6を形成し、最後に下部電極7の
不必要部分を除去し、透明電極パターンを露出させ、画
素電極4とする。この場合、MIM素子(能動素子)5
の構成はこれに限られるものではなく、MIM素子の作
成後、最上層に透明電極を設けたもの、透明電極が上部
又は下部電極を兼ねた構成のもの、下部電極の側面にM
IX素子を形成したもの等、種々の変形が可能である。
FIG. 2 shows how the four image electrodes are connected to the element. First, a transparent electrode material for one pixel electrode is deposited on a polymer substrate (not shown) by vapor deposition, sputtering, etc., and then patterned into a predetermined pattern to form the pixel electrode 4. A conductor thin film for the lower electrode is formed by a method such as vapor deposition or sputtering, and patterned into a predetermined pattern by wet or dry etching to form a first conductor 7 that will become the lower electrode,
A hard carbon film 2 is coated thereon by a plasma CVD method, an ion beam method, etc., and then patterned into a predetermined pattern by dry etching, wet etching, or a lift-off method using a resist to form an insulating film. A conductor thin film for a pass line is coated by a method such as sputtering, and patterned into a predetermined pattern to form a second conductor 6 that will become a pass line.Finally, an unnecessary portion of the lower electrode 7 is removed to form a transparent electrode pattern. The pixel electrode 4 is exposed. In this case, the MIM element (active element) 5
The structure of is not limited to this, but after the creation of the MIM element, a transparent electrode is provided on the top layer, a structure in which the transparent electrode also serves as the upper or lower electrode, and a structure in which MIM is provided on the side of the lower electrode.
Various modifications are possible, such as one in which an IX element is formed.

ここで下部電極、上部電極及び透明電極の厚さは通常、
夫々数百〜数千人、数百〜数千人、数百〜数千人の範囲
である。硬質炭素膜の厚さは100〜8000人、望ま
しくは200〜5000人、さらに望ましくは300〜
4000人の範囲である。
Here, the thickness of the lower electrode, upper electrode and transparent electrode is usually
They range from several hundred to several thousand people, several hundred to several thousand people, and several hundred to several thousand people, respectively. The thickness of the hard carbon film is 100 to 8,000, preferably 200 to 5,000, more preferably 300 to 5,000.
The number is in the range of 4,000 people.

硬質炭素膜を用いたMIM素子を用いることにより1表
示品質の向上、低温での作製が可能となるだけでなく、
これまで耐熱性を配慮して絶縁基板にプラスチック材料
の使用が困難とされてきたのが条件つきであるが解消さ
れるようになった。
The use of MIM elements using hard carbon films not only improves display quality and enables production at low temperatures;
Up until now, it had been considered difficult to use plastic materials for insulating substrates due to heat resistance considerations, but this has now been resolved, albeit with some conditions.

続いて、本発明で使用されるMIM素子の材料について
説明する。
Next, the material of the MIM element used in the present invention will be explained.

下部電極となる第1導体7の材料としては、AQ、Ta
、 Cr、 ’i、 Mo、Pt、 Ni、透明導電体
等の種々の導電体が使用される。
The material of the first conductor 7, which becomes the lower electrode, is AQ, Ta.
, Cr, 'i, Mo, Pt, Ni, transparent conductors, etc. are used.

パスラインとなる第2導体6の材料としては、AQ、C
r、 Ni、 Mo、 Pt、 Ag、透明導電体等積
々の導電体が使用されるが、I−V特性の安定性及び信
頼性が特に優れている点からNi、 Pt、 Agが好
ましい。
The material of the second conductor 6 which becomes the pass line is AQ, C.
A variety of conductors can be used, including Ni, Mo, Pt, Ag, and transparent conductors, but Ni, Pt, and Ag are preferred because they have particularly excellent stability and reliability of IV characteristics.

絶縁膜として硬化質炭素膜2を用いたMIM素子は電極
の種類を変えても対称性が変化せず、またQnIccf
7の関係からプールフレンケル型の伝導をしていること
が判る。また、この事からこの種のMIに素子の場合、
上部電極と下部電極との組合せをどのようにしてもよい
ことが判る。しかし、硬質炭素膜と電橋との密着力や界
面状態により素子特性ロー■特性)の劣化及び変化が生
じる。これらを考慮すると、Ni、 r’t、 Agが
良いことがわかった・ 本発明におけるMIM素子の電流−電圧特性は第4図の
ように示され、近似的には以下に示すような伝導式で表
わされる。
In the MIM device using the hardened carbon film 2 as an insulating film, the symmetry does not change even if the type of electrode is changed, and the QnIccf
From the relationship 7, it can be seen that Poole-Frenkel type conduction is occurring. Also, from this fact, in the case of this type of MI element,
It can be seen that the upper electrode and lower electrode may be combined in any way. However, depending on the adhesion between the hard carbon film and the electrical bridge and the state of the interface, deterioration and changes in device characteristics (low (2) characteristics) occur. Considering these, it was found that Ni, r't, and Ag are good. The current-voltage characteristics of the MIM element in the present invention are shown as shown in Fig. 4, and can be approximated by the conduction formula shown below. It is expressed as

1=Kexp(βV”)       −(1)I:電
流 ■:印加電圧 に:導電係数 β:プールフレンケ
ル係数n:キャリャ密度 μ:キャリャモビリテイ q
;電子の電荷量Φニドラップ深さ ρ:比抵抗 d:硬
質炭素膜の厚さに:ボルツマン定数 T:雰囲気温度 
Cr:硬質炭素膜の誘電率ε。:真空誘電体 硬質炭素膜を形成するためには有機化合物ガス、特に炭
化水素ガスが用いられる。これら原料における相状態は
常温常圧において必ずしも気相である必要はなく、加熱
或は減圧等により溶融、蒸発、昇華等を経て気化し得る
ものであれば、液相でも固相でも使用可能である。
1=Kexp(βV”) −(1) I: Current ■: Applied voltage N: Conductivity coefficient β: Poole-Frenkel coefficient n: Carrier density μ: Carrier mobility q
; Electron charge Φ Nidrap depth ρ: Specific resistance d: Thickness of hard carbon film: Boltzmann constant T: Ambient temperature
Cr: dielectric constant ε of hard carbon film. : An organic compound gas, especially a hydrocarbon gas, is used to form a vacuum dielectric hard carbon film. The phase state of these raw materials does not necessarily have to be a gas phase at normal temperature and pressure; they can be used in either a liquid or solid phase as long as they can be vaporized through melting, evaporation, sublimation, etc. by heating or reduced pressure. be.

原料ガスとしての炭化水素ガスについては、例えば、C
H4,C□HいC,H,、C,H,。等のパラフィン系
炭化水素、C,lH,等のアセチレン系炭化水素、オレ
フィン系炭化水素、アセチン系炭化水素、ジオレフィン
系炭化水素、さらには芳香族炭化水素などすべての炭化
水素を少なくとも含むガスが使用可能である。
Regarding hydrocarbon gas as a raw material gas, for example, C
H4, C□H C, H,, C, H,. A gas containing at least all hydrocarbons such as paraffinic hydrocarbons such as C, IH, acetylenic hydrocarbons, olefinic hydrocarbons, acetinic hydrocarbons, diolefinic hydrocarbons, and even aromatic hydrocarbons. Available for use.

さらに、炭化水素以外でも、例えば、アルコール類、ケ
トン類、エーテル類、エステル類、Co、CO2等、少
なくとも炭素元素を含む化合物であれで使用可能である
Furthermore, in addition to hydrocarbons, any compound containing at least a carbon element can be used, such as alcohols, ketones, ethers, esters, Co, and CO2.

本発明における原料ガスからの硬質炭素膜の形成方法と
しては、成膜活性種が直流、低周波、高周波、或いはマ
イクロ波等を用いたプラズマ法により生成されるプラズ
マ状態を経て形成される方法が好ましいが、より大面積
化、均一性向上、低温製膜の目的で、低圧下で堆積を行
なうため、磁界効果を利用する方法がさらに好ましい。
As a method for forming a hard carbon film from a raw material gas in the present invention, there is a method in which active species for film formation are formed through a plasma state generated by a plasma method using direct current, low frequency, high frequency, microwave, etc. Although this is preferable, a method using a magnetic field effect is more preferable since the deposition is performed under low pressure for the purpose of increasing the area, improving uniformity, and forming a film at a low temperature.

もっとも、高温における熱分解によっても活性種を形成
できる。
However, active species can also be formed by thermal decomposition at high temperatures.

その他にも、イオン化蒸着法、或いはイオンビーム蒸着
法等により生成されるイオン状態を経て硬質炭素膜が形
成されてもよいし、真空蒸着法、或いはスパッタリング
法等により生成される中性粒子から形成されてもよいし
、さらには、これらの組み合わせにより製膜がなされて
もよい。
In addition, a hard carbon film may be formed through an ionic state generated by an ionization vapor deposition method or an ion beam vapor deposition method, or a hard carbon film may be formed from neutral particles generated by a vacuum vapor deposition method, a sputtering method, etc. Alternatively, a combination of these may be used to form a film.

こうして作製される硬質炭素膜の堆積条件の一例はプラ
ズマCVD法の場合、概ね次の通りである。
An example of the deposition conditions for the hard carbon film produced in this manner is approximately as follows in the case of plasma CVD method.

RF 出力 :  0.1〜50W/cm”圧   カ
ニ10−3〜10TOrr 堆積温度:室温〜950℃(このような広い範囲を採用
できるが、好ましくは室温〜300℃であり、更に好ま
しくは室温〜150℃である。)このプラズマ状態によ
り原料ガスがラジカルとイオンとに分解され反応するこ
とによって、基板上に炭素原子Cと水素原子Hとからな
るアモルファス(非晶質)及び微結晶質(結晶の大きさ
は数10人〜数μm)の少なくとも一方を含む硬質炭素
膜が堆積する。硬質炭素膜の諸特性を表−1に示す。
RF output: 0.1 to 50 W/cm'' pressure Crab 10-3 to 10 TOrr Deposition temperature: Room temperature to 950°C (such a wide range can be adopted, but preferably room temperature to 300°C, more preferably room temperature to 300°C) (150°C) Due to this plasma state, the raw material gas is decomposed into radicals and ions and reacts, resulting in amorphous (amorphous) and microcrystalline (crystalline) consisting of carbon atoms C and hydrogen atoms H. A hard carbon film is deposited containing at least one of the following: (with a size of several tens of micrometers to several micrometers).The properties of the hard carbon film are shown in Table 1.

表−1 注)81!定法; 比 抵 抗(ρ):コプレナー型セルによるニー■特性
より求める。
Table-1 Note) 81! Standard method: Specific resistance (ρ): Determined from the knee characteristics of a coplanar cell.

光学的バンドギャップ(Egopt) :分光特性から
吸収係数(α)を求め、 (αh v )”J(h v −Elopt)の関係よ
り決定する。
Optical band gap (Egopt): Obtain the absorption coefficient (α) from the spectral characteristics and determine from the relationship (αh v )”J(h v −Elopt).

膜中水素量(CH) :赤外吸収スペクトルから290
0o−1付近のピークを積分し、 吸収断面積Aをかけて求める6 Co=AIfα(す)7w・dw SP3/SP”比:赤外吸収スペクトルを、sp” 。
Amount of hydrogen in the film (CH): 290 from infrared absorption spectrum
Integrate the peak around 0o-1 and multiply by the absorption cross section A to find 6Co=AIfα(su)7w・dw SP3/SP" ratio: Infrared absorption spectrum, sp".

SP2にそれぞれ帰属されるガラ ス関数に分解し、その面積比 より求める。Galas belonging to SP2 and its area ratio Seek more.

ビッカース硬度(H):マイクロビソカース計による。Vickers hardness (H): Based on microbisocurs meter.

屈  折  率(n):エリプソメーターによる。Refractive index (n): By ellipsometer.

欠 陥 密 度:ESRによる。Defect density: Based on ESR.

こうして形成される硬質炭素膜はIR吸収法及びラマン
分光法による分析の結果、夫々、第5図及び第6図に示
すように炭素原子がSP3の混成軌道とSP2の混成軌
道とを形成した原子間結合が混在していることが明らか
になっている。sp3結合とSP2結合との比率は、I
Rスペクトルをピーク分離することで概ね推定できる。
As a result of analysis by IR absorption method and Raman spectroscopy, the hard carbon film thus formed shows that carbon atoms form SP3 hybrid orbitals and SP2 hybrid orbitals, as shown in FIGS. 5 and 6, respectively. It is clear that there is a mixture of inter-connections. The ratio of sp3 bonds to SP2 bonds is I
It can be roughly estimated by peak-separating the R spectrum.

IRスペクトルには、2800〜3150a++−”に
多くのモードのスペクトルが重なって測定されるが、夫
々の波数に対応するピークの帰属は明らかになっており
、第7図の如くガウス分布によってピーク分離を行ない
、夫々のピーク面積を算畠し、その比率を求めればSP
” / SP”比を知ることができる。
In the IR spectrum, many mode spectra from 2800 to 3150a++-'' are measured to overlap, but the attribution of the peak corresponding to each wave number is clear, and the peaks can be separated by Gaussian distribution as shown in Figure 7. If you calculate the area of each peak and find the ratio, SP
You can know the "/SP" ratio.

また、X線及び電子線回折分析によればアモルファス状
態(a−C: H)あるいは数10人〜数μ園程度の微
結晶粒を含むアモルファス状態にあることが判っている
Further, according to X-ray and electron diffraction analysis, it has been found that it is in an amorphous state (a-C: H) or an amorphous state containing microcrystalline grains of several tens to several micrometers in size.

一般に量産に適しているプラズマCVD法の場合には、
RF出力が小さいほど膜の比抵抗値および硬度が増加し
、低圧力なほど活性種の寿命が増加するために基板温度
の低温化、大面積での均一化が図れ、かつ、比抵抗及び
硬度が増加する傾向が認められる。更に、低圧力ではプ
ラズマ密度が減少するため、磁場閉じ込め効果を利用す
る方法は、比抵抗の増加には特に効果的である。
In the case of plasma CVD method, which is generally suitable for mass production,
The lower the RF output, the higher the resistivity and hardness of the film, and the lower the pressure, the longer the life of the active species. There is a tendency for the number to increase. Furthermore, since the plasma density decreases at low pressures, methods using magnetic field confinement effects are particularly effective in increasing resistivity.

さらに、この方法は常温〜150℃程度の比較的低い温
度条件でも同様に良質の硬質炭素膜を形成できるという
特徴を有しているため、M I MiA子製造プロセス
の低温化には最適である。従って、使用する基板材料の
選択自由度が広がり、基板温度をコントロールし易いた
めに大面積に均一な膜が得られるという特長をもってい
る。また、硬質炭素膜の構造、物性等は表−1に示した
ように、広範囲に制御可能であるため、デバイス特性を
自由に設計できる利点もある。さらには、膜の誘電率も
2〜6と従来MIMに使用されていた、Ta20ssA
 Q 20. 、 SiNxと比較して小さいため、同
じ電気容量をもった素子を作る場合、素子サイズが大き
くてすむので、それほど微細加工を必要とせず1歩留ま
りが向上する(駆動条件の関係からLCDとMIM素子
との容量比はCLcD : CNIM= 10:1程度
必要である)。
Furthermore, this method has the feature of being able to form a high-quality hard carbon film even under relatively low temperature conditions of room temperature to 150°C, making it ideal for lowering the temperature of the M I MiA child manufacturing process. . Therefore, the degree of freedom in selecting the substrate material to be used is increased, and the substrate temperature can be easily controlled, so that a uniform film can be obtained over a large area. Furthermore, as shown in Table 1, the structure, physical properties, etc. of the hard carbon film can be controlled over a wide range, so there is an advantage that device characteristics can be designed freely. Furthermore, the dielectric constant of the film is 2 to 6, which is Ta20ssA, which is conventionally used in MIM.
Q20. , is smaller than SiNx, so when making an element with the same capacitance, the element size only needs to be larger, so it does not require much fine processing and the yield improves (due to the driving conditions, LCD and MIM elements The capacitance ratio between CLcD and CNIM is required to be approximately 10:1).

であるため、誘電率が小さければ急峻性は大きくなり、
オン電流Ionとオフ電流I offとの比が大きくと
れるようになる。このため、より低デユーティ比でのL
CD[動が可能となり、高密度のしCDが実現できる。
Therefore, the smaller the dielectric constant, the greater the steepness,
The ratio between the on-current Ion and the off-current Ioff can be increased. Therefore, L at lower duty ratio
This makes it possible to move CDs and realize high-density CDs.

さらに、硬質炭素膜の硬度力を高いため、液晶材料封入
時のラビング工程による損傷が少なく、この点からも歩
留まりが向上する。
Furthermore, since the hard carbon film has high hardness, there is little damage caused by the rubbing process when filling the liquid crystal material, and from this point of view as well, the yield is improved.

以上の点を鑑みるに、硬質炭素膜を使用することで、低
コスト、階調性(カラー化)、高密度のLCDが実現で
きる。
In view of the above points, by using a hard carbon film, a low-cost, gradation (color), and high-density LCD can be realized.

さらにこの硬質炭素膜は炭素原子及び水素原子の他に、
周期律表第■族元素、同第■族元素、同第■族元素、ア
ルカリ金属元素、アルカリ土類金属元素、窒素原子、酸
素元素、カルコゲン系元素又はハロゲン原子を構成元素
として含んでもよい。
Furthermore, in addition to carbon atoms and hydrogen atoms, this hard carbon film contains
It may also contain as a constituent element an element of Group 1 of the Periodic Table, an element of Group 2 of the Periodic Table, an element of Group 2 of the Periodic Table, an alkali metal element, an alkaline earth metal element, a nitrogen atom, an oxygen element, a chalcogen element, or a halogen atom.

構成元素の1つとして周期律表第■族元素、同じく第■
元素、アルカリ金属元素、アルカリ土類金属元素、窒素
原子又は酸素原子を導入したものは硬質炭素膜の膜厚を
ノンドープのものに比べて約2〜3倍に厚くすることが
でき、またこれにより素子作製時のピンホールの発生を
防止すると共に、素子の機械的強度を飛躍的に向上する
ことができる。更に窒素原子又は酸素原子の場合は以下
に述べるような周期律表第■族元素等の場合と同様な効
果がある。
One of the constituent elements is the Group ■ element of the periodic table, which is also Group ■.
By introducing elements, alkali metal elements, alkaline earth metal elements, nitrogen atoms, or oxygen atoms, the thickness of the hard carbon film can be made about 2 to 3 times thicker than that of non-doped ones. The occurrence of pinholes during device fabrication can be prevented, and the mechanical strength of the device can be dramatically improved. Further, in the case of a nitrogen atom or an oxygen atom, the same effect as in the case of an element of group Ⅰ of the periodic table as described below can be obtained.

同様に周期律表第■族元素、カルコゲン系元素又はハロ
ゲン元素を導入したものは硬質炭素膜の安定性が飛躍的
に向上すると共に、膜の硬度も改善されることも相まっ
て高信頼性の素子が作製できる。これらの効果が得られ
るのは第■族元素及びカルコゲン系元素の場合は硬質炭
素膜中に存在する活性な2重結合を減少させるからであ
る。またハロゲン元素の場合は、1)水素に対する引抜
き反応により原料ガスの分解を促進して膜中にダングリ
ングボンドを減少させ、2)成膜過程でハロゲン元素X
がC−H結合中の水素を引抜いてこれと置換し、C−x
結合として膜中に入り、結合エネルギーを増大させる(
C−0間及びC−x間の結合エネルギーはC−x間に方
が大きい)からである。
Similarly, devices that incorporate elements from group Ⅰ of the periodic table, chalcogen elements, or halogen elements dramatically improve the stability of the hard carbon film and also improve the hardness of the film, resulting in highly reliable elements. can be made. These effects can be obtained because Group (I) elements and chalcogen elements reduce active double bonds present in the hard carbon film. In addition, in the case of halogen elements, 1) the decomposition of the source gas is promoted by an abstraction reaction with hydrogen to reduce dangling bonds in the film, and 2) the halogen element
extracts the hydrogen in the C-H bond and replaces it, C-x
It enters the membrane as a bond and increases the bond energy (
This is because the bond energy between C-0 and between C-x is larger between C-x.

これらの元素を膜の構成元素とする為には、原料ガスと
しては炭化水素ガス及び水素の他に、周構律表第■族元
素、同第■族元素、同第■族元素、アルカリ金属元素、
アルカリ土類金属元素、窒素原子、酸素原子、カルコゲ
ン系元素又はハロゲン元素を含む化合物(又は分子)(
以下、これらを「他の化合物」ということもある)のガ
スが用いられる。
In order to use these elements as the constituent elements of the film, in addition to hydrocarbon gas and hydrogen, the raw material gases include elements from group Ⅰ, elements from group Ⅰ, elements from group Ⅰ of the Periodic System Table, and alkali metals. element,
Compounds (or molecules) containing alkaline earth metal elements, nitrogen atoms, oxygen atoms, chalcogen elements, or halogen elements (
Hereinafter, these gases may also be referred to as "other compounds").

ここで周期律表第■族元素を含む化合物としては、例え
ばB(OClHS)3、B2O,、BCl2.、BBr
、、BF、、AQ (0−i−Ca llt )3、(
CHI)3AQ、 (C,I(S)、Al11、(i−
C4I(、)、AΩ、AQCQ3. Ga(0−i−C
,)l、)、、(CH3)、Ga、(CaH2)3Ga
、GaCQ、、GaBr、、(0−i−C,H7)3、
In、(CzHs)aIn等がある。
Examples of compounds containing Group I elements of the periodic table include B(OClHS)3, B2O, BCl2. ,BBr
,,BF,,AQ (0-i-Callt)3,(
CHI)3AQ, (C, I(S), Al11, (i-
C4I(,), AΩ, AQCQ3. Ga(0-i-C
,)l,),,(CH3),Ga,(CaH2)3Ga
, GaCQ, , GaBr, , (0-i-C,H7)3,
Examples include In, (CzHs)aIn, and the like.

周期律表第■族元素を含む化合物としては、例えばSi
H,、Si、Hい5i3H,、(C2H,)、SiH,
SiF4.5ill□Cら、Sl (OCH3)いSi
 (QC,H,)いSi (QC,H7)4、GaCQ
4. GeH,、Ga(OCJ、)4、Go(C,)I
、)イ(CI(3)4Sn、(C,H,)、Sn%5n
CQ4等がある。
Examples of compounds containing Group Ⅰ elements of the periodic table include Si.
H,,Si,H5i3H,,(C2H,),SiH,
SiF4.5ill□C et al., Sl (OCH3)
(QC,H,)Si (QC,H7)4, GaCQ
4. GeH,, Ga(OCJ,)4, Go(C,)I
,)I(CI(3)4Sn,(C,H,),Sn%5n
There are CQ4 etc.

周期律表第■族元素を含む化合物としては、例えば、P
H,、PF、、PFいPCQ、 F、、PC712F、
 PCQ、、PBr、、pococH3)3、p(c、
Hs)!、POCQ3、AsH3、AsCQ、、AsB
r、、AsF、、AsF、、 AsCQ3.5bH4、
SbF、、5bcQ、、sb (QC,Hs )a等が
ある。
As a compound containing an element of group Ⅰ of the periodic table, for example, P
H,,PF,,PFPCQ,F,,PC712F,
PCQ,,PBr,,pococH3)3,p(c,
Hs)! ,POCQ3,AsH3,AsCQ,,AsB
r,, AsF,, AsF,, AsCQ3.5bH4,
There are SbF, 5bcQ, sb (QC, Hs )a, etc.

アルカリ金属原子を含む化合物としては、例えばLi0
−i−C,H,、Na0−i−C,H,、KO−i−C
,H7等がある。
As a compound containing an alkali metal atom, for example, Li0
-i-C,H,,Na0-i-C,H,,KO-i-C
, H7, etc.

アルカリ土類金属原子を含む化合物としては、例えばC
a (oc、 )I、 ):l、Mg (QC2Hs 
)a、(CiH=)aMg等がある。
Examples of compounds containing alkaline earth metal atoms include C
a (oc, )I, ):l, Mg (QC2Hs
)a, (CiH=)aMg, etc.

窒素原子を含む化合物としては例えば窒素ガス、アンモ
ニア等の無機化合物、アミノ基、シアノ基等の官能基を
有する有機化合物及び窒素を含む複素環等がある。
Examples of compounds containing nitrogen atoms include nitrogen gas, inorganic compounds such as ammonia, organic compounds having functional groups such as amino groups and cyano groups, and nitrogen-containing heterocycles.

酸素原子を含む化合物としては、例えば酸素ガス、オゾ
ン、水(水蒸気)、過酸化水素、−酸化炭素、二酸化炭
素、亜酸化炭素、−酸化窒素、二酸化窒素、三酸化二窒
素、五酸化二窒素、三酸化窒素等の無機化合物、水酸基
、アルデヒド基、アシル基、ケトン基、ニトロ基、ニト
ロソ基、スルホン基、エーテル結合、エステル結合、ペ
プチド結合、酸素を含む複素環等の官能基或いは結合を
有する有機化合物、更には金属アルコキシド等が挙げら
れる。
Examples of compounds containing oxygen atoms include oxygen gas, ozone, water (steam), hydrogen peroxide, -carbon oxide, carbon dioxide, carbon suboxide, -nitrogen oxide, nitrogen dioxide, dinitrogen trioxide, and dinitrogen pentoxide. , inorganic compounds such as nitrogen trioxide, hydroxyl groups, aldehyde groups, acyl groups, ketone groups, nitro groups, nitroso groups, sulfone groups, ether bonds, ester bonds, peptide bonds, and functional groups or bonds such as heterocycles containing oxygen. Further, examples thereof include organic compounds having a metal alkoxide, metal alkoxides, and the like.

カルコゲン系元素を含む化合物としては、例えばH2S
、(cl(c14s(co、)、cH,、C)I、 =
CHCH,5CII□C+1 = CH2、C,H,S
C,H,、C,H,5C)l、、チオフェン、)I2S
s、(C,Hs)2Se、 H2Te等がある。
Examples of compounds containing chalcogen elements include H2S
, (cl(c14s(co,),cH,,C)I, =
CHCH, 5CII□C+1 = CH2, C, H, S
C,H,,C,H,5C)l,,thiophene,)I2S
s, (C, Hs)2Se, H2Te, etc.

またハロゲン元素を含む化合物としては、例えば弗素、
塩素、臭素、沃素、弗化水素、弗化塩素、弗化臭素、弗
化沃素、塩素水素、塩化臭素、塩化沃素、臭化水素、臭
化沃素、沃化水素等の無機化合物、ハロゲン化アルキル
、ハロゲン化アリール、ハロゲン化スチレン、ハロゲン
化ポリメチレン、ハロホルム等の有機化合物が用いられ
る。
Compounds containing halogen elements include, for example, fluorine,
Inorganic compounds such as chlorine, bromine, iodine, hydrogen fluoride, chlorine fluoride, bromine fluoride, iodine fluoride, hydrogen chloride, bromine chloride, iodine chloride, hydrogen bromide, iodine bromide, hydrogen iodide, alkyl halides Organic compounds such as halogenated aryl, halogenated styrene, halogenated polymethylene, and haloform are used.

実際に、本発明の液晶表示装置をつくるには、まず絶縁
基板1′上に共通電極4′用の透明導体たとえばITO
,ZnO:10、ZnO:Si、 SnO,、In、0
3等をスパッタリング、蒸着等の方法で数百人から数−
厚に堆積させ、ストライプ状にパターニングして共通電
極4′とする。この共通電極4′を設けた絶縁基板1′
と先にHIM素子をマトリックス状に設けた高分子基板
lとの各々の表面にポリイミドの様な配向材8を付け、
ラビング処理を行ない、シール材を取付け、ギャップ材
9を入れてギャップを一定にし、液晶3を封入して液晶
表示装置とする(第3図)。
Actually, in order to manufacture the liquid crystal display device of the present invention, first, a transparent conductor for the common electrode 4', such as ITO, is placed on the insulating substrate 1'.
, ZnO:10, ZnO:Si, SnO,, In, 0
3rd grade by sputtering, vapor deposition, etc. from several hundred to several -
It is deposited thickly and patterned into stripes to form the common electrode 4'. Insulating substrate 1' provided with this common electrode 4'
An alignment material 8 such as polyimide is applied to each surface of the polymer substrate 1 on which HIM elements are previously provided in a matrix.
A rubbing process is performed, a sealing material is attached, a gap material 9 is inserted to make the gap constant, and a liquid crystal 3 is sealed to form a liquid crystal display device (FIG. 3).

〔発明の効果〕〔Effect of the invention〕

本発明に係る液晶表示装置によれば下記のような効果が
もたらされる。
The liquid crystal display device according to the present invention provides the following effects.

絶縁膜を硬質炭素膜とすることで、 1)プラズマCVD法等の気相合成法で作成されるため
、成膜条件によって物性が広範に制御でき、従ってデに
イス設計上の自由度が大きい、2)硬質でしかも厚膜に
できるため、機械的損傷を受は難く、また厚膜化による
ピンホールの減少も期待できる、 3)室温付近の低温においても良質な膜を形成できるの
で、基板材質に制約がない。
By using a hard carbon film as the insulating film, 1) Since it is created using a vapor phase synthesis method such as plasma CVD, the physical properties can be controlled over a wide range depending on the film formation conditions, and therefore there is a large degree of freedom in device design. , 2) Since it is hard and can be made into a thick film, it is less susceptible to mechanical damage, and pinholes can be expected to be reduced by thickening the film. 3) A high-quality film can be formed even at low temperatures near room temperature, so it can be used on substrates. There are no restrictions on materials.

4)膜厚、膜質の均一性に優れているため、薄膜デバイ
ス用として適している、 5)誘電率が低いので、高度の微細加工技術を必要とせ
ず、従って素子の大面積化に有利であり。
4) Excellent uniformity in film thickness and film quality, making it suitable for thin-film devices. 5) Low dielectric constant, requiring no advanced microfabrication technology, and therefore advantageous for increasing the area of devices. can be.

さらに誘電率が低いので素子の急峻性が高くI on/
 I off比がとれるので、低デユーティ比での駆動
が可能である、 また、絶縁基板を特定の高分子材料とすることで、上記
1)〜5)をそこなわず、 6)ガラス基板より軽い液晶表示装置となる、7)耐衝
撃性がありより薄い表示となり、8)液晶材料との屈折
率差が小さく、収差の少ない好画質となる、 等である。
Furthermore, since the dielectric constant is low, the steepness of the element is high and Ion/
Since the Ioff ratio can be maintained, it is possible to drive at a low duty ratio.Also, by using a specific polymer material as the insulating substrate, the above 1) to 5) are not impaired, and 6) It is lighter than a glass substrate. 7) It has impact resistance and a thinner display, and 8) It has a small refractive index difference with the liquid crystal material and has good image quality with less aberration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高分子基板の厚さと寸法精度及び不良発生率と
の関係を表わしたグラフである。 第2図はにIM素子と画像電極とが連続している状態を
表わした図である。 第3図は液晶表示装置の一部切欠斜視図である。 第4図は本発明におけるHIM素子の電流−電圧特性図
である。 第5図、第6図及び第7図は本発明における硬質炭素膜
の性質を説明するための図である。 l・・・高分子基板 1′・・・絶縁基板 2・・・硬
質炭素膜3・・・液晶    4・・・画素電極 4′
・・・共通電極5・・・能動素子  6・・・第2導体
(パスライン)7・・・第1導体(下地電極)   8
・・・配向膜9・・・ギャップ材 第 1 図 0.2  0.4 0.6 0.B  1.Oj、2 
 (ス)名發千蒸扱の番べ 第4 図 第5図
FIG. 1 is a graph showing the relationship between the thickness of a polymer substrate, dimensional accuracy, and failure rate. FIG. 2 is a diagram showing a state in which the IM element and the image electrode are continuous. FIG. 3 is a partially cutaway perspective view of the liquid crystal display device. FIG. 4 is a current-voltage characteristic diagram of the HIM element in the present invention. FIG. 5, FIG. 6, and FIG. 7 are diagrams for explaining the properties of the hard carbon film in the present invention. l...Polymer substrate 1'...Insulating substrate 2...Hard carbon film 3...Liquid crystal 4...Pixel electrode 4'
...Common electrode 5...Active element 6...Second conductor (pass line) 7...First conductor (base electrode) 8
...Alignment film 9...Gap material No. 1 Figure 0.2 0.4 0.6 0. B1. Oj, 2
(S) Number 4 of Meishin Senmu Handling Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)一対の絶縁基板間に液晶材料を挟持してなり、か
つ、少なくとも一方の基板上に設けられた複数個の画素
電極の各々に少なくとも1つの導体−絶縁膜−導体から
なる能動素子が接続されているアクティブ・マトリクス
型液晶表示装置において、前記絶縁基板はその少なくと
も一方が厚さ700μm以上、ガラス転移温度60℃以
上、可視光透過率80%以上である高分子板であり、ま
た、前記絶縁膜は硬質炭素膜であることを特徴とする液
晶表示装置。
(1) A liquid crystal material is sandwiched between a pair of insulating substrates, and each of the plurality of pixel electrodes provided on at least one substrate has at least one active element consisting of a conductor-insulating film-conductor. In the connected active matrix liquid crystal display device, at least one of the insulating substrates is a polymer plate having a thickness of 700 μm or more, a glass transition temperature of 60° C. or more, and a visible light transmittance of 80% or more, and A liquid crystal display device, wherein the insulating film is a hard carbon film.
JP33328889A 1989-12-22 1989-12-22 Liquid crystal display Expired - Fee Related JP2869436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33328889A JP2869436B2 (en) 1989-12-22 1989-12-22 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33328889A JP2869436B2 (en) 1989-12-22 1989-12-22 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH03192326A true JPH03192326A (en) 1991-08-22
JP2869436B2 JP2869436B2 (en) 1999-03-10

Family

ID=18264422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33328889A Expired - Fee Related JP2869436B2 (en) 1989-12-22 1989-12-22 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2869436B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713877B1 (en) * 1998-12-18 2007-07-18 비오이 하이디스 테크놀로지 주식회사 Tft-lcd

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713877B1 (en) * 1998-12-18 2007-07-18 비오이 하이디스 테크놀로지 주식회사 Tft-lcd

Also Published As

Publication number Publication date
JP2869436B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
JP3090979B2 (en) Thin film laminated device with substrate and method of manufacturing the same
JPH05313210A (en) Thin-film laminated device
JPH03192326A (en) Liquid crystal display device
JP3074209B2 (en) Thin film laminated device with substrate
JPH02259725A (en) Liquid crystal display device
JP2987531B2 (en) Liquid crystal display
JPH03185425A (en) Liquid crystal display device
JP2986933B2 (en) Thin film stacking device
JPH0486810A (en) Liquid crystal display device
JPH03181917A (en) Liquid crystal display device
JPH0486808A (en) Liquid crystal display device
JPH0411227A (en) Thin film two-terminal element
JPH04298722A (en) Thin film laminated device with substrate and production thereof
JPH04113324A (en) Liquid crystal display device
JP2989285B2 (en) Thin film laminated device with substrate
JPH04245229A (en) Thin film two-terminal element
JPH04223431A (en) Plastic film substrate for thin film laminated device and the device using the substrate
JPH04204717A (en) Substrate for active matrix
JPH03180818A (en) Liquid crystal projecting device
JPH0431832A (en) Liquid crystal display device
JPH04356025A (en) Thin film two-terminal element
JPH03238424A (en) Liquid crystal display device
JPH03238422A (en) Color liquid crystal display device
JPH02259729A (en) Liquid crystal display device
JPH05273600A (en) Plastic substrate for thin-film laminated device and thin-film laminated device with the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees