[go: up one dir, main page]

JPH0424831B2 - - Google Patents

Info

Publication number
JPH0424831B2
JPH0424831B2 JP61103785A JP10378586A JPH0424831B2 JP H0424831 B2 JPH0424831 B2 JP H0424831B2 JP 61103785 A JP61103785 A JP 61103785A JP 10378586 A JP10378586 A JP 10378586A JP H0424831 B2 JPH0424831 B2 JP H0424831B2
Authority
JP
Japan
Prior art keywords
active material
battery
secondary battery
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61103785A
Other languages
Japanese (ja)
Other versions
JPS6290863A (en
Inventor
Akira Yoshino
Kenichi Sanechika
Takayuki Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Publication of JPS6290863A publication Critical patent/JPS6290863A/en
Publication of JPH0424831B2 publication Critical patent/JPH0424831B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は新規な二次電池、更には小型、軽量二
次電池に関する。 [従来の技術] 近年、電子機器の小型化、軽量化は目覚まし
く、それに伴い電源となる電池に対しても小型軽
量化の要望が非常に大きい。一次電池の分野では
既にリチウム電池等の小型軽量電池が実用化され
ているが、これらは一次電池であるが故に繰り返
し使用できず、その用途分野は限られたものであ
つた。一方、二次電池の分野では従来より鉛電
池、ニツケル−カドミ電池が用いられてきたが両
者共、小型軽量化という点で大きな問題点を有し
ている。かかる観点から、非水系二次電池が非常
に注目されてきているが、未だ実用化に至つてい
ない。その理由の一つは該二次電池に用いる電極
活物質でサイクル性、自己放電特性等の実用物性
を満足するものが見出されていない点にある。 一方、従来のニツケル−カドミ電池、鉛電池な
どと本質的に異なる反応形式である層状化合物の
インターカレーシヨン、又はドーピング現象を利
用した新しい群の電極活物質が注目を集めてい
る。 かかる新しい電極活物質は、その充電、放電に
おける電気化学的反応において、複雑な化学反応
を起こさないことから、極めて優れた充放電サイ
クル性が期待されている。 例えば層状化合物のインターカレーシヨンを利
用した例として層状構造を有するカルコゲナイト
系化合物が注目されている。例えばLixTiS2、Lix
MoS3等のカルコゲナイト系化合物は比較的優れ
たサイクル性を有しているものの、起電力が低く
Li金属を負極に用いた場合でも、実用的な放電電
圧はせいぜい2V前後であり、非水系電池の特徴
と一つである高起電力という点で満足されるもの
ではなかつた。一方、同じく層状構造を有する
LixV2O5、LixV6O13、LixCoO2、LixNiO2等の金
属酸化物系化合物は高起電力という特徴を有する
点で注目されている。しかしながらこれらの金属
酸化物系化合物はサイクル性、利用率、即ち実際
に充放電に利用し得る割合、更には充放電時にお
ける過電圧といつた面での性能が劣り、やはり未
だ実用化に至つていない。 特に、特開昭55−136131号で開示されている
LixCoO2、LixNiO2等の二次電池正極はLi金属を
負極として用いた場合4V以上の起電力を有し、
しかも理論的エネルギー密度(正極活物質当り)
は1100Whr/Kg以上という驚異的な値を有してい
るにも拘らず、実際に充放電に利用し得る割合は
低く、理論値には程遠いエネルギー密度しか得ら
れない。 アメリカ特許第4497726号明細書には、正極に、
一般式LixMyM′zO22-oFnで表わされる金属酸化物
系化合物を用いることが示されている。しかし、
これによつても、上記諸問題を十分解消するには
至つていない。 一方、ドーピング現象を利用した電極活物質の
例として、例えば導電性高分子を電極材料に用い
た新しいタイプの二次電池が例えば特開昭56−
136469号公報に記載されている。しかしながら、
かかる導電性高分子を用いた二次電池も、不安定
性、即ち低いサイクル性、大きな自己放電等の問
題点が未解決で未だ実用化に至つていない。 又、特開昭58−35881、特開昭59−173979、特
開昭59−207568号公報には、活性炭等の高表面積
炭素材料を電極材料に用いることが提案されてい
る。かかる電極材料はドーピング現象と異なるそ
の高表面積に基く電気二重層形成によると思われ
る特異な現象が見出されており、特に正極に用い
た場合に優れた性能を発揮するとされている。
又、一部には負極にも用いられることが記載され
ているが、かかる高表面積炭素材料を負極として
用いた場合はサイクル特性、自己放電特性に大き
な欠点を有しており、又、利用率、即ち炭素1原
子当りに可逆的に出入りし得る電子、(又は対陽
イオン)の割合が極めて低く、0.05以下、通常は
0.01〜0.02であり、これは二次電池の負極として
用いた場合重量、体積共に極めて大きくなること
を意味し、実用化に際しての大きな欠点を有して
いる。 又、特開昭58−209864号公報にはフエノール系
繊維の炭化物で水素原子/炭素原子の比が0.33〜
0.15の範囲の炭素質材料を電極材料に用いること
が記載されている。主に陰イオンでp−ドープし
正極材料として用いた場合に優れた特性を発揮す
るとされており、同時に陽イオンでn−ドープし
負極材料として用い得る旨の記載もなされてい
る。しかしながら、かかる材料もやはりそのn−
ドープ体を負極として用いた場合、サイクル性、
自己放電特性に大きな欠点を有すると共に、利用
率も極めて低く実用上大きな欠点を有するもので
あつた。 又、古くから黒鉛層間化合物を二次電池電極材
料として用いられ得ることが知られており、特に
Br 、ClO4 、BF4 イオン等の陰イオンを取
り込んだ黒鉛層間化合物を正極として用いること
は公知である。一方Li イオン等の陽イオンを取
り込んだ黒鉛層間化合物を負極として用いること
は当然考えられ、事実、例えば特開昭59−143280
号公報に、陽イオンを取り込んだ黒鉛層間化合物
を負極として用いることが記載されている。 しかしながらかかる陽イオンを取り込んだ黒鉛
層間化合物は極めて不安定であり、特に電解液と
極めて高い反応性を有していることは、エイ・エ
ヌ・デイ(A.N.Dey)等の「ジヤーナル・オ
ブ・エレクトロケミカル・ソサエテイー
(Journal of Electrochemical Society)vol117
No.2P.222〜224 1970年」の記載から明らかであ
り、層間化合物を形成し得る黒鉛、グラフアイト
を負極として用いた場合、自己放電等電池として
の安定性に欠けると共に、前述の利用率も極めて
低く実用に耐え得るものではなかつた。 英国公開特許第2150741号明細書には、二次電
池の電極として、表面積が0.1m2/g〜50m2/g
の炭素質材料が適している旨示されており、また
特開昭58−93176号公報には、高分子焼成体を正
極と負極の両者又はいずれか一方に用いることが
示されていると共に、高分子焼成体の密度は1.8
g/cm3以下が好ましい旨示されている。しかし、
これらによつても、上記諸問題を十分解消するに
は至つていない。 [発明が解決しようとする問題点] 前述の如く、インターカレーシヨン又はドーピ
ングを利用した新しい群の電極活物質は、本来期
待されている性能を未だに実用的な観点からは実
現していないのが現状である。 [問題点を解決するための手段及び作用] 本発明は前述の問題点を解決し、電池性能、特
にサイクル性、自己放電特性に優れた高性能、高
エネルギー密度の小型軽量二次電池を提供するた
めになされたものである。 本第一発明は、正電極、負電極、セパレーター
及び非水電解液を有する二次電池であつて、下記
を正電極の活物質として、下記を負電極の活
物質として用いることを特徴とする二次電池を提
供するものである。 :非炭素質材料。 :BET法比表面積A(m2/g)が0.1<A<100
の範囲で、かつX線回折における結晶厚みLc
(Å)と真密度ρ(g/cm3)の値が条件1.80<ρ
<2.18、15<Lcかつ120ρ−227<Lc<120ρ−
189を満たす範囲にある炭素質材料。 上記本第一発明において、正極の活物質として
用いられる非炭素質材料としては、層構造を有
し、一般式 AxMyNzO2 (但しAはアルカリ金属から選ばれた少なくとも
一種であり、Mは遷移金属であり、NはAl、In、
Snの群から選ばれた少なくとも一種を表わし、
x、y、zは各々0.05≦x≦1.10、0.85≦y≦
1.00、0.001≦z≦0.10の数を表わす。)で示され
る複合酸化物が最適である。 また、本第二発明は、正電極、負電極、セパレ
ーター及び非水電解液を有する二次電池であつ
て、下記を正電極の活物質として用いることを
特徴とする二次電池を提供するものである。 :層状構造を有し、一般式 AxMyNzO2 (但しAはアルカリ金属から選ばれた少なくとも
一種であり、Mは遷移金属であり、NはAl、In、
Snの群から選ばれた少なくとも一種を表わし、
x、y、zは各々0.05≦x≦1.10、0.85≦y≦
1.00、0.001≦z≦0.10の数を表わす。)で示され
る複合酸化物。 本発明の新規な層状複合金属酸化物は一般式
AxMyNzO2で示されるものであつて、Aはアルカ
リ金属から選ばれた少なくとも一種、例えばLi、
Na、Kであり、中でもLiが好ましい。xの値は
充電状態、放電状態により変動し、その範囲は
0.05≦x≦1.10である。即ち充電によりAイオ
ンのデイインターカレーシヨンが起こり、xの値
は小さくなり、完全充電状態においてはxの値は
0.05に達する。又、放電によりAイオンのイン
ターカレーシヨンが起こりxの値は大きくなり、
完全放電状態においてはxの値は1.10に達する。 又、Mは遷移金属を表わし、中でもNi、Coが
好ましい。yの値は充電、放電により変動しない
が、0.85≦y≦1.00の範囲である。yの値が0.85
未満及び1.00を越す場合には二次電池用活物質と
して充分な性能、即ちサイクル性の低下、過電圧
の上昇等の現象が発生し好ましくない。 NはAl、In、Snの群から選ばれた少なくとも
一種であり、中でもSnが好ましい。本発明の新
規な二次電池用活物質において、Nの働きは極め
て重要であり、サイクル性の向上、特に深い充
電、深い放電サイクルにおいて極めて優れたサイ
クル性を発揮する。zの値は充電、放電により変
動しないが、0.001≦z≦0.10の範囲、好ましく
は0.005≦z≦0.075の範囲である。zの値が0.001
未満の場合、Nの効果が充分発揮されず、前述の
深い充電、深い放電におけるサイクル性が低いと
共に、深い充電時における過電圧が著しく上昇し
好ましくない。又、zの値が0.10を越す場合に
は、吸湿性が余りに強くなり、扱いが困難になる
と共に、二次電池用活物質としての基本特性が損
われ好ましくない。 かかる本発明の新規な二次電池活物質用複合酸
化物を製造するには、A、M、N各々の金属の酸
化物、水酸化物、炭酸塩、硝酸塩、有機酸塩等を
混合せしめた後、空気中又は酸素雰囲気下におい
て600℃〜950℃、好ましくは700℃〜900℃の温度
範囲で焼成することにより得られる。 焼成時間は通常5〜48時間程度で充分である。
かかる方法により得られるAxMyNzO2は、二次電
池正極としての放電状態、即ちxの値は通常0.90
〜1.10の範囲のものが得られる。 かくして得られるAxMyNzO2は前述の如く充
電、放電によるデイインターカレーシヨン反応、
及びインターカレーシヨン反応により、xの値は
0.05≦x≦1.10の範囲を変動する。 該反応を式で示せば、 Ax′MyNzO2充電 放電Ax″MyNzO2 +(x′−x″)A +(x′−x″)e で表わされる。(ここでx′は充電前のxの値を表
わし、x″は充電後のxの値を表わす。) 前述の利用率は下式 利用率=x′−x″/y+z×100(%) で定義される値である。 本発明の新規な非水系二次電池用活物質はこの
利用率が大きいことを特徴とし、即ち深い充電、
放電に対し極めて安定なサイクル性を有する。 本発明の新規な二次電池活物質用複合酸化物
は、Li標準電位に対し、3.9〜4.5Vと非常に貴な
電位を有し、特に非水二次電池の正極として用い
た場合に特に優れた性能を発揮する。 一方、本発明で用いられる炭素質材料は後述の
BET法比表面積A(m2/g)が0.1より大きく、
100未満でなければならない。好ましくは0.1より
大きく50未満、更に好ましくは0.1より大きく25
未満の範囲である。 0.1m2/g以下の場合は余りに表面積が小さく、
電極表面での円滑な電気化学的反応が進行しにく
く好ましくない。又、100m2/g以上の比表面積
を有する場合は、サイクル寿命特性、自己放電特
性、更には電流効率特性等の面で特性の低下が見
られ好ましくない。かかる現象は余りに表面積が
大きいが故に電極表面での種々の副反応が起こ
り、電池性能に悪影響を及ぼしているものと推察
される。 又、後述のX線回折における結晶厚みLc(Å)
と真密度ρ(g/cm3)の値が下記条件、即ち1.80
<ρ<2.18、15<Lcかつ120ρ−227<Lc<120ρ−
189の範囲でなければならない。好ましくは1.80
<ρ<2.18、15<Lcかつ120ρ−227<Lc<120ρ−
196、更に好ましくは1.96<ρ<2.16、15<Lcか
つ120ρ−227<Lc<120ρ−196の範囲である。 本発明において、該炭素質材料のn−ドープ体
を安定な電極活物質として用いる場合、前述のX
線回折における結晶厚みLc(Å)と真密度ρ
(g/cm3)の値は極めて重要である。 即ち、ρの値が1.80以下又はLcの値が15又は
120ρ−227以下の場合は、炭素質材料が十分に炭
化していない、即ち炭素の結晶成長が進んでおら
ず、無定形部分が非常に多いことを意味する。
又、その為、この範囲にある炭素質材料はその炭
化過程において表面積が必然的に大きくなり、本
発明の範囲のBET法比表面積の値を逸脱する。
かかる炭素質材料のn−ドープ体は極めて不安定
であり、ドープ量も低く、実質的にn−ドープ体
として安定に存在することができず、電池活物質
として用いることはできない。 一方、ρの値が2.18以上又はLcの値が120ρ−
189の値以上の場合、炭素質材料の炭化が余りに
進み過ぎたものとなる。即ち炭素の結晶化の進ん
だ黒鉛、グラフアイトに近い構造を有しているこ
とを意味する。 かかる炭素質材料の構造を示すパラメーターと
して、本発明で限定する、真密度ρ(g/cm3)、結
晶厚みLc(Å)、BET法比表面積A(m2/g)以外
に、例えばX線回折における層間面間隔d002(Å)
が挙げられる。かかる面間隔d002(Å)の値は結
晶化の進行と共に小さくなり、特に限定はしない
が、3.43Å未満、更には3.46Å未満の値を有する
炭素質材料は、本発明で限定する範囲から逸脱す
る。 一方、前記ラーマンスペクトルにおける強度比
R(I1360cm-1/I1580cm-1)の値も又、炭素質材
料の構造を示すパラメーターであり、かかる強度
比Rは結晶化の進行と共に小さくなり、特に限定
はしないが0.6未満又は2.5以上の範囲、更には0.7
未満又は2.5以上の範囲の値を有する炭素質材料
は本発明で限定する範囲から逸脱する。 前述の如く、黒鉛、グラフアイトは規則的な層
上構造を有しており、かかる構造の炭素材料は
種々のイオンをゲストとする層間化合物を形成す
ること、特にClO4 、BF4 等の陰イオンとのP
型の層間化合物は高い電位を有し、二次電池正極
として用いようとの試みは古くからなされてい
る。かかる目的の場合層間化合物を形成し易いこ
とが必須条件であり、例えば特開昭60−36315号
公報に記載の如く、前記ラーマン強度比R(I1360
cm-1/I1580cm-1)は可及的に小さいこと、即ち、
ρの値及びLcの値は可及的に大きいことが必須
条件であつた。 本発明者らは別の観点から炭素質材料に陰イオ
ンではなくLi イオン等の陽イオンを取り込ませ
ることを種々検討する過程において意外な事実を
見出した。即ちLi イオン等の陽イオンを取り込
ませる場合、該炭素質材料はある程度の不規則構
造を有している方が優れた特性を有することを見
出した。即ち、ρの値が2.18以上、又はLcの値が
120ρ−189の値以上を有する炭素質材料を用いた
場合、前述の如く、黒鉛、グラフアイト的な挙動
が発現し、サイクル寿命特性、自己放電特性が悪
く、更には利用率が著しく低く、極端な場合二次
電池として実質的に働かない場合もあり好ましく
ない。 かかる本発明の条件を満たす炭素質材料として
例えば、種々の有機化合物の熱分解、又は焼成炭
化により得られる。この場合、熱履歴温度条件は
重要であり、前記の如く、余りに熱履歴温度が低
い場合には炭化が十分でなく、電気電導度の小さ
いのみならず本発明の条件とする炭素質材料とな
らない。その温度下限は物により若干異なるが、
通常600℃以上、好ましくは800℃以上である。更
に重要なのは熱履歴温度上限であり、通常の黒
鉛、グラフアイトや炭素繊維製造で行われている
3000℃に近い温度での熱処理は、結晶の成長が余
りに進み過ぎ、二次電池としての機能が著しく損
われる。2400℃以下、好ましくは1800℃以下、更
には1400℃以下が好ましい範囲である。かかる熱
処理条件において、昇温速度、冷却速度、熱処理
時間等は目的に応じ任意の条件を選択することが
できる。又、比較的低温領域で熱処理をした後、
所定の温度に昇温する方法も採用される。 本発明の条件範囲を満たす炭素質材料の一例を
示せば、例えば気相成長法炭素繊維が挙げられ
る。該気相成長法炭素繊維は例えば、特開昭59−
207823号公報に記載の如く、ベンゼン、メタン、
一酸化炭素等の炭素源化合物を遷移金属触媒等の
存在下気相熱分解(例えば600℃〜1500℃の温度
において)せしめて得られる炭素材料であり、公
知のこれに類する方法によつて得られる全てのも
のを言い、繊維を基材上(例えば、セラミツク
ス、グラフアイトの基板、カーボンフアイバー、
カーボンブラツク、セラミツクス粒子等である。)
に生成せしめる方法や気相に生成せしめる方法等
が知られている。通常かかる方法により繊維状、
即ち炭素繊維として得られるが、本発明において
は繊維状としてそのまま用いても良いが、粉砕さ
れた粉粒状として用いても良い。 かかる気相成長炭素繊維が易黒鉛化炭素の典型
例であることは公知の事実である。即ち熱処理に
より極めて容易に黒鉛グラフアイト化するという
特徴を有している。通常かかる熱処理は2400℃以
上の温度下で行われる。かくして得られる黒鉛化
気相成長炭素繊維は極めて結晶構造の整つた黒鉛
材料として種々の特徴が既に報告されており、例
えば遠藤らが「シンセテイツク・メタルズ
(Synthetic Metals)vol 7P.203、1983年」に記
載の如くBr 等の陰イオンと極めて容易に層間
化合物を形成すること、更にはかかる陰イオンと
の層間化合物を正極及び負極に用いて温度差電池
をつくり得ることが知られている。しかしなが
ら、かかる電池系は通常起電力が極めて低く実用
に耐えるものではなかつた。 一方、前述の如く、黒鉛、グラフアイトは規則
的な層状構造を有しており、かかる構造の炭素材
料は種々のイオンをゲストとする層間化合物を形
成すること、特にClO4 、BF4 等の陰イオンと
の層間化合物は高い電位を有し、二次電池正極と
して用いようとの試みは古くからなされている。
かかる目的の場合層間化合物を形成し易いことが
必須条件であり、例えば特開昭60−36315号公報
に記載の如く、3000℃近い熱処理をした黒鉛、グ
ラフアイト構造が必須条件であつた。本発明者ら
は別の観点から炭素質材料に陰イオンではなくLi
イオン等の陽イオンを取り込ませたn−ドープ
体を種々検討する過程において意外な事実を見出
した。即ちLi イオン等の陽イオンを取り込ませ
る場合、該炭素質材料は過度の熱履歴を経ない方
が優れた特性を有することを見出した。 即ち本発明において用いられる気相成長炭素繊
維は、製造工程も含めた最高の熱履歴温度が2400
℃以下、好ましくは2000℃以下、特に1400℃以下
が好適に用いられる。2400℃を越すとそのn−ド
ープ体の特性に悪影響を与え好ましくない。 又、他の例を示せば、ピツチ系炭素質材料が挙
げられる。本発明で用いられるピツチ類の一例を
示せば、石油ピツチ、アスフアルトピツチ、コー
ルタールピツチ、原油分解ピツチ、石油スラツジ
ピツチ等の石油、石炭の熱分解により得られるピ
ツチ、高分子重合体の熱分解により得られるピツ
チ、テトラベンゾフエナジン等の有機低分子化合
物の熱分解により得られるピツチ等が挙げられ
る。 本発明の条件を満たすピツチ系焼成炭化物を得
るには熱履歴温度条件が重要であり、前述の如く
高い温度での熱履歴は結晶化が進み過ぎた焼成炭
化物を与え、n−ドープ体の特性が著しく悪化す
る。熱履歴温度条件としては2400℃以下、好まし
くは1800℃以下、更には1400℃以下が好ましい範
囲である。 又、温度下限としては少なくとも焼成炭化物と
して、電気電導度等の特性の発現し始める温度
600℃以上、更には800℃以上が好ましい範囲であ
る。 かかるピツチ系焼成炭化物の具体例を示せば、
ニードルコークス等が挙げられる。 更に本発明で用いられる炭素質材料を例示すれ
ば、アクリロニトリルを主成分とする重合体の焼
成炭化物が挙げられる。 本発明の条件を満たすアクリロニトリルを主成
分とする重合体の焼成炭化物を得るには熱履歴温
度条件が重要であり、前述の如く高い温度での熱
履歴は結晶の余りに成長し過ぎた焼成炭化物を与
え、そのn−ドープ体の特性が著しく悪化する。
熱履歴温度条件としては2400℃以下、好ましくは
1800℃以下、更には1400℃以下が好ましい範囲で
ある。 又、温度下限としては少なくとも焼成炭化物と
して、電気電導度等の特性の発現し始める温度
600℃以上、更には800℃以上が好ましい範囲であ
る。 本発明の炭素質材料が通常の黒鉛、グラフアイ
トと異なるところは、層間化合物を形成し得るよ
うな層状構造を有していないことで、これはX線
分析、ラーマン分析、真密度測定等の結果から明
らかである。事実本発明の条件範囲の炭素質材料
は黒鉛、グラフアイトと非常に層間化合物を形成
し易いClO4 、BF4 、Br 等の陰イオンは全
く取り込まない、又は非常に取り込みにくいとい
う事実がある。 又、前記特開昭58−35881号公報の例の如く、
活性炭等の高表面積炭素材料に見られる表面での
電気二重層形成、即ち一種のコンデンサー的挙動
と異なり、本発明の場合、表面積と電池性能が全
く相関性のないこと、むしろ逆に表面積が大きい
と、電流効率、自己放電等の性能面においてマイ
ナスになること等の事実がある。 かかる事実が従来公知の炭素材料で見出されて
いる現象と異つており、二次電池活物質として用
いた場合、次の特性を発揮する。サイクル寿命特
性として少なくとも100回以上、ものにより300回
以上、更には500回以上のサイクル寿命特性を有
する。又、充放電における電流効率は少なくとも
90%以上、ものにより95%以上、更には98%以上
に達する。自己放電率は少なくとも30%/月以
下、ものにより20%/月以下、更には10%/月以
下に達する。更に本発明の条件を満たす炭素質材
料の特徴の一つは利用率が非常に大きいことが挙
げられる。 本発明で云う利用率とは炭素1原子当りに可逆
的に出入りし得る電子(又は対陽イオン)の割合
を意味し、下式で定義される。 利用率=充放電電気量(Ahr単位)/w(g単位
)/12×26.8 ここでwは用いた炭素質材料の重量(g単位)
を表わす。 本発明において利用率は少なくとも0.08以上、
更には0.15以上に達し、少ない重量、体積で多く
の電気量を蓄えることが可能である。 本発明の炭素質材料のn−ドープ体は二次電池
活物質として用いた場合優れた性能を発揮し、特
に負極活物質として用いた場合、更に優れた性能
を発揮する。 次に本発明の活物質を用いた二次電池について
述べる。本発明の二次電池用活物質を用い、電極
を製造するに際し、該活物質は種々の形状で用い
ることができる。 即ち、フイルム状、繊維状、粉末状等任意の形
状で目的に応じ用いられるが、特に粉末状で用い
る場合には、該活物質をシート状等任意の形状に
成形して用いることができる。 成形方法としては、活物質をテフロン粉末、ポ
リエチレン粉末等の粉末状バインダーと共に混合
し圧縮成形する方法が一般的である。 更に好ましい方法として溶媒に溶解及び/又は
分散した有機重合体をバインダーとして電極活物
質を成形する方法が挙げられる。 従来より非水系電池は高エネルギー密度、小型
軽量といつた性能面では優れているものの、水系
電池に比べ出力特性に難点があり、広く一般に用
いられるまでに至つていない。特に出力特性が要
求される二次電池の分野ではこの欠点が実用化を
妨げている一つの要因となつている。 非水系電池が出力特性に劣る原因は水系電解液
の場合イオン電導度が高く、通常10-1Ω-1cm-1
ーダーの値を有するのに対し、非水系の場合通常
10-2〜10-4Ω-1cm-1と低いイオン電導度しか有し
ていないことに起因する。 かかる問題点を解決する一つの方法として電極
面積を大きくすること、即ち薄膜、大面積電極を
用いることが考えられる。 前記方法は、かかる薄膜、大面積電極を得るの
に特に好ましい方法である。 かかる有機重合体をバインダーとして用いるに
際しては、該有機重合体を溶媒に溶解せしめたバ
インダー溶液に電極活物質を分散せしめたものを
塗工液として用いる方法、又、該有機重合体の水
乳化分散液に電極活物質を分散せしめたものを塗
工液として用いる方法、予め予備成形された電極
活物質に該有機重合体の溶液及び/又は分散液を
塗布する方法等が一例として挙げられる。用いる
バインダー量は特に限定するものではないが、通
常、電極活物質100重量部に対し0.1〜20重量部、
好ましくは0.5〜10重量部の範囲である。 ここで用いられる有機重合体は特に限定される
ものではないが、該有機重合体が25℃、周波数
1kHzにおける比誘電率が4.5以上の値を有する場
合、特に好ましい結果をもたらし、特に電池性能
として、サイクル性、過電圧等の面で優れた特性
を有する。 かかる条件を満たす有機重合体の一例を示せ
ば、アクリロニトリル、メタクリロニトリル、フ
ツ化ビニル、フツ化ビニリデン、クロロプレン、
塩化ビニリデン等の重合体もしくは共重合体、ニ
トロセルロース、シアノエチルセルロース、多硫
化ゴム等が挙げられる。 かかる方法により電極を製造するに際し、前記
塗工液を基材上に塗布乾燥することにより成形さ
れる。この時要すれば集電体材料と共に成形して
も良いし、又、別法としてアルミ箔、銅箔等の集
電体を基材として用いることもできる。 本発明の活物質を用いて製造される電池電極に
は、前記バインダー、導電補助剤、その他添加
剤、例えば増粘剤、分散剤、増量剤、粘着補助剤
等が添加されても良いが、少なくとも本発明の活
物質が25重量%以上含まれているものを言う。 導電補助剤としては、金属粉、導電金属酸化物
粉、カーボン等が挙げられる。特にかかる導電補
助剤の添加は本発明の:AxMyNzO2を用いる場
合に顕著な効果が見出される。 中でも、好ましい結果を与えるのはカーボンで
あり、通常:AxMyNzO2100重量部に対し1〜
30重量部の添加により著しい過電圧を低下効果が
発現し、優れたサイクル特性を発揮する。 ここで云うカーボンとは、本発明で限定する炭
素質材料とは全く異なる特性が要求されるもの
であり、必ずしも特定されたカーボンを意味する
ものではない。 かかるカーボンとして、グラフアイト、カーボ
ンブラツク等が挙げられる。特に好ましい組合せ
として、平均粒径0.1〜10μmのカーボンと平均粒
径0.01μm〜0.08μmのカーボンを混合して用いた
場合、特に優れた効果を与える。 前述の如く本発明の活物質:AxMyNzO2は正
極として用いた場合に特に優れた性能を発揮す
る。この時用いられる負極としては特に限定され
ないが、Li、Na等の軽金属又はその合金負極、
LixFe2O3、LixFe3O4、LixWO2等の金属酸化物系
負極、ポリアセチレン、ポリ−p−フエニレン等
の導電性高分子負極、気相成長法炭素繊維、ピツ
チ系カーボン、ポリアクリロニトリル系炭素繊維
等の炭素質材料負極等が挙げられる。 一方、本発明の活物質は、前述の如く負極と
して用いた場合に特に優れた性能を発揮する。こ
の時用いられる正極としては特に限定されない
が、一例で示せば、TiS2、TiS3、MoS3、FeS2
Li(1-x)MnO2、Li(1-x)CoO2、Li(1-x)NiO2、V2O5
V6O13が挙げられる。 特に好ましい組合せとして、本発明の活物質
:AxMyNzO2を正極として、本発明の活物質
を負極として用いる組合せが最も好ましい。 本発明の非水系二次電池を組立てる場合の基本
構成要素として、前記本発明の活物質を用いた電
極、更にはセパレーター、非水電解液が挙げられ
る。セパレーターとしては特に限定されないが、
織布、不織布、ガラス織布、合成樹脂微多孔膜等
が挙げられるが、前述の如く、薄膜、大面積電極
を用いる場合には、例えば特開昭58−59072号に
開示される合成樹脂微多孔膜、特にポリオレフイ
ン系微多孔膜が、厚み、強度、膜抵抗の面で好ま
しい。 非水電解液の電解質としては特に限定されない
が、一例を示せば、LiClO4、LiBF4、LiAsF6
CF3SO3Li、LiPF6、LiI、LiAlCl4、NaClO4
NaBF4、NaI、(n−Bu)4N ClO4、(n−
Bu)4N BF4、KPF6等が挙げられる。又、用い
られる電解液の有機溶媒としては、例えばエーテ
ル類、ケトン類、ラクトン類、ニトリル類、アミ
ン類、アミド類、硫黄化合物、塩素化炭化水素
類、エステル類、カーボネート類、ニトロ化合
物、リン酸エステル系化合物、スルホラン系化合
物等を用いることができるが、これらのうちでも
エーテル類、ケトン類、ニトリル類、塩素化炭化
水素類、カーボネート類、スルホラン系化合物が
好ましい。更に好ましくは環状カーボネート類で
ある。 これらの代表例としては、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、1,4−ジ
オキサン、アニソール、モノグライム、アセトニ
トリル、プロピオニトリル、4−メチル−2−ペ
ンタノン、ブチロニトリル、バレロニトリル、ベ
ンゾニトリル、1,2−ジクロロエタン、γ−ブ
チロラクトン、ジメトキシエタン、メチルフオル
メイト、プロピレンカーボネート、エチレンカー
ボネート、ビニレンカーボネート、ジメチルホル
ムアミド、ジメチルスルホキシド、ジメチルチオ
ホルムアミド、スルホラン、3−メチル−スルホ
ラン、リン酸トリメチル、リン酸トリエチルおよ
びこれらの混合溶媒等をあげることができるが、
必ずしもこれらに限定されるものではない。 更に要すれば、集電体、端子、絶縁板等の部品
を用いて電池が構成される。又、電池の構造とし
ては、特に限定されるものではないが、正極、負
極、更に要すればセパレーターを単層又は複層と
したペーパー型電池、積層型電池、又は正極、負
極、更に要すればセパレーターをロール状に巻い
た円筒状電池等の形態が一例として挙げられる。 [発明の効果] 本発明の電池は小型軽量であり、特にサイクル
特性、自己放電特性に優れ、小型電子機器用、電
気自動車用、電力貯蔵用等の電源として極めて有
用である。 [実施例] 以下、実施例、比較例により本発明を更に詳し
く説明する。 尚、BET法比表面積(以下「BET表面積」と
いう)は、柴田科学器械工業(株)製BET表面積測
定装置P−700を用いて、窒素吸着法により測定
した。又、X線回折は「日本学術振興会法」に準
じて行つた。また、真密度は、炭素質材料をメノ
ウ乳鉢で150メツシユ標準篩を通過するように粉
砕した粉末を試料とし、25℃でブロモホルム、四
塩化炭素混合溶液を用いる浮沈法により測定し
た。真密度が分布を有する試料に関しては、粉末
粒子の全体の約50%が沈降するところの値を測定
値とした。 比誘電率の測定は下記の条件で行つた。 (測定温度) 25℃ (測定周波数) 1kHz (試料形状) 0.5mm厚シート (測定装置)
TR−10C型誘電体積測定器(安藤電気(株)社製) 実施例 1 アントラセン油をAr雰囲気下で室温より5
℃/分で昇温し、1200℃で1時間焼成炭化した。
この炭素質材料のBET表面積、X線回折から得
られるLc(002)、真密度はそれぞれ60m2/g、25
Å、2.01g/cm3であつた。この試料をボールミル
粉砕した平均粒径2μmの粉末1重量部をニトリ
ルゴム(比誘電率17.3)のメチルエチルケトン溶
液(2wt%濃度)2.5重量部と混合し塗工液とし、
10μmの銅箔1cm×5cmの表面に75μmの厚みに
製膜した。 これをSUSネツトにはさみ、第1図に示す電
池の負極とした。 一方、炭酸リチウム1.05モル、酸化コバルト
1.90モル、酸化第2スズ0.084モルを混合し、650
℃で5時間仮焼した後、空気中で850℃、12時間
焼成したところ、Li1.03Co0.95Sn0.042O2の組
成を有する複合酸化物を得た。この複合酸化物を
ボールミルで平均3μmに粉砕した後、複合酸化
物1重量部に対し、アセチレンブラツク0.1重量
部、ポリアクリロニトリル(比誘電率5.59)のジ
メチルホルムアミド溶液(濃度2wt%)1重量部
と混合した後、15μmアルミ箔1cm×5cmの片面
に100μmの膜厚に塗布した。 これをSUSネツトではさんだものを正極とし、
0.6モル濃度のLiClO4プロピレンカーボネート溶
液を電解液として電池評価を行つた。 セパレーターとして、ポリエチレン微多孔膜
35μmを用いた。 定電流2mAで充電を50分行つたところ、開放
端子電圧3.9Vを示した。この充電により、炭素
1原子当り取り込まれたLi イオンの割合、即
ち、利用率は0.12であつた。この後、同じく定電
流2mAで2.7Vまで放電を行つた。この時の充
電電圧及び放電電圧は第2図に示す通りであり、
過電圧は0.04Vと極めて低かつた。以後、定電流
2mAの充放電サイクル(充電終止電圧3.95V、
放電終止電圧2.7V)を行つた。サイクルに伴う
電流効率及び利用率の変化を第3図−Aに示す。
5サイクル目でのエネルギー密度(負極活物質当
り)は911Whr/Kgであつた。 又、この電池の720時間、25℃放置での自己放
電率は15%であつた。 実施例2〜6、比較例1〜5 第1表に示す素原料を同じく第1表に示す処理
条件で焼成炭化、もしくは熱処理して得られた炭
素質材料を用い、実施例1と同様の電池評価を行
つた。 このテストにおいて、電流効率及び炭素1原子
当り可逆的に取り込まれるLi イオンの割合、即
ち利用率は第1表に示す通りであつた。 併せてBET表面積、X線回折から得られる
Lc(002)、真密度を示す。 又、比較例2については、長期サイクルにおけ
る電流効率、及び利用率の変化を第3図−Bに示
す。5サイクル目でのエネルギー密度(負極活物
質当り)は288Whr/Kgであつた。尚、この比較
例2での電池の720時間(25℃)放置での自己放
電は85%であつた。
[Industrial Application Field] The present invention relates to a novel secondary battery, and more particularly to a small and lightweight secondary battery. [Prior Art] In recent years, electronic devices have become smaller and lighter, and there is a great demand for batteries that serve as power sources to be smaller and lighter. In the field of primary batteries, small and lightweight batteries such as lithium batteries have already been put into practical use, but because these are primary batteries, they cannot be used repeatedly, and their fields of application have been limited. On the other hand, in the field of secondary batteries, lead batteries and nickel-cadmium batteries have conventionally been used, but both have major problems in terms of miniaturization and weight reduction. From this point of view, non-aqueous secondary batteries have attracted much attention, but have not yet been put into practical use. One of the reasons for this is that no electrode active material used in the secondary battery has been found that satisfies practical physical properties such as cyclability and self-discharge characteristics. On the other hand, a new group of electrode active materials that utilize the intercalation or doping phenomenon of layered compounds, which are essentially different reaction types from conventional nickel-cadmium batteries, lead batteries, etc., are attracting attention. Such new electrode active materials do not cause complex chemical reactions during electrochemical reactions during charging and discharging, and are therefore expected to have extremely excellent charge-discharge cycle performance. For example, chalcogenite compounds having a layered structure are attracting attention as an example of utilizing intercalation of layered compounds. For example, Li x TiS 2 , Li x
Although chalcogenite compounds such as MoS 3 have relatively good cyclability, their electromotive force is low.
Even when Li metal is used for the negative electrode, the practical discharge voltage is around 2V at most, which is not satisfactory in terms of high electromotive force, which is one of the characteristics of non-aqueous batteries. On the other hand, it also has a layered structure.
Metal oxide compounds such as Li x V 2 O 5 , Li x V 6 O 13 , Li x CoO 2 , and Li x NiO 2 are attracting attention because of their high electromotive force. However, these metal oxide compounds have inferior performance in terms of cycleability, utilization rate, that is, the ratio that can actually be used for charging and discharging, and furthermore, in terms of overvoltage during charging and discharging, so they have not yet been put into practical use. Not yet. In particular, it is disclosed in Japanese Patent Application Laid-open No. 55-136131.
Secondary battery positive electrodes such as Li x CoO 2 and Li x NiO 2 have an electromotive force of 4V or more when Li metal is used as the negative electrode.
Moreover, the theoretical energy density (per positive electrode active material)
Although it has an amazing value of 1100 Whr/Kg or more, the proportion that can actually be used for charging and discharging is low, and the energy density obtained is far from the theoretical value. US Pat. No. 4,497,726 states that the positive electrode,
It has been shown that a metal oxide compound represented by the general formula Li x M y M′ z O 22-o Fn is used. but,
Even with this, the above-mentioned problems have not been sufficiently solved. On the other hand, as an example of an electrode active material that utilizes a doping phenomenon, a new type of secondary battery that uses a conductive polymer as an electrode material, for example,
It is described in Publication No. 136469. however,
Secondary batteries using such conductive polymers also have unresolved problems such as instability, ie, low cycleability, and large self-discharge, and have not yet been put into practical use. In addition, JP-A-58-35881, JP-A-59-173979, and JP-A-59-207568 propose the use of high surface area carbon materials such as activated carbon as electrode materials. A unique phenomenon has been found in such electrode materials, which is different from the doping phenomenon and is thought to be caused by the formation of an electric double layer based on the high surface area of the electrode materials, and it is said that they exhibit excellent performance especially when used in positive electrodes.
In addition, some documents describe that such high surface area carbon materials can be used as negative electrodes, but when such high surface area carbon materials are used as negative electrodes, there are major drawbacks in cycle characteristics and self-discharge characteristics, and the utilization rate is low. , that is, the ratio of electrons (or counter cations) that can reversibly enter and exit per carbon atom is extremely low, usually less than 0.05.
0.01 to 0.02, which means that when used as a negative electrode of a secondary battery, both weight and volume become extremely large, which is a major drawback in practical use. In addition, Japanese Patent Application Laid-Open No. 58-209864 describes carbides of phenolic fibers with a hydrogen atom/carbon atom ratio of 0.33 to
It is described that carbonaceous materials in the range of 0.15 are used as electrode materials. It is said that it exhibits excellent characteristics when it is mainly p-doped with anions and used as a positive electrode material, and it is also described that it can be n-doped with cations and used as a negative electrode material. However, such materials also have their n-
When the doped material is used as a negative electrode, the cycleability,
In addition to having a major drawback in self-discharge characteristics, the utilization rate was also extremely low, which was a major drawback in practical use. Furthermore, it has been known for a long time that graphite intercalation compounds can be used as secondary battery electrode materials.
It is known to use a graphite intercalation compound incorporating anions such as Br, ClO 4 and BF 4 ions as a positive electrode. On the other hand, it is naturally possible to use a graphite intercalation compound incorporating cations such as Li ions as a negative electrode, and in fact, for example,
The publication describes the use of a graphite intercalation compound incorporating cations as a negative electrode. However, graphite intercalation compounds incorporating such cations are extremely unstable, and have particularly high reactivity with electrolytes, as reported in the Journal of Electrochemistry by ANDey and others.・Society (Journal of Electrochemical Society) vol117
No. 2P. 222-224 1970", it is clear that when graphite or graphite, which can form intercalation compounds, is used as a negative electrode, it lacks stability as a battery such as self-discharge, and the above-mentioned utilization rate was extremely low and could not be put to practical use. British Published Patent No. 2150741 states that as an electrode for a secondary battery, the surface area is 0.1 m 2 /g to 50 m 2 /g.
It has been shown that carbonaceous materials are suitable, and JP-A-58-93176 also shows that a fired polymer body is used for both the positive electrode and the negative electrode, or for either one of the positive electrode and the negative electrode. The density of the polymer fired body is 1.8
It has been shown that g/cm 3 or less is preferable. but,
Even with these methods, the above-mentioned problems have not been sufficiently solved. [Problems to be solved by the invention] As mentioned above, the new group of electrode active materials that utilize intercalation or doping have not yet achieved the originally expected performance from a practical standpoint. This is the current situation. [Means and effects for solving the problems] The present invention solves the above-mentioned problems and provides a high-performance, high-energy-density, compact, lightweight secondary battery with excellent battery performance, particularly cyclability and self-discharge characteristics. It was done in order to The first invention is a secondary battery having a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, characterized in that the following is used as an active material of the positive electrode and the following is used as an active material of the negative electrode. It provides secondary batteries. : Non-carbonaceous material. :BET method specific surface area A (m 2 /g) is 0.1<A<100
and the crystal thickness Lc in X-ray diffraction
(Å) and true density ρ (g/cm 3 ) under the condition 1.80<ρ
<2.18, 15<Lc and 120ρ−227<Lc<120ρ−
Carbonaceous materials that meet 189. In the first invention, the non-carbonaceous material used as the active material of the positive electrode has a layered structure and has the general formula A x M y N z O 2 (where A is at least one selected from alkali metals). Yes, M is a transition metal, N is Al, In,
represents at least one kind selected from the group of Sn,
x, y, z are respectively 0.05≦x≦1.10, 0.85≦y≦
Represents the number 1.00, 0.001≦z≦0.10. ) is optimal. Further, the second invention provides a secondary battery having a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, characterized in that the following is used as an active material of the positive electrode. It is. : has a layered structure and has the general formula A x M y N z O 2 (where A is at least one selected from alkali metals, M is a transition metal, and N is Al, In,
represents at least one kind selected from the group of Sn,
x, y, z are respectively 0.05≦x≦1.10, 0.85≦y≦
Represents the number 1.00, 0.001≦z≦0.10. ) complex oxide. The novel layered composite metal oxide of the present invention has the general formula
A x M y N z O 2 , where A is at least one selected from alkali metals, such as Li,
These are Na and K, with Li being preferred among them. The value of x varies depending on the charging state and discharging state, and its range is
0.05≦x≦1.10. In other words, charging causes de-intercalation of A ions, and the value of x decreases, and in a fully charged state, the value of x becomes
reaches 0.05. In addition, intercalation of A ions occurs due to discharge, and the value of x increases,
In a fully discharged state, the value of x reaches 1.10. Further, M represents a transition metal, and among them, Ni and Co are preferable. The value of y does not change due to charging and discharging, but is in the range of 0.85≦y≦1.00. y value is 0.85
If it is less than 1.00 or more than 1.00, the performance as an active material for a secondary battery is not sufficient, that is, the cycleability deteriorates, and phenomena such as an increase in overvoltage occur, which is not preferable. N is at least one selected from the group of Al, In, and Sn, with Sn being preferred among them. In the novel active material for secondary batteries of the present invention, the function of N is extremely important, and it exhibits extremely excellent cycle performance, particularly in deep charge and deep discharge cycles. The value of z does not change due to charging and discharging, but is in the range of 0.001≦z≦0.10, preferably in the range of 0.005≦z≦0.075. The value of z is 0.001
If it is less than 10%, the effect of N is not sufficiently exhibited, the cycleability during deep charging and deep discharging described above is low, and the overvoltage during deep charging increases significantly, which is not preferable. Furthermore, if the value of z exceeds 0.10, the hygroscopicity becomes too strong, making it difficult to handle, and the basic properties as an active material for a secondary battery are impaired, which is not preferable. In order to produce the novel composite oxide for secondary battery active material of the present invention, oxides, hydroxides, carbonates, nitrates, organic acid salts, etc. of each of the metals A, M, and N are mixed. After that, it is obtained by firing in air or under an oxygen atmosphere at a temperature range of 600°C to 950°C, preferably 700°C to 900°C. A firing time of about 5 to 48 hours is usually sufficient.
A x M y N z O 2 obtained by this method is in a discharge state as a secondary battery positive electrode, that is, the value of x is usually 0.90.
~1.10 is obtained. The thus obtained A x M y N z O 2 undergoes a de-intercalation reaction due to charging and discharging as described above.
and due to the intercalation reaction, the value of x is
It fluctuates within the range of 0.05≦x≦1.10. This reaction can be represented by the formula A x ′M y N z O 2 charging/discharging A x ″M y N z O 2 + (x′-x″) A + (x′-x″) e. (Here, x' represents the value of x before charging, and x'' represents the value of x after charging.) The above-mentioned utilization rate is calculated by the following formula: utilization rate = x'-x''/y + z x 100 (%) The novel active material for non-aqueous secondary batteries of the present invention is characterized by a high utilization rate, that is, deep charging,
It has extremely stable cyclability against discharge. The novel composite oxide for secondary battery active material of the present invention has a very noble potential of 3.9 to 4.5V with respect to Li standard potential, and is especially useful when used as a positive electrode of a non-aqueous secondary battery. Demonstrates excellent performance. On the other hand, the carbonaceous material used in the present invention is described below.
BET method specific surface area A (m 2 /g) is larger than 0.1,
Must be less than 100. preferably greater than 0.1 and less than 50, more preferably greater than 0.1 and less than 25
The range is less than or equal to If it is less than 0.1m 2 /g, the surface area is too small;
This is not preferable because it makes it difficult for the electrochemical reaction to proceed smoothly on the electrode surface. Further, when the specific surface area is 100 m 2 /g or more, it is not preferable because the characteristics deteriorate in terms of cycle life characteristics, self-discharge characteristics, current efficiency characteristics, etc. It is presumed that this phenomenon is due to the excessively large surface area, which causes various side reactions on the electrode surface, which adversely affects battery performance. In addition, the crystal thickness Lc (Å) in X-ray diffraction described below
and true density ρ (g/cm 3 ) under the following conditions, i.e. 1.80
<ρ<2.18, 15<Lc and 120ρ−227<Lc<120ρ−
Must be in the range 189. preferably 1.80
<ρ<2.18, 15<Lc and 120ρ−227<Lc<120ρ−
196, more preferably 1.96<ρ<2.16, 15<Lc and 120ρ−227<Lc<120ρ−196. In the present invention, when using the n-doped carbonaceous material as a stable electrode active material, the above-mentioned
Crystal thickness Lc (Å) and true density ρ in line diffraction
The value of (g/cm 3 ) is extremely important. That is, the value of ρ is 1.80 or less or the value of Lc is 15 or
If it is less than 120ρ-227, it means that the carbonaceous material is not sufficiently carbonized, that is, the carbon crystal growth is not progressing, and there are a large number of amorphous parts.
Moreover, for this reason, the surface area of carbonaceous materials falling within this range inevitably increases during the carbonization process, and the value of the BET method specific surface area deviates from the range of the present invention.
The n-doped form of such a carbonaceous material is extremely unstable and has a low doping amount, so that it cannot substantially exist stably as an n-doped form and cannot be used as a battery active material. On the other hand, the value of ρ is 2.18 or more or the value of Lc is 120ρ−
If the value exceeds 189, the carbonization of the carbonaceous material has progressed too much. That is, it means that it has a structure similar to graphite or graphite in which carbon is highly crystallized. In addition to true density ρ (g/cm 3 ), crystal thickness Lc (Å), and BET method specific surface area A (m 2 /g), parameters that indicate the structure of such carbonaceous materials include, for example, X Interlayer spacing d 002 (Å) in line diffraction
can be mentioned. The value of the interplanar spacing d 002 (Å) decreases with the progress of crystallization, and although it is not particularly limited, carbonaceous materials having a value of less than 3.43 Å, and even less than 3.46 Å, are excluded from the range defined by the present invention. Deviate. On the other hand, the value of the intensity ratio R (I1360cm -1 /I1580cm -1 ) in the Raman spectrum is also a parameter indicating the structure of the carbonaceous material, and this intensity ratio R decreases as crystallization progresses, and there are no particular limitations. No, but less than 0.6 or more than 2.5, even 0.7
Carbonaceous materials having values in the range of less than or greater than 2.5 deviate from the range defined by the present invention. As mentioned above, graphite and graphite have a regular layered structure, and carbon materials with such a structure form interlayer compounds with various ions as guests, especially anions such as ClO 4 and BF 4 . P with ion
This type of intercalation compound has a high potential, and attempts have been made for a long time to use it as a secondary battery positive electrode. For such purposes, it is an essential condition that intercalation compounds can be easily formed. For example, as described in JP-A-60-36315, the Raman intensity ratio R (I1360
cm -1 /I1580cm -1 ) should be as small as possible, i.e.
It was essential that the value of ρ and the value of Lc be as large as possible. The present inventors discovered an unexpected fact in the process of various studies on incorporating cations such as Li ions instead of anions into carbonaceous materials from a different perspective. That is, it has been found that when incorporating cations such as Li ions, the carbonaceous material has better properties if it has a certain degree of disordered structure. In other words, the value of ρ is 2.18 or more, or the value of Lc is
When a carbonaceous material having a value of 120ρ-189 or more is used, as mentioned above, graphite-like behavior occurs, the cycle life characteristics and self-discharge characteristics are poor, and furthermore, the utilization rate is extremely low and extremely In such a case, it may not substantially function as a secondary battery, which is not preferable. Carbonaceous materials satisfying the conditions of the present invention can be obtained, for example, by thermal decomposition or calcination carbonization of various organic compounds. In this case, thermal history temperature conditions are important; as mentioned above, if the thermal history temperature is too low, carbonization will not be sufficient, and not only will the electrical conductivity be low, but the carbonaceous material, which is the condition of the present invention, will not be obtained. . The lower temperature limit varies slightly depending on the item, but
The temperature is usually 600°C or higher, preferably 800°C or higher. Even more important is the upper limit of thermal history temperature, which is carried out in normal graphite, graphite and carbon fiber manufacturing.
Heat treatment at temperatures close to 3000°C causes crystal growth to proceed too much, significantly impairing the function of the secondary battery. The preferred range is 2400°C or less, preferably 1800°C or less, and even more preferably 1400°C or less. In such heat treatment conditions, the heating rate, cooling rate, heat treatment time, etc. can be arbitrarily selected depending on the purpose. In addition, after heat treatment in a relatively low temperature range,
A method of raising the temperature to a predetermined temperature is also adopted. An example of a carbonaceous material that satisfies the condition range of the present invention is a vapor grown carbon fiber. The vapor grown carbon fiber is disclosed in, for example, Japanese Patent Application Laid-open No. 1983-
As described in Publication No. 207823, benzene, methane,
It is a carbon material obtained by subjecting a carbon source compound such as carbon monoxide to gas phase thermal decomposition (for example, at a temperature of 600°C to 1500°C) in the presence of a transition metal catalyst, etc., and is obtained by a known method similar to this. Refers to everything that can be applied to the fibers, such as ceramics, graphite substrates, carbon fibers, etc.
Carbon black, ceramic particles, etc. )
There are known methods such as generating it in the gas phase and generating it in the gas phase. Fibrous,
That is, it is obtained as carbon fiber, but in the present invention, it may be used as it is in the form of fibers, or it may be used in the form of pulverized powder. It is a well-known fact that such vapor-grown carbon fibers are a typical example of graphitizable carbon. That is, it has the characteristic of being extremely easily converted into graphite graphite by heat treatment. Such heat treatment is usually performed at a temperature of 2400°C or higher. Various characteristics of the graphitized vapor-grown carbon fiber thus obtained as a graphite material with an extremely well-organized crystal structure have already been reported. It is known that an intercalation compound is very easily formed with an anion such as Br, as described in 2007, and that a temperature difference battery can be made by using an intercalation compound with such anion for the positive and negative electrodes. However, such battery systems usually have extremely low electromotive force and are not suitable for practical use. On the other hand, as mentioned above, graphite and graphite have a regular layered structure, and carbon materials with such a structure form interlayer compounds with various ions as guests, especially ClO 4 , BF 4 etc. Intercalation compounds with anions have a high potential, and attempts have been made for a long time to use them as positive electrodes for secondary batteries.
For such purposes, it is essential that intercalation compounds be easily formed, and for example, as described in JP-A-60-36315, a graphite structure of graphite heat-treated at nearly 3000° C. is an essential condition. From a different perspective, the present inventors have found that Li, rather than anions, is added to carbonaceous materials.
An unexpected fact was discovered in the process of examining various n-doped bodies into which cations such as ions were incorporated. That is, it has been found that when incorporating cations such as Li ions, the carbonaceous material has better properties if it is not subjected to excessive thermal history. That is, the vapor-grown carbon fiber used in the present invention has a maximum thermal history temperature of 2400°C, including the manufacturing process.
C. or less, preferably 2000.degree. C. or less, especially 1400.degree. C. or less is suitably used. If the temperature exceeds 2400°C, the properties of the n-doped product will be adversely affected, which is not preferable. Another example is a pitch-based carbonaceous material. Examples of pitches used in the present invention include petroleum pitch, asphalt pitch, coal tar pitch, crude oil cracking pitch, petroleum sludge pitch, etc., which are obtained by thermal decomposition of petroleum and coal, and pitch obtained by thermal decomposition of high molecular weight polymers. Pitch obtained by thermal decomposition of an organic low-molecular compound such as tetrabenzophenazine and the like can be mentioned. Thermal history temperature conditions are important in order to obtain a pitch-based calcined carbide that satisfies the conditions of the present invention, and as mentioned above, a thermal history at a high temperature gives a fired carbide that is too crystallized and has the characteristics of an n-doped body. becomes significantly worse. The thermal history temperature condition is preferably 2400°C or less, preferably 1800°C or less, and even more preferably 1400°C or less. In addition, the lower temperature limit is at least the temperature at which the fired carbide begins to exhibit properties such as electrical conductivity.
The preferred range is 600°C or higher, more preferably 800°C or higher. Specific examples of such pitch-based calcined carbides are as follows:
Examples include needle coke. A further example of the carbonaceous material used in the present invention is a fired carbide of a polymer containing acrylonitrile as a main component. In order to obtain a calcined carbide of a polymer whose main component is acrylonitrile that satisfies the conditions of the present invention, thermal history temperature conditions are important. The properties of the n-doped product are significantly deteriorated.
The thermal history temperature condition is 2400℃ or less, preferably
The preferred range is 1800°C or lower, more preferably 1400°C or lower. In addition, the lower temperature limit is at least the temperature at which the fired carbide begins to exhibit properties such as electrical conductivity.
The preferred range is 600°C or higher, more preferably 800°C or higher. The carbonaceous material of the present invention differs from ordinary graphite and graphite in that it does not have a layered structure that can form interlayer compounds, and this is useful for X-ray analysis, Raman analysis, true density measurement, etc. It is clear from the results. In fact, the carbonaceous material in the condition range of the present invention does not take in anions such as ClO 4 , BF 4 , Br, etc., which are very likely to form intercalation compounds with graphite and graphite, or does not take them in very easily. Also, as in the example of the above-mentioned Japanese Patent Application Laid-Open No. 58-35881,
Unlike the formation of an electric double layer on the surface, which is a type of capacitor behavior, seen in high surface area carbon materials such as activated carbon, in the case of the present invention, there is no correlation between surface area and battery performance; on the contrary, the surface area is large. However, there is a fact that it becomes negative in terms of performance such as current efficiency and self-discharge. This fact is different from the phenomenon found in conventionally known carbon materials, and when used as a secondary battery active material, it exhibits the following characteristics. It has a cycle life characteristic of at least 100 times or more, sometimes 300 times or more, and even 500 times or more. In addition, the current efficiency during charging and discharging is at least
Over 90%, in some cases over 95%, and even over 98%. The self-discharge rate is at least 30%/month or less, sometimes 20%/month or less, and even 10%/month or less. Furthermore, one of the characteristics of the carbonaceous material that satisfies the conditions of the present invention is that it has a very high utilization rate. The utilization rate as used in the present invention means the ratio of electrons (or counter cations) that can reversibly go in and out per carbon atom, and is defined by the following formula. Utilization rate = Charge/discharge electricity amount (Ahr unit)/w (g unit)/12×26.8 Here, w is the weight of the carbonaceous material used (g unit)
represents. In the present invention, the utilization rate is at least 0.08 or more,
Furthermore, it reaches 0.15 or more, making it possible to store a large amount of electricity with a small weight and volume. The n-doped carbonaceous material of the present invention exhibits excellent performance when used as a secondary battery active material, and particularly exhibits even more excellent performance when used as a negative electrode active material. Next, a secondary battery using the active material of the present invention will be described. When manufacturing an electrode using the active material for a secondary battery of the present invention, the active material can be used in various shapes. That is, the active material can be used in any form such as a film, fiber, or powder depending on the purpose, but especially when used in powder form, the active material can be formed into any form such as a sheet. A common method for molding is to mix the active material with a powdered binder such as Teflon powder or polyethylene powder, and then compression mold the mixture. A more preferable method is to form an electrode active material using an organic polymer dissolved and/or dispersed in a solvent as a binder. Although non-aqueous batteries have conventionally been superior in terms of performance such as high energy density, small size and light weight, they have disadvantages in output characteristics compared to aqueous batteries, so they have not been widely used. Particularly in the field of secondary batteries, where output characteristics are required, this drawback is one of the factors preventing practical use. The reason why non-aqueous batteries have inferior output characteristics is that aqueous electrolytes have high ionic conductivity, which usually has a value on the order of 10 -1 Ω -1 cm -1 , whereas non-aqueous batteries usually have a high ionic conductivity.
This is due to its low ionic conductivity of 10 -2 to 10 -4 Ω -1 cm -1 . One possible way to solve this problem is to increase the area of the electrode, that is, to use a thin film or a large-area electrode. The above method is a particularly preferred method for obtaining such thin film, large area electrodes. When using such an organic polymer as a binder, there is a method in which an electrode active material is dispersed in a binder solution in which the organic polymer is dissolved in a solvent and used as a coating liquid, or a water emulsion dispersion of the organic polymer is used. Examples include a method in which a liquid in which an electrode active material is dispersed is used as a coating liquid, and a method in which a solution and/or dispersion of the organic polymer is applied to a preformed electrode active material. The amount of binder used is not particularly limited, but is usually 0.1 to 20 parts by weight per 100 parts by weight of the electrode active material.
Preferably it is in the range of 0.5 to 10 parts by weight. The organic polymer used here is not particularly limited, but if the organic polymer is
When the dielectric constant at 1 kHz has a value of 4.5 or more, particularly favorable results are brought about, and the battery exhibits particularly excellent characteristics in terms of cycleability, overvoltage, and the like. Examples of organic polymers that meet these conditions include acrylonitrile, methacrylonitrile, vinyl fluoride, vinylidene fluoride, chloroprene,
Examples include polymers or copolymers such as vinylidene chloride, nitrocellulose, cyanoethylcellulose, polysulfide rubber, and the like. When manufacturing an electrode using this method, the coating solution is applied onto a base material and dried to form the electrode. At this time, if necessary, it may be molded together with the current collector material, or alternatively, a current collector such as aluminum foil or copper foil may be used as the base material. The binder, conductive aid, and other additives such as thickeners, dispersants, fillers, adhesion aids, etc. may be added to the battery electrode manufactured using the active material of the present invention. It refers to a material containing at least 25% by weight of the active material of the present invention. Examples of the conductive aid include metal powder, conductive metal oxide powder, and carbon. Particularly, the addition of such a conductive auxiliary agent has a remarkable effect when A x M y N z O 2 of the present invention is used. Among them, carbon gives preferable results, and is usually used in an amount of 1 to 100 parts by weight of A x M y N z O 2
Addition of 30 parts by weight produces a significant overvoltage reduction effect and exhibits excellent cycle characteristics. The carbon referred to herein requires properties that are completely different from those of the carbonaceous material defined in the present invention, and does not necessarily mean a specified carbon. Examples of such carbon include graphite and carbon black. As a particularly preferable combination, when carbon having an average particle size of 0.1 to 10 μm and carbon having an average particle size of 0.01 to 0.08 μm are used as a mixture, particularly excellent effects can be obtained. As mentioned above, the active material of the present invention: A x M y N z O 2 exhibits particularly excellent performance when used as a positive electrode. The negative electrode used at this time is not particularly limited, but may include a light metal such as Li or Na or an alloy negative electrode thereof,
Metal oxide negative electrodes such as Li x Fe 2 O 3 , Li x Fe 3 O 4 , Li x WO 2 , conductive polymer negative electrodes such as polyacetylene and poly-p-phenylene, vapor grown carbon fibers, and pitch-based negative electrodes. Examples include carbonaceous material negative electrodes such as carbon and polyacrylonitrile carbon fibers. On the other hand, the active material of the present invention exhibits particularly excellent performance when used as a negative electrode as described above. The positive electrode used at this time is not particularly limited, but examples include TiS 2 , TiS 3 , MoS 3 , FeS 2 ,
Li (1-x) MnO 2 , Li (1-x) CoO 2 , Li (1-x) NiO 2 , V 2 O 5 ,
Examples include V 6 O 13 . As a particularly preferred combination, the most preferred is a combination in which the active material of the present invention: A x M y N z O 2 is used as a positive electrode, and the active material of the present invention is used as a negative electrode. Basic components for assembling the non-aqueous secondary battery of the present invention include an electrode using the active material of the present invention, a separator, and a non-aqueous electrolyte. The separator is not particularly limited, but
Examples include woven fabrics, non-woven fabrics, glass woven fabrics, synthetic resin microporous membranes, etc. As mentioned above, when using thin films and large-area electrodes, synthetic resin microporous membranes disclosed in JP-A-58-59072, for example, can be used. Porous membranes, particularly microporous polyolefin membranes, are preferred in terms of thickness, strength, and membrane resistance. The electrolyte of the non-aqueous electrolyte is not particularly limited, but examples include LiClO 4 , LiBF 4 , LiAsF 6 ,
CF3SO3Li , LiPF6 , LiI, LiAlCl4 , NaClO4 ,
NaBF 4 , NaI, (n-Bu) 4 N ClO 4 , (n-
Bu) 4NBF4 , KPF6 , etc. In addition, examples of organic solvents used in the electrolytic solution include ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, chlorinated hydrocarbons, esters, carbonates, nitro compounds, and phosphorus. Acid ester compounds, sulfolane compounds, etc. can be used, and among these, ethers, ketones, nitriles, chlorinated hydrocarbons, carbonates, and sulfolane compounds are preferred. More preferred are cyclic carbonates. Representative examples of these include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, acetonitrile, propionitrile, 4-methyl-2-pentanone, butyronitrile, valeronitrile, benzonitrile, 1,2- Dichloroethane, γ-butyrolactone, dimethoxyethane, methylformate, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethylformamide, dimethylsulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, trimethyl phosphate, triethyl phosphate, and these Examples include mixed solvents of
It is not necessarily limited to these. Furthermore, if necessary, the battery is constructed using parts such as a current collector, a terminal, and an insulating plate. The structure of the battery is not particularly limited, but may include a paper type battery with a positive electrode, a negative electrode, and if necessary a separator in a single layer or multiple layers, a stacked battery, or a positive electrode, a negative electrode, and if necessary, a separator. For example, a cylindrical battery formed by winding a separator into a roll can be cited. [Effects of the Invention] The battery of the present invention is small and lightweight, has particularly excellent cycle characteristics and self-discharge characteristics, and is extremely useful as a power source for small electronic devices, electric vehicles, power storage, and the like. [Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples. The BET method specific surface area (hereinafter referred to as "BET surface area") was measured by a nitrogen adsorption method using a BET surface area measuring device P-700 manufactured by Shibata Kagaku Kikai Kogyo Co., Ltd. In addition, X-ray diffraction was performed according to the "Japan Society for the Promotion of Science Law." The true density was measured using a sample of powder obtained by pulverizing a carbonaceous material in an agate mortar so as to pass through a 150-mesh standard sieve, and by a float-sink method using a mixed solution of bromoform and carbon tetrachloride at 25°C. For samples with a true density distribution, the measured value was the value at which about 50% of the total powder particles settled. The relative dielectric constant was measured under the following conditions. (Measurement temperature) 25℃ (Measurement frequency) 1kHz (Sample shape) 0.5mm thick sheet (Measurement device)
TR-10C type dielectric volume measuring instrument (manufactured by Ando Electric Co., Ltd.) Example 1 Anthracene oil was added at room temperature under an Ar atmosphere.
The temperature was raised at a rate of °C/min, and the mixture was fired and carbonized at 1200 °C for 1 hour.
The BET surface area, Lc (002) obtained from X-ray diffraction, and true density of this carbonaceous material are 60 m 2 /g and 25, respectively.
Å, 2.01 g/cm 3 . 1 part by weight of powder with an average particle size of 2 μm obtained by ball-milling this sample was mixed with 2.5 parts by weight of a methyl ethyl ketone solution (2 wt% concentration) of nitrile rubber (relative dielectric constant 17.3) to prepare a coating liquid.
A film with a thickness of 75 μm was formed on a 1 cm×5 cm surface of a 10 μm copper foil. This was sandwiched between SUS nets and used as the negative electrode of the battery shown in FIG. On the other hand, 1.05 moles of lithium carbonate, cobalt oxide
1.90 mol, 0.084 mol of stannic oxide are mixed, 650
After 5 hours of calcining at .degree. C., the mixture was calcined in air at 850.degree. C. for 12 hours to obtain a composite oxide having a composition of Li 1.03 Co 0.95 Sn 0.042 O 2 . After pulverizing this composite oxide to an average size of 3 μm using a ball mill, 0.1 part by weight of acetylene black and 1 part by weight of a dimethylformamide solution (concentration 2 wt%) of polyacrylonitrile (relative dielectric constant 5.59) were added to 1 part by weight of the composite oxide. After mixing, the mixture was applied to one side of a 1 cm x 5 cm piece of 15 μm aluminum foil to a thickness of 100 μm. This is sandwiched between SUS nets and used as the positive electrode.
The battery was evaluated using a 0.6 molar LiClO 4 propylene carbonate solution as the electrolyte. Polyethylene microporous membrane as a separator
35 μm was used. After charging at a constant current of 2 mA for 50 minutes, an open terminal voltage of 3.9 V was obtained. As a result of this charging, the ratio of Li ions incorporated per carbon atom, ie, the utilization rate, was 0.12. After that, the battery was similarly discharged to 2.7V at a constant current of 2mA. The charging voltage and discharging voltage at this time are as shown in Figure 2,
Overvoltage was extremely low at 0.04V. After that, charge/discharge cycles with a constant current of 2 mA (charging end voltage 3.95 V,
The final discharge voltage was 2.7V). The changes in current efficiency and utilization factor with cycles are shown in Figure 3-A.
The energy density (per negative electrode active material) at the 5th cycle was 911 Whr/Kg. Furthermore, the self-discharge rate of this battery when left at 25°C for 720 hours was 15%. Examples 2 to 6, Comparative Examples 1 to 5 Using carbonaceous materials obtained by calcination carbonization or heat treatment of the raw materials shown in Table 1 under the treatment conditions also shown in Table 1, the same method as in Example 1 was carried out. I conducted a battery evaluation. In this test, the current efficiency and the rate of Li ions reversibly incorporated per carbon atom, ie, the utilization rate, were as shown in Table 1. Also obtained from BET surface area and X-ray diffraction
Lc (002) indicates true density. Further, for Comparative Example 2, changes in current efficiency and utilization rate in a long-term cycle are shown in FIG. 3-B. The energy density (per negative electrode active material) at the 5th cycle was 288 Whr/Kg. Incidentally, the self-discharge of the battery in Comparative Example 2 after being left for 720 hours (25° C.) was 85%.

【表】 実施例7、比較例6 実施例1における負極活物質のバインダーとし
て、第2表に示すバインダーを用いる以外、全く
同様の電池評価を行つた。この時の充電終止電
圧、過電圧を併せて第2表に示す。
[Table] Example 7, Comparative Example 6 A battery evaluation was carried out in exactly the same manner as in Example 1, except that the binder shown in Table 2 was used as the binder for the negative electrode active material. The end-of-charge voltage and overvoltage at this time are also shown in Table 2.

【表】 実施例 8〜10 実施例1において電解液として0.6モル濃度の
LiClO4プロピレンカーボネート溶液のかわりに
第3表に示す電解液を用いる以外、全く同様の電
池評価を行つた。その結果を併せて第3表に示
す。
[Table] Examples 8 to 10 In Example 1, 0.6 molar concentration was used as the electrolyte.
Exactly the same battery evaluation was performed except that the electrolyte shown in Table 3 was used instead of the LiClO 4 propylene carbonate solution. The results are also shown in Table 3.

【表】 実施例 11 ベンゼンにビスシクロペンタジエニル鉄を1重
量%溶解し、原料液とした。 カンタル線ヒーターを有する管状炉に内径60mm
φのアルミナ質炉芯管を横型に設置し、両端をゴ
ム栓でシールした。片方の栓には原料液を導入す
る内径6mmφのアルミナ質パイプを貫通せしめ、
該パイプの一端は予め測定した炉内温度の510℃
の位置で、炉管中心部に出口がくるように設置し
た。該パイプの他端は炉外に出されて、ゴムチユ
ーブで定量ポンプに接続した。定量ポンプには原
料液を不活性ガスで加圧して定量ポンプへ送るも
のとした。また、原料導入側のゴム栓にはさらに
同径のパイプを貫通せしめて、ゴムチユーブを介
して、炉内置換用の不活性ガスおよび繊維生長の
補助として水素ガスを導入する。これらのガスは
バルブによつて、任意に切変えられるものとし
た。一方、他端のゴム栓には内径60mmφのアルミ
ナ質パイプを設けて、ゴムチユーブを介して排出
ガスを排出できるようにした。 先ず炉内を不活性ガスで置換した後、水素ガス
に切換えて炉中心の温度が1200℃になるよう昇温
した。このときパイプ出口の温度は500℃であつ
た。水素ガス1000c.c./minの流量で供給しつつ、
原料液を1c.c./minの量で約15分間供給した。そ
の結果600〜1200℃の帯域に7.1gの炭素繊維が得
られた。この炭素繊維は平均径約4μmφ、BET
表面積、真密度、X線回折により得られた面間隔
d002、Lc(002)はそれぞれ9m2/g、2.03g/cm3
3.54Å、38Åであつた。この気相成長炭素繊維5
mgを1cm×5cmのシート状にした後SUSネツト
にはさみ、第1図に示す電池の負極とした。 一方、1cm×5cm×0.1cmのシート状に成形し
たLiCoO2をSUSネツトではさんだものを正極と
し、LiClO4の0.6Mプロピレンカーボネート溶液
を電解液として電池評価を行つた。 尚、セパレーターとしてポリプロピレン不織布
を用いた。 定電流2mAで充電を50分行つたところ、開放
端子電圧3.9Vを示した。この充電により炭素1
原子当り取り込まれたLi イオンの割合、即ち利
用率は0.15であつた。以後定電流2mAの充放電
サイクル(充電終止電圧3.95V、放電終止電圧
2.70V)を行つた。サイクルに伴う電流効率及び
利用率の変化を第4図−Aに示す。5サイクル目
でのエネルギー密度(負極活物質当り)は
1139Whr/Kgであつた。又、この電池の720時間
放置での自己放電率は7%であつた。 実施例12〜15、比較例7〜8 実施例11で得られた気相成長炭素繊維をAr雰
囲気下で第4表に示す温度で30分間熱処理を行つ
た後、実施例11と全く同様の操作で電池評価を行
つた。このテストにおいて電流効率及び炭素1原
子当り可逆的に取り込まれるLi イオン即ち利用
率は第4表に示す通りであつた。 同時に熱処理後の試料のBET表面積、真密度、
X線回折により得られたLc(002)の値も第4表に示
す。
[Table] Example 11 1% by weight of biscyclopentadienyl iron was dissolved in benzene to prepare a raw material liquid. Internal diameter 60mm in tube furnace with Kanthal wire heater
A φ alumina furnace core tube was installed horizontally, and both ends were sealed with rubber plugs. An alumina pipe with an inner diameter of 6 mmφ through which the raw material liquid is introduced is passed through one of the plugs.
One end of the pipe is kept at the pre-measured furnace temperature of 510℃.
The outlet was placed at the center of the furnace tube. The other end of the pipe was taken out of the furnace and connected to a metering pump with a rubber tube. The metering pump was designed to pressurize the raw material liquid with an inert gas and send it to the metering pump. Further, a pipe of the same diameter is passed through the rubber stopper on the raw material introduction side, and an inert gas for replacing the inside of the furnace and hydrogen gas as an aid for fiber growth are introduced through the rubber tube. These gases could be switched arbitrarily using valves. On the other hand, an alumina pipe with an inner diameter of 60 mm was installed on the rubber stopper at the other end so that exhaust gas could be discharged through the rubber tube. First, the inside of the furnace was replaced with inert gas, then switched to hydrogen gas, and the temperature at the center of the furnace was raised to 1200°C. At this time, the temperature at the pipe outlet was 500°C. While supplying hydrogen gas at a flow rate of 1000c.c./min,
The raw material liquid was supplied at a rate of 1 c.c./min for about 15 minutes. As a result, 7.1 g of carbon fiber was obtained in the 600-1200°C zone. This carbon fiber has an average diameter of approximately 4μmφ, BET
Surface area, true density, interplanar spacing obtained by X-ray diffraction
d 002 and Lc (002) are 9m 2 /g and 2.03g/cm 3 , respectively.
They were 3.54 Å and 38 Å. This vapor grown carbon fiber 5
mg was formed into a sheet of 1 cm x 5 cm, which was then sandwiched between SUS nets to form the negative electrode of the battery shown in FIG. On the other hand, a battery evaluation was performed using a 1 cm x 5 cm x 0.1 cm sheet of LiCoO 2 sandwiched between SUS nets as a positive electrode and a 0.6M propylene carbonate solution of LiClO 4 as an electrolyte. Note that a polypropylene nonwoven fabric was used as a separator. After charging at a constant current of 2 mA for 50 minutes, an open terminal voltage of 3.9 V was observed. This charging causes carbon 1
The ratio of Li ions incorporated per atom, ie, the utilization rate, was 0.15. After that, charge/discharge cycle with constant current 2mA (end-of-charge voltage 3.95V, end-of-discharge voltage
2.70V). Figure 4-A shows the changes in current efficiency and utilization factor with cycles. The energy density (per negative electrode active material) at the 5th cycle is
It was 1139Whr/Kg. Furthermore, the self-discharge rate of this battery after being left for 720 hours was 7%. Examples 12 to 15, Comparative Examples 7 to 8 The vapor-grown carbon fibers obtained in Example 11 were heat-treated in an Ar atmosphere at the temperatures shown in Table 4 for 30 minutes, and then treated in exactly the same manner as in Example 11. The battery was evaluated through operation. In this test, the current efficiency and Li ions reversibly incorporated per carbon atom, ie, the utilization rate, were as shown in Table 4. At the same time, the BET surface area, true density, and
The Lc (002) values obtained by X-ray diffraction are also shown in Table 4.

【表】 実施例 16 実施例11で得られた気相成長炭素繊維をボール
ミルで粉砕し、平均粒径4μmの気相成長炭素繊
維粉砕物を得た。この粉砕物9重量部に粉末ポリ
エチレン1重量部を混合したものをSUSネツト
上に250Kg/cm2の圧力で成形し、1cm×5cmのシ
ート状テストピースを得た。 このテストピースを負極として実施例1と全く
同様の電池テストを行つた。結果を第4図−Bに
示す。 実施例 17 ベンゼンにビスシクロペンタジエニル鉄を1重
量%溶解し、原料液とした。 カンタル線ヒーターを有する管状炉に内径60mm
φのアルミナ質炉芯管を横型に設置し、両端をゴ
ム栓でシールした。片方の栓には原料液を導入す
る内径6mmφのアルミナ質パイプを貫通せしめ、
該パイプの一端は予め測定した炉内温度の510℃
の位置で、炉管中心部に出口がくるように設置し
た。該パイプの他端は炉外に出されて、ゴムチユ
ーブで定量ポンプに接続した。定量ポンプには原
料液を不活性ガスで加圧して定量ポンプへ送るも
のとした。また、原料導入側のゴム栓にはさらに
同径のパイプを貫通せしめて、ゴムチユーブを介
して、炉内置換用の不活性ガスおよび繊維生長の
補助として水素ガスを導入する。これらのガスは
バルブによつて、任意に切変えられるものとし
た。一方、他端のゴム栓には内径6mmφのアルミ
ナ質パイプを設けて、ゴムチユーブを介して排出
ガスを排出できるようにした。 先ず炉内を不活性ガスで置換した後、水素ガス
に切換えて炉中心の温度が1200℃になるよう昇温
した。このときパイプ出口の温度は500℃であつ
た。水素ガス2500c.c./minの流量で供給しつつ、
原料液を2.5c.c./minの量で3分間供給した。そ
の結果600〜1200℃の帯域に3.7gの炭素繊維が得
られた。この気相成長炭素繊維は平均径0.2μm
φ、BET表面積、真密度、X線回折により得ら
れたLc(002)はそれぞれ16m2/g、2.04g/cm3、45
Åであつた。この気相成長炭素繊維を用い、実施
例11と全く同じ電池評価を行つた。端子電圧は
3.9Vであり、取り込まれたLi イオンの割合、
即ち利用率は炭素1原子当り0.14であつた。又、
電流効率は93%であつた。 比較例 9 実施例16において気相成長炭素繊維粉砕物の代
りに、市販黒鉛粉末(ロンザグラフアイト
KS2.5、ロンザ社製、BET N2比表面積22m2
g、真密度2.25g/cm3、面間隔d002=3.36Å、
Lc(002)>1000Å)を用いた以外は全く同じ操作を
行つた。2mA定電流で1時間充電を行つたが、
放電は不可能であり、可逆的に取り込まれるLi
イオンはOであつた。 比較例 10 実施例11において気相成長炭素繊維の代りに、
市販活性炭素繊維(BET N2比表面積450m2
g、真密度1.70g/cm3、面間隔d002=3.60Å、
Lc(002)<10Å)を用いた以外は全く同じ操作を行
つた。 この時の電流効率、利用率の変化を第4図−C
に示す。5サイクル目でのエネルギー密度(負極
活物質当り)は288Whr/Kgであつた。 又、この電池の720時間(25℃)放置での自己
放電率は85%であつた。 実施例 18 アスフアルトピツチをAr雰囲気下で、室温よ
り10℃/分で昇温し、530℃で1時間保持した後、
1150℃で1時間焼成炭化した。この炭素質材料の
BET表面積、真密度、X線回折から得られる面
間隔d002、Lc(002)の値はそれぞれ47m2/g、2.00
g/cm3、3.48Å、26Åであつた。この試料をボー
ルミル粉砕し、平均粒径1.5μmの粉砕物を得た。
この粉砕物を実施例1のアントラセン油焼成炭化
物の粉末のかわりに用いる以外全く同様の電池評
価を行つた。その結果を第5図−Aに示す。 尚、5サイクル目でのエネルギー密度(負極活
物質当り)は1216Whr/Kgであつた。又、この電
池の720時間、25℃放置での自己放電率は7%で
あつた。 実施例19〜26、比較例11〜14 第5表に示す原料ピツチを同じく第5表に示す
熱処理条件で焼成炭化して得られた炭素質材料を
用い、実施例18と同様の電池評価を行つた。この
テストにおいて、電流効率及び炭素1原子当り可
逆的に取り込まれるLi イオンの割合、即ち利用
率は、第5表に示す通りであつた。併せてBET
表面積、X線回折から得られるLc(002)、真密度を
示す。 比較例 15 実施例1においてアントラセン油焼成炭化物の
粉末のかわりに、市販活性炭(BET表面積450
m2/g、真密度1.70g/cm3、面間隔d002=3.60Å、
Lc(002)>10Å)を用いた以外、全く同じ操作を行
つた。この時の電流効率、利用率の変化を第5図
−Bに示す。5サイクル目でのエネルギー密度
(負極活物質当り)は217Whr/Kgであつた。又こ
の電池の720時間、25℃放置での自己放電率は88
%であつた。
[Table] Example 16 The vapor-grown carbon fiber obtained in Example 11 was pulverized in a ball mill to obtain a pulverized vapor-grown carbon fiber having an average particle size of 4 μm. A mixture of 9 parts by weight of this pulverized material and 1 part by weight of powdered polyethylene was molded on a SUS net at a pressure of 250 kg/cm 2 to obtain a sheet-like test piece of 1 cm x 5 cm. A battery test was conducted in exactly the same manner as in Example 1 using this test piece as a negative electrode. The results are shown in Figure 4-B. Example 17 1% by weight of biscyclopentadienyl iron was dissolved in benzene to prepare a raw material liquid. Internal diameter 60mm in tube furnace with Kanthal wire heater
A φ alumina furnace core tube was installed horizontally, and both ends were sealed with rubber plugs. An alumina pipe with an inner diameter of 6 mmφ through which the raw material liquid is introduced is passed through one of the plugs.
One end of the pipe is kept at the pre-measured furnace temperature of 510℃.
The outlet was placed at the center of the furnace tube. The other end of the pipe was taken out of the furnace and connected to a metering pump with a rubber tube. The metering pump was designed to pressurize the raw material liquid with an inert gas and send it to the metering pump. Further, a pipe of the same diameter is passed through the rubber stopper on the raw material introduction side, and an inert gas for replacing the inside of the furnace and hydrogen gas as an aid for fiber growth are introduced through the rubber tube. These gases could be switched arbitrarily using valves. On the other hand, an alumina pipe with an inner diameter of 6 mm was provided on the rubber stopper at the other end so that exhaust gas could be discharged through the rubber tube. First, the inside of the furnace was replaced with inert gas, then switched to hydrogen gas, and the temperature at the center of the furnace was raised to 1200°C. At this time, the temperature at the pipe outlet was 500°C. While supplying hydrogen gas at a flow rate of 2500c.c./min,
The raw material liquid was supplied at a rate of 2.5 cc/min for 3 minutes. As a result, 3.7 g of carbon fiber was obtained in the 600-1200°C zone. This vapor grown carbon fiber has an average diameter of 0.2μm.
φ, BET surface area, true density, and Lc (002) obtained by X-ray diffraction are 16 m 2 /g, 2.04 g/cm 3 , and 45, respectively.
It was Å. Using this vapor-grown carbon fiber, battery evaluation was conducted in exactly the same manner as in Example 11. The terminal voltage is
3.9V, the proportion of Li ions taken in,
That is, the utilization rate was 0.14 per carbon atom. or,
The current efficiency was 93%. Comparative Example 9 In Example 16, commercially available graphite powder (Lonza Graphite) was used instead of the vapor grown carbon fiber pulverized material.
KS2.5, manufactured by Lonza, BET N 2 specific surface area 22m 2 /
g, true density 2.25 g/cm 3 , interplanar spacing d 002 = 3.36 Å,
Exactly the same procedure was performed except that Lc (002) >1000 Å) was used. I charged it for 1 hour at 2mA constant current, but
Discharge is not possible and Li is reversibly incorporated.
The ion was O. Comparative Example 10 In place of the vapor grown carbon fiber in Example 11,
Commercially available activated carbon fiber (BET N 2 specific surface area 450m 2 /
g, true density 1.70 g/cm 3 , interplanar spacing d 002 = 3.60 Å,
Exactly the same procedure was performed except that Lc (002) <10 Å) was used. Figure 4-C shows the changes in current efficiency and utilization rate at this time.
Shown below. The energy density (per negative electrode active material) at the 5th cycle was 288 Whr/Kg. Furthermore, the self-discharge rate of this battery after being left for 720 hours (25°C) was 85%. Example 18 The temperature of an asphalt pitch was raised from room temperature at a rate of 10°C/min under an Ar atmosphere, and after being held at 530°C for 1 hour,
Carbonization was performed at 1150°C for 1 hour. This carbonaceous material
The values of BET surface area, true density, and interplanar spacing d 002 and Lc (002) obtained from X-ray diffraction are 47 m 2 /g and 2.00, respectively.
g/cm 3 , 3.48 Å, and 26 Å. This sample was ground in a ball mill to obtain a ground product with an average particle size of 1.5 μm.
A battery evaluation was conducted in exactly the same manner except that this pulverized product was used in place of the anthracene oil-fired carbide powder of Example 1. The results are shown in Figure 5-A. Note that the energy density (per negative electrode active material) at the 5th cycle was 1216 Whr/Kg. Furthermore, the self-discharge rate of this battery when left at 25°C for 720 hours was 7%. Examples 19 to 26, Comparative Examples 11 to 14 Using carbonaceous materials obtained by firing and carbonizing the raw material pitch shown in Table 5 under the heat treatment conditions also shown in Table 5, the same battery evaluation as in Example 18 was conducted. I went. In this test, the current efficiency and the rate of Li ions reversibly incorporated per carbon atom, ie, the utilization rate, were as shown in Table 5. Also BET
Surface area, Lc (002) obtained from X-ray diffraction, and true density are shown. Comparative Example 15 In Example 1, commercially available activated carbon (BET surface area 450
m 2 /g, true density 1.70g/cm 3 , interplanar spacing d 002 = 3.60Å,
Exactly the same procedure was performed except that Lc (002) >10 Å) was used. Changes in current efficiency and utilization rate at this time are shown in Figure 5-B. The energy density (per negative electrode active material) at the 5th cycle was 217 Whr/Kg. Also, the self-discharge rate of this battery when left at 25℃ for 720 hours is 88
It was %.

【表】 実施例 27 石油系、生コークスをAr雰囲気下で、室温よ
り10℃/分で昇温し、1400℃で0.5時間焼成炭化
した。この炭素質材料のBET表面積、真密度、
X線回折から得られる面間隔d002、Lc(002)の値は
それぞれ16m2/g、2.13g/cm3、3.46Å、46Åで
あつた。この試料をボールミル粉砕し、平均粒径
5μmの粉砕物を得た。この粉砕物を実施例1の
アントラセン油焼成炭化物の粉末のかわりに用い
る以外全く同様の電池評価を行つた。その結果を
第6図−Aに示す。 尚、5サイクル目でのエネルギー密度(負極活
物質当り)は911Whr/Kgであつた。又、この電
池の720時間、25℃放置での自己放電率は7%で
あつた。 実施例28〜29、比較例16〜17 第6表に示す生コークスを同じく第6表に示す
処理条件で焼成炭化、もしくは熱処理して得られ
た炭素質材料を用い、実施例27と同様の電池評価
を行つた。その結果を第6表に示す。併せて
BET表面積、真密度、X線回折より得られる面
間隔d002、Lc(002)を示す。
[Table] Example 27 Petroleum-based raw coke was heated in an Ar atmosphere at a rate of 10°C/min from room temperature, and calcined and carbonized at 1400°C for 0.5 hours. BET surface area, true density,
The values of interplanar spacing d 002 and Lc (002) obtained from X-ray diffraction were 16 m 2 /g, 2.13 g/cm 3 , 3.46 Å, and 46 Å, respectively. This sample was ground in a ball mill and the average particle size was
A pulverized product of 5 μm was obtained. A battery evaluation was conducted in exactly the same manner except that this pulverized product was used in place of the anthracene oil-fired carbide powder of Example 1. The results are shown in Figure 6-A. The energy density (per negative electrode active material) at the 5th cycle was 911 Whr/Kg. Furthermore, the self-discharge rate of this battery when left at 25°C for 720 hours was 7%. Examples 28-29, Comparative Examples 16-17 Using carbonaceous materials obtained by calcination carbonization or heat treatment of the raw coke shown in Table 6 under the treatment conditions also shown in Table 6, the same process as in Example 27 was carried out. I conducted a battery evaluation. The results are shown in Table 6. together
BET surface area, true density, interplanar spacing d 002 and Lc (002) obtained from X-ray diffraction are shown.

【表】 実施例 30 市販の石油系ニードルコークス(興亜石油社
製、KOA−SJ Coke)をボールミルで平均粒径
10μmに粉砕した。この粉砕物を実施例1のアン
トラセン油焼成炭化物の粉末のかわりに用いる以
外、全く同様の電池評価を行つた。その結果を第
6図−Bに示す。 尚、このニードルコークスのBET表面積、真
密度、X線回折より得られる面間隔d002、Lc(002)
はそれぞれ11m2/g、2.13g/cm3、3.44Å、52Å
であつた。 実施例 31〜34 実施例30の石油系ニードルコークス(興亜石油
社製、KOA−SJ Coke)のかわりに第7表に示
すコークスを用いた以外、全く同様の電池評価を
行つた。その結果及びBET表面積、真密度、X
線回折より得られる面間隔d002、Lc(002)の値を第
7表に示す。
[Table] Example 30 Average particle size of commercially available petroleum-based needle coke (manufactured by Koa Oil Co., Ltd., KOA-SJ Coke) was measured using a ball mill.
It was ground to 10 μm. A battery evaluation was conducted in exactly the same manner, except that this pulverized product was used in place of the anthracene oil-fired carbide powder of Example 1. The results are shown in Figure 6-B. In addition, the BET surface area, true density, and interplanar spacing obtained from X-ray diffraction of this needle coke d 002 , Lc (002)
are 11m 2 /g, 2.13g/cm 3 , 3.44Å, and 52Å, respectively.
It was hot. Examples 31 to 34 Completely similar battery evaluations were performed except that the coke shown in Table 7 was used instead of the petroleum-based needle coke (manufactured by Koa Oil Co., Ltd., KOA-SJ Coke) in Example 30. Results and BET surface area, true density,
Table 7 shows the values of the interplanar spacing d 002 and Lc (002) obtained by line diffraction.

【表】 実施例35、比較例18〜24 実施例1において、アントラセン油焼成炭化物
の粉末のかわりに第8表に示す炭素質材料を用い
た以外、全く同様の電池評価を行つた。その結果
及びBET表面積、真密度、X線回折より得られ
る面間隔d002、Lc(002)の値を第8表に示す。
[Table] Example 35, Comparative Examples 18 to 24 Battery evaluation was performed in exactly the same manner as in Example 1, except that the carbonaceous materials shown in Table 8 were used instead of the anthracene oil-fired carbide powder. Table 8 shows the results and the values of BET surface area, true density, interplanar spacing d 002 and Lc (002) obtained from X-ray diffraction.

【表】 実施例 36 炭酸リチウム1.05モル、酸化コバルト1.90モ
ル、酸化第2スズ0.084モルを混合し、650℃で5
時間仮焼した後、空気中で850℃、12時間焼成し
たところ、Li1.03Co0.95Sn0.042O2の組成を有する複
合酸化物を得た。この複合酸化物をボールミルで
平均3μmに粉砕した後、複合酸化物1重量部に
対し、ポリアクリロニトリルのジメチルホルムア
ミド溶液(濃度2wt%)1重量部と導電補助剤と
してグラフアイト0.2重量部とを混合した後、15μ
mアルミ箔1cm×5cmの片面に75μmの膜厚に塗
布した。 この試験片を正極に、負極としてリチウム金属
を、又電解液として0.6M−LiClO4−プロピレン
カーボネート溶液を用い、第1図に示す電池を組
み立てた。 25mAの定電流(電流密度5mA/cm2)で30分
間、充電を行つた後、同じく25mAの定電流で
3.8Vまで放電を行つた。この時の充電電圧及び
放電電圧は第7図に示す通りであり、過電圧は極
めて低かつた。 この後、同じ充電放電条件でサイクルテストを
行い、500サイクル目における充電電圧及び放電
電圧は第8図に示す通りであり、殆ど変化してい
なかつた。 実施例37〜38、比較例25〜27 実施例36において、炭酸リチウム、酸化コバル
ト、酸化第2スズの量を第9表に示す仕込量に変
えた以外は同様の操作を行い、種々の複合酸化物
を得た。その組成比も併せて第9表に示す。
[Table] Example 36 1.05 mol of lithium carbonate, 1.90 mol of cobalt oxide, and 0.084 mol of tin oxide were mixed and heated at 650°C for 5 mols.
After calcining for an hour, the mixture was calcined in air at 850°C for 12 hours to obtain a composite oxide having a composition of Li 1.03 Co 0.95 Sn 0.042 O 2 . After pulverizing this composite oxide to an average size of 3 μm using a ball mill, 1 part by weight of a dimethylformamide solution of polyacrylonitrile (concentration 2 wt%) and 0.2 parts by weight of graphite as a conductive aid are mixed with 1 part by weight of the composite oxide. After that, 15μ
It was applied to one side of 1 cm x 5 cm aluminum foil to a film thickness of 75 μm. The battery shown in FIG. 1 was assembled using this test piece as a positive electrode, lithium metal as a negative electrode, and a 0.6M LiClO 4 -propylene carbonate solution as an electrolyte. After charging at a constant current of 25 mA (current density 5 mA/cm 2 ) for 30 minutes, charging at a constant current of 25 mA
It was discharged to 3.8V. The charging voltage and discharging voltage at this time were as shown in FIG. 7, and the overvoltage was extremely low. Thereafter, a cycle test was conducted under the same charging and discharging conditions, and the charging voltage and discharging voltage at the 500th cycle were as shown in FIG. 8, and showed almost no change. Examples 37-38, Comparative Examples 25-27 The same operations as in Example 36 were carried out except that the amounts of lithium carbonate, cobalt oxide, and stannic oxide were changed to the amounts shown in Table 9, and various composites were prepared. An oxide was obtained. The composition ratios are also shown in Table 9.

【表】 この複合酸化物を実施例1と同様の電池を組立
て、評価を行つた。 充電終止電圧及び開放端子電圧、及び過電圧を
第10表に示す。
[Table] A battery similar to that in Example 1 was assembled using this composite oxide and evaluated. Charging end voltage, open terminal voltage, and overvoltage are shown in Table 10.

【表】 実施例 39 実施例36において酸化第2スズ0.082モルの代
りに酸化インジウム0.041モルを用いた以外は全
く同様の操作を行つた。同様の電池評価を行い、
測定した過電圧を第11表に示す。 実施例 40 実施例36において酸化第2スズ0.084モルの代
りに酸化アルミニウム0.042モルを用いた以外は
全く同様の操作を行つた。電池評価を行い、測定
した過電圧を第11表に示す。 実施例 41 実施例36において酸化コバルト1.90モルの代り
に酸化ニツケル1.90モルを用いた以外は全く同様
の操作を行つた。同様の電池評価を行い、測定し
た過電圧を第11表に示す。
[Table] Example 39 The same procedure as in Example 36 was carried out except that 0.041 mol of indium oxide was used instead of 0.082 mol of stannic oxide. Performed a similar battery evaluation,
The measured overvoltages are shown in Table 11. Example 40 The same procedure as in Example 36 was carried out except that 0.042 mol of aluminum oxide was used instead of 0.084 mol of stannic oxide. The battery was evaluated and the measured overvoltages are shown in Table 11. Example 41 The same procedure as in Example 36 was carried out except that 1.90 mol of nickel oxide was used instead of 1.90 mol of cobalt oxide. Similar battery evaluations were conducted and the measured overvoltages are shown in Table 11.

【表】 実施例42、比較例28 実施例36において、グラフアイト0.2重量部の
かわりに第12表に示す導電助剤を用いた以外は全
く同様にして電池評価を行つた。測定した過電圧
を併せて第12表に示す。
[Table] Example 42, Comparative Example 28 Battery evaluation was performed in exactly the same manner as in Example 36, except that the conductive additive shown in Table 12 was used instead of 0.2 part by weight of graphite. The measured overvoltages are also shown in Table 12.

【表】 実施例43〜47、比較例29〜34 実施例36において、ポリアクリロニトリルのジ
メチルホルムアミド溶液のかわりに第13表に示す
バインダー溶液を用いた以外は全く同様にして電
池評価を行つた。結果を第13表に示す。
[Table] Examples 43 to 47, Comparative Examples 29 to 34 Battery evaluation was performed in exactly the same manner as in Example 36, except that the binder solution shown in Table 13 was used instead of the dimethylformamide solution of polyacrylonitrile. The results are shown in Table 13.

【表】【table】

【表】 実施例 48 実施例36において、リチウム金属のかわりにリ
チウム−アルミニウム合金を用いた以外、全く同
様にして電池を組み立てた。10mAの定電流(電
流密度2mA/cm2)で150分間充電を行つた後
(充電終止電圧3.70V)同じく定電流で3.55Vまで
放電を行つた。過電圧は0.02Vと極めて低かつ
た。 実施例 49 実施例36においてリチウム金属のかわりにウツ
ド合金(ビスマス−スズ−鉛−カドミウム合金)
を用いた以外全く同様にして電池を組み立てた。
10mAの定電流(電流密度2mA/cm2)で150分
間、充電を行つた後(充電終止電圧3.75V)、同
じく定電流で3.55Vまで放電を行つた。過電圧は
0.02Vと極めて低かつた。
[Table] Example 48 A battery was assembled in exactly the same manner as in Example 36 except that lithium-aluminum alloy was used instead of lithium metal. After charging at a constant current of 10 mA (current density: 2 mA/cm 2 ) for 150 minutes (charging end voltage: 3.70 V), discharging was performed at the same constant current to 3.55 V. Overvoltage was extremely low at 0.02V. Example 49 In Example 36, wood alloy (bismuth-tin-lead-cadmium alloy) was used instead of lithium metal.
A battery was assembled in exactly the same manner except that .
After charging at a constant current of 10 mA (current density: 2 mA/cm 2 ) for 150 minutes (charging end voltage: 3.75 V), discharging was performed at the same constant current to 3.55 V. Overvoltage is
The voltage was extremely low at 0.02V.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の二次電池の構成例の断面図、
第2図は実施例1の二次電池について充放電を行
つた場合の充電電圧及び放電電圧と利用率との関
係を示すグラフ、第3図〜第7図は充放電サイク
ルに伴う電流効率(破線)及び利用率の変化を示
し、第3図−Aは実施例1、第3図−Bは比較例
2、第4図−Aは実施例11、第4図−Bは実施例
16、第4図−Cは比較例10、第5図−Aは実施例
18、第5図−Bは比較例15、第6図−Aは実施例
27、第6図−Bは実施例30の結果を示すグラフ、
第7図は実施例36の電池の定電流充電電圧、放電
電圧を示すグラフ、第8図は実施例36の電池につ
き充放電のサイクルを行い500サイクル目におけ
る充電電圧と放電電圧を示すグラフである。 1は正極、2は負極、3,3′は集電棒、4,
4′はSUSネツト、5,5′は外部電極端子、6
は電池ケース、7はセパレーター、8は電解液又
は固体電解質である。
FIG. 1 is a sectional view of a configuration example of a secondary battery of the present invention,
Figure 2 is a graph showing the relationship between the charging and discharging voltages and the utilization rate when the secondary battery of Example 1 is charged and discharged, and Figures 3 to 7 are graphs showing the current efficiency ( Figure 3-A shows Example 1, Figure 3-B shows Comparative Example 2, Figure 4-A shows Example 11, and Figure 4-B shows Example 1.
16, Figure 4-C is Comparative Example 10, Figure 5-A is Example
18, Figure 5-B is Comparative Example 15, Figure 6-A is Example
27, Figure 6-B is a graph showing the results of Example 30;
Fig. 7 is a graph showing the constant current charging voltage and discharging voltage of the battery of Example 36, and Fig. 8 is a graph showing the charging voltage and discharging voltage at the 500th cycle of charging and discharging the battery of Example 36. be. 1 is a positive electrode, 2 is a negative electrode, 3, 3' is a current collector rod, 4,
4' is SUS net, 5, 5' are external electrode terminals, 6
is a battery case, 7 is a separator, and 8 is an electrolytic solution or solid electrolyte.

Claims (1)

【特許請求の範囲】 1 正電極、負電極、セパレーター及び非水電解
液を有する二次電池であつて、下記を正電極の
活物質として、下記を負電極の活物質として用
いることを特徴とする二次電池。 :非炭素質材料。 :BET法比表面積A(m2/g)が0.1<A<100
の範囲で、かつX線回折における結晶厚みLc
(Å)と真密度ρ(g/cm3)の値が条件1.80<ρ
<2.18、15<Lcかつ120ρ−227<Lc<120ρ−
189を満たす範囲にある炭素質材料。 2 正極の活物質として用いられる非炭素質材料
が、層構造を有し、一般式 AxMyNzO2 (但しAはアルカリ金属から選ばれた少なくとも
一種であり、Mは遷移金属であり、NはAl、In、
Snの群から選ばれた少なくとも一種を表わし、
x、y、zは各々0.05≦x≦1.10、0.85≦y≦
1.00、0.001≦z≦0.10の数を表わす。)で示され
る複合酸化物であることを特徴とする特許請求の
範囲第1項記載の二次電池。 3 正電極、負電極、セパレーター及び非水電解
液を有する二次電池であつて、下記を正電極の
活物質として用いることを特徴とする二次電池。 :層状構造を有し、一般式 AxMyNzO2 (但しAはアルカリ金属から選ばれた少なくとも
一種であり、Mは遷移金属であり、NはAl、In、
Snの群から選ばれた少なくとも一種を表わし、
x、y、zは各々0.05≦x≦1.10、0.85≦y≦
1.00、0.001≦z≦0.10の数を表わす。)で示され
る複合酸化物。
[Claims] 1. A secondary battery having a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte, characterized in that the following is used as an active material for the positive electrode and the following is used as an active material for the negative electrode. secondary battery. : Non-carbonaceous material. :BET method specific surface area A (m 2 /g) is 0.1<A<100
and the crystal thickness Lc in X-ray diffraction
(Å) and true density ρ (g/cm 3 ) under the condition 1.80<ρ
<2.18, 15<Lc and 120ρ−227<Lc<120ρ−
Carbonaceous materials that meet 189. 2. The non-carbonaceous material used as the active material of the positive electrode has a layered structure and has the general formula A x M y N z O 2 (where A is at least one selected from alkali metals and M is a transition metal). Yes, N is Al, In,
represents at least one kind selected from the group of Sn,
x, y, z are respectively 0.05≦x≦1.10, 0.85≦y≦
Represents the number 1.00, 0.001≦z≦0.10. ) The secondary battery according to claim 1, wherein the secondary battery is a composite oxide represented by: 3. A secondary battery having a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, characterized in that the following is used as an active material of the positive electrode. : has a layered structure and has the general formula A x M y N z O 2 (where A is at least one selected from alkali metals, M is a transition metal, and N is Al, In,
represents at least one kind selected from the group of Sn,
x, y, z are respectively 0.05≦x≦1.10, 0.85≦y≦
Represents the number 1.00, 0.001≦z≦0.10. ) complex oxide.
JP61103785A 1985-05-10 1986-05-08 secondary battery Granted JPS6290863A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP9769585 1985-05-10
JP60-130678 1985-06-18
JP60-130677 1985-06-18
JP60-100101 1985-06-18
JP60-130676 1985-06-18
JP60-100102 1985-06-18
JP60-97695 1985-06-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP6216743A Division JP2704841B2 (en) 1985-05-10 1994-08-19 Rechargeable battery
JP6216744A Division JP2727301B2 (en) 1985-05-10 1994-08-19 Manufacturing method of secondary battery electrode

Publications (2)

Publication Number Publication Date
JPS6290863A JPS6290863A (en) 1987-04-25
JPH0424831B2 true JPH0424831B2 (en) 1992-04-28

Family

ID=14199076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61103785A Granted JPS6290863A (en) 1985-05-10 1986-05-08 secondary battery

Country Status (1)

Country Link
JP (1) JPS6290863A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995028011A1 (en) * 1994-04-08 1995-10-19 Sony Corporation Nonaqueous-electrolyte secondary cell
WO2009038093A1 (en) 2007-09-18 2009-03-26 Nippon Oil Corporation Amorphous carbon material for negative electrode of lithium ion secondary battery and method for producing the same
WO2009044789A1 (en) 2007-10-02 2009-04-09 Nippon Oil Corporation Artificial graphite for negative electrode of lithium ion secondary battery, and method for production thereof
WO2009060891A1 (en) 2007-11-08 2009-05-14 Nippon Oil Corporation Raw material charcoal composition for negative electrode material of lithium ion secondary battery and method for producing the same
WO2010074247A1 (en) 2008-12-26 2010-07-01 新日本石油株式会社 Raw oil composition for negative electrode material for lithium ion secondary battery
WO2013005739A1 (en) 2011-07-06 2013-01-10 昭和電工株式会社 Electrode for lithium secondary batteries, lithium secondary battery, and method for producing electrode for lithium secondary batteries
WO2013153916A1 (en) 2012-04-09 2013-10-17 昭和電工株式会社 Method for producing collector for electrochemical elements, method for producing electrode for electrochemical elements, collector for electrochemical elements, electrochemical element, and coating liquid for forming collector for electrochemical elements
WO2024053488A1 (en) 2022-09-08 2024-03-14 三菱鉛筆株式会社 Battery electrode graphite dispersion
US12136699B2 (en) 2020-12-01 2024-11-05 Prime Planet Energy & Solutions, Inc. Nonaqueous electrolyte solution of lithium ion secondary battery, and lithium ion secondary battery

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2556840B2 (en) * 1986-03-27 1996-11-27 シャープ株式会社 Negative electrode for non-aqueous lithium secondary battery
JPS63279562A (en) * 1987-05-11 1988-11-16 Sanyo Electric Co Ltd Battery
JPS63285872A (en) * 1987-05-19 1988-11-22 Mitsubishi Petrochem Co Ltd Nonaqueous solvent secondary battery
JP2611265B2 (en) * 1987-10-17 1997-05-21 ソニー株式会社 Non-aqueous electrolyte secondary battery
JPH01213963A (en) * 1988-02-22 1989-08-28 Fuji Elelctrochem Co Ltd battery
JP2638919B2 (en) * 1988-04-30 1997-08-06 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP2674793B2 (en) * 1988-08-31 1997-11-12 ソニー 株式会社 Non-aqueous electrolyte battery
JP2957589B2 (en) * 1989-02-20 1999-10-04 三洋電機株式会社 Non-aqueous secondary battery
JP2582893B2 (en) * 1989-03-31 1997-02-19 日立マクセル株式会社 Organic electrolyte battery
JP2548460B2 (en) * 1991-01-30 1996-10-30 松下電器産業株式会社 Negative electrode for non-aqueous electrolyte secondary battery
US5219680A (en) * 1991-07-29 1993-06-15 Ultracell Incorporated Lithium rocking-chair rechargeable battery and electrode therefor
US5494762A (en) * 1992-01-16 1996-02-27 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
JP3364968B2 (en) * 1992-09-01 2003-01-08 株式会社デンソー Battery
US5393622A (en) * 1992-02-07 1995-02-28 Matsushita Electric Industrial Co., Ltd. Process for production of positive electrode active material
EP0627776B1 (en) * 1993-05-14 1997-08-13 Sharp Kabushiki Kaisha Lithium secondary battery
US5571638A (en) * 1993-09-30 1996-11-05 Sumitomo Chemical Company Limited Lithium secondary battery
US5478672A (en) * 1993-12-24 1995-12-26 Sharp Kabushiki Kaisha Nonaqueous secondary battery, positive-electrode active material
US5776208A (en) * 1994-03-16 1998-07-07 Kabushiki Kaisha Toshiba Apparatus and method for assembling battery
JP3204291B2 (en) 1994-07-21 2001-09-04 シャープ株式会社 Carbon body electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
JP3200289B2 (en) 1994-07-29 2001-08-20 シャープ株式会社 Lithium secondary battery
JPH08213052A (en) 1994-08-04 1996-08-20 Seiko Instr Inc Nonaqueous electrolyte secondary battery
CA2156675C (en) 1994-08-23 1999-03-09 Naohiro Sonobe Carbonaceous electrode material for secondary battery
JP3222022B2 (en) 1994-10-27 2001-10-22 シャープ株式会社 Method for producing lithium secondary battery and negative electrode active material
CA2162456C (en) 1994-11-09 2008-07-08 Keijiro Takanishi Cathode material, method of preparing it and nonaqueous solvent type secondary battery having a cathode comprising it
JP2006128135A (en) * 1994-11-22 2006-05-18 Sumitomo Chemical Co Ltd Active material for positive electrode and method for producing positive electrode
JP3811974B2 (en) * 1994-11-22 2006-08-23 住友化学株式会社 Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3769052B2 (en) * 1995-07-18 2006-04-19 住友化学株式会社 Method for producing tin-added lithium nickelate for active material of lithium secondary battery positive electrode
JP3502490B2 (en) * 1995-11-01 2004-03-02 昭和電工株式会社 Carbon fiber material and method for producing the same
JPH09231977A (en) 1996-02-27 1997-09-05 Elf Atochem Japan Kk Electrode and its manufacture
CN1121731C (en) * 1997-06-27 2003-09-17 Lg化学株式会社 Lithium ion secondary battery and method for manufacturing same
US6316146B1 (en) 1998-01-09 2001-11-13 Matsushita Electric Industrial Co., Ltd. Carbon materials for negative electrode of secondary battery and manufacturing process
US6528211B1 (en) 1998-03-31 2003-03-04 Showa Denko K.K. Carbon fiber material and electrode materials for batteries
US6413486B2 (en) 1998-06-05 2002-07-02 Matsushita Electric Industrial Co., Ltd. Nonaqueous secondary battery, constituent elements of battery, and materials thereof
CA2376775A1 (en) * 1999-06-14 2000-12-21 Kabushiki Kaisha Toshiba Positive plate active material for nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell containing the same
EP1242311B1 (en) 1999-12-10 2003-05-02 Fmc Corporation Lithium cobalt oxides and methods of making same
JP4789330B2 (en) 2001-02-22 2011-10-12 株式会社クレハ Non-aqueous solvent secondary battery electrode material, electrode and secondary battery
JP5053489B2 (en) * 2001-07-27 2012-10-17 株式会社東芝 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
WO2004054017A1 (en) * 2002-12-06 2004-06-24 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
EP1732153A4 (en) 2004-03-30 2012-05-16 Kureha Corp Material for negative electrode of nonaqueous electrolyte secondary battery, process for producing the same, negative electrode and battery
CN101351909B (en) * 2005-12-02 2010-09-15 株式会社杰士汤浅 Non-aqueous electrolyte battery and manufacturing method thereof
US7906239B2 (en) 2006-03-06 2011-03-15 Sony Corporation Cathode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP4586991B2 (en) 2006-03-24 2010-11-24 ソニー株式会社 Positive electrode active material, method for producing the same, and secondary battery
US8911903B2 (en) 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
JP4618308B2 (en) 2007-04-04 2011-01-26 ソニー株式会社 Porous carbon material and method for producing the same, adsorbent, mask, adsorbing sheet, and carrier
US8771876B2 (en) 2009-04-22 2014-07-08 Sony Corporation Positive electrode active material, method for manufacturing positive electrode active material and nonaqueous electrolyte battery
JP5662698B2 (en) 2009-05-15 2015-02-04 新日鉄住金化学株式会社 Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same
JP5603589B2 (en) 2009-05-15 2014-10-08 新日鉄住金化学株式会社 Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same
JP5533035B2 (en) 2010-03-02 2014-06-25 ソニー株式会社 Nonaqueous electrolyte composition and nonaqueous electrolyte battery
JP5697954B2 (en) 2010-11-12 2015-04-08 新日鉄住金化学株式会社 Negative electrode active material for lithium secondary battery and lithium secondary battery using the same
JP6204004B2 (en) * 2011-08-31 2017-09-27 株式会社半導体エネルギー研究所 Manufacturing method of secondary battery
JP2014107160A (en) * 2012-11-28 2014-06-09 Nippon Telegr & Teleph Corp <Ntt> Sodium secondary battery
WO2015129669A1 (en) * 2014-02-28 2015-09-03 コスモ石油株式会社 Finely pulverized petroleum coke, fired finely pulverized petroleum coke, filler for rubber composition, and rubber composition
JP2015178583A (en) * 2014-02-28 2015-10-08 コスモ石油株式会社 Filler and composition containing the same
WO2018003150A1 (en) 2016-06-30 2018-01-04 Jnc株式会社 Silicon nanoparticle-containing hydrogen polysilsesquioxane, calcined product thereof, and method for producing said polysilsesquioxane and said calcined product
WO2018043436A1 (en) * 2016-08-30 2018-03-08 国立研究開発法人産業技術総合研究所 Dissimilar metal-containing lithium-nickel composite oxide and production method therefor
TW201826598A (en) 2017-01-11 2018-07-16 日商捷恩智股份有限公司 Silicon nanoparticle-containing hydrogen polysilsesquioxane pyrolyzed material-metal oxide composite and method for producing the same
TW201826600A (en) 2017-01-11 2018-07-16 日商捷恩智股份有限公司 Silicon nanoparticle-containing hydrogen polysilsesquioxane pyrolyzed material
JP6941302B2 (en) 2017-01-11 2021-09-29 Jnc株式会社 Polysilsesquioxane-coated silicon nanoparticles or their fired product and its manufacturing method, negative electrode active material for lithium ion batteries, negative electrode for lithium ion batteries, and lithium ion batteries

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57208079A (en) * 1981-06-18 1982-12-21 Sanyo Electric Co Ltd Rechargeable lithium cell
JPS5893176A (en) * 1981-11-30 1983-06-02 Toray Ind Inc Secondary battery
JPS5918579A (en) * 1982-07-22 1984-01-30 Kao Corp Electrochemical battery
US4423125A (en) * 1982-09-13 1983-12-27 Bell Telephone Laboratories, Incorporated Ambient temperature rechargeable battery
JPS59154763A (en) * 1983-02-22 1984-09-03 Sanyo Chem Ind Ltd Negative pole material for lithic secondary cell
JPS6054181A (en) * 1983-09-02 1985-03-28 Toray Ind Inc Rechargeable battery
JPH0789483B2 (en) * 1984-05-07 1995-09-27 三洋化成工業株式会社 Secondary battery
JPH0782836B2 (en) * 1984-11-02 1995-09-06 三菱化学株式会社 Electrode material
JPS62122066A (en) * 1985-04-30 1987-06-03 Mitsubishi Petrochem Co Ltd Nonaqueous solvent secondary battery
JPH0424831A (en) * 1990-05-18 1992-01-28 Fujitsu Ltd Test device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995028011A1 (en) * 1994-04-08 1995-10-19 Sony Corporation Nonaqueous-electrolyte secondary cell
WO2009038093A1 (en) 2007-09-18 2009-03-26 Nippon Oil Corporation Amorphous carbon material for negative electrode of lithium ion secondary battery and method for producing the same
WO2009044789A1 (en) 2007-10-02 2009-04-09 Nippon Oil Corporation Artificial graphite for negative electrode of lithium ion secondary battery, and method for production thereof
WO2009060891A1 (en) 2007-11-08 2009-05-14 Nippon Oil Corporation Raw material charcoal composition for negative electrode material of lithium ion secondary battery and method for producing the same
WO2010074247A1 (en) 2008-12-26 2010-07-01 新日本石油株式会社 Raw oil composition for negative electrode material for lithium ion secondary battery
WO2013005739A1 (en) 2011-07-06 2013-01-10 昭和電工株式会社 Electrode for lithium secondary batteries, lithium secondary battery, and method for producing electrode for lithium secondary batteries
WO2013153916A1 (en) 2012-04-09 2013-10-17 昭和電工株式会社 Method for producing collector for electrochemical elements, method for producing electrode for electrochemical elements, collector for electrochemical elements, electrochemical element, and coating liquid for forming collector for electrochemical elements
US12136699B2 (en) 2020-12-01 2024-11-05 Prime Planet Energy & Solutions, Inc. Nonaqueous electrolyte solution of lithium ion secondary battery, and lithium ion secondary battery
WO2024053488A1 (en) 2022-09-08 2024-03-14 三菱鉛筆株式会社 Battery electrode graphite dispersion

Also Published As

Publication number Publication date
JPS6290863A (en) 1987-04-25

Similar Documents

Publication Publication Date Title
JPH0424831B2 (en)
EP0205856B1 (en) Secondary battery
US5451477A (en) Non-aqueous liquid electrolyte secondary battery
JP3541913B2 (en) Non-aqueous electrolyte secondary battery
JPWO2002093666A1 (en) Non-aqueous electrolyte secondary battery and method for producing cathode material thereof
JP3430614B2 (en) Non-aqueous electrolyte secondary battery
JPH05121066A (en) Negative electrode for nonaqueous battery
JPWO2004034491A1 (en) Nonaqueous electrolyte secondary battery and method for producing positive electrode used in this nonaqueous electrolyte secondary battery
JPH0770328B2 (en) Secondary battery
WO2021166359A1 (en) Negative electrode carbon material for lithium ion secondary battery, production method therefor, and negative electrode and lithium ion secondary battery using same
JP2000053408A (en) Expanded graphite particle, its production, lithium secondary cell, its negative pole and negative pole material
JP4650774B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2630939B2 (en) Non-aqueous secondary battery
JP5636786B2 (en) A negative electrode material for a lithium secondary battery, a negative electrode for a lithium secondary battery using the same, and a lithium secondary battery.
JP2001085016A (en) Non-aqueous electrolyte battery
JP4192574B2 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JPS63121259A (en) Secondary battery
JP2704841B2 (en) Rechargeable battery
JP4717276B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP2727301B2 (en) Manufacturing method of secondary battery electrode
JPS63121263A (en) New nonaqueous battery
JP3241321B2 (en) Electrodes for secondary batteries
JPS63121261A (en) Organic electrolyte secondary battery
JP3855310B2 (en) Lithium / transition metal composite oxide, method for producing the same, and nonaqueous solvent secondary battery using the same
JP2003264006A (en) Lithium ion secondary battery and method of charging lithium ion secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term