JPH04247607A - 磁気抵抗効果素子 - Google Patents
磁気抵抗効果素子Info
- Publication number
- JPH04247607A JPH04247607A JP3013620A JP1362091A JPH04247607A JP H04247607 A JPH04247607 A JP H04247607A JP 3013620 A JP3013620 A JP 3013620A JP 1362091 A JP1362091 A JP 1362091A JP H04247607 A JPH04247607 A JP H04247607A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- magnetic
- film layer
- magnetic thin
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000694 effects Effects 0.000 title abstract description 11
- 239000010409 thin film Substances 0.000 claims abstract description 70
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 7
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 6
- 229910052709 silver Inorganic materials 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 229910052737 gold Inorganic materials 0.000 claims abstract description 5
- 239000002184 metal Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000010408 film Substances 0.000 abstract description 8
- 230000007423 decrease Effects 0.000 abstract description 4
- 229910052702 rhenium Inorganic materials 0.000 abstract description 3
- 229910003271 Ni-Fe Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910020630 Co Ni Inorganic materials 0.000 description 4
- 229910002440 Co–Ni Inorganic materials 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 230000005389 magnetism Effects 0.000 description 4
- 230000005415 magnetization Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 229910020598 Co Fe Inorganic materials 0.000 description 2
- 229910002519 Co-Fe Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000002772 conduction electron Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/142—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
- H01F10/3281—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Materials of the active region
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B2005/3996—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/923—Physical dimension
- Y10S428/924—Composite
- Y10S428/926—Thickness of individual layer specified
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/9265—Special properties
- Y10S428/928—Magnetic property
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12465—All metal or with adjacent metals having magnetic properties, or preformed fiber orientation coordinate with shape
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12931—Co-, Fe-, or Ni-base components, alternative to each other
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12944—Ni-base component
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Hall/Mr Elements (AREA)
- Thin Magnetic Films (AREA)
- Magnetic Heads (AREA)
- Adjustable Resistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【0001】
【産業上の利用分野】この発明は、例えば磁気記録媒体
より信号を読み取るための磁気ヘッドとして、あるいは
磁界強度を信号として検出する磁気センサ等として用い
られる磁気抵抗効果素子に関するものである。
より信号を読み取るための磁気ヘッドとして、あるいは
磁界強度を信号として検出する磁気センサ等として用い
られる磁気抵抗効果素子に関するものである。
【0002】
【従来の技術】従来より磁気抵抗効果素子を用いた磁気
抵抗効果型磁気センサ(以下、MRセンサという)およ
び磁気抵抗効果型磁気ヘッド(以下、MRヘッドという
)等の開発が進められている。それに使用する磁性体と
しては、主にNi0.8 Fe0.2 のパーマロイが
用いられていた。ただし、この材料の場合は、抵抗変化
率ΔR/Rが2.5%程度であり、より高感度な磁気抵
抗効果素子を得るには、より抵抗変化率ΔR/Rの大き
なものが求められてきた。
抵抗効果型磁気センサ(以下、MRセンサという)およ
び磁気抵抗効果型磁気ヘッド(以下、MRヘッドという
)等の開発が進められている。それに使用する磁性体と
しては、主にNi0.8 Fe0.2 のパーマロイが
用いられていた。ただし、この材料の場合は、抵抗変化
率ΔR/Rが2.5%程度であり、より高感度な磁気抵
抗効果素子を得るには、より抵抗変化率ΔR/Rの大き
なものが求められてきた。
【0003】なお、上記の抵抗変化率ΔR/Rは、磁気
抵抗効果素子を構成する磁性体を細片形状にし、外部磁
界を面内に電流と垂直方向にかけ、磁界を変化させたと
きの電気抵抗値を4端子法により測定し、これに基づい
て算出している。ただし、上記の抵抗変化率ΔR/Rは
、磁界を変化させたときの電気抵抗の最大値をRmax
とし、最小値をRmin としたときに、次式
ΔR/R={(Rmax −Rmin )/Rmin
}×100〔%〕………(1)に従って演算したもの
である。
抵抗効果素子を構成する磁性体を細片形状にし、外部磁
界を面内に電流と垂直方向にかけ、磁界を変化させたと
きの電気抵抗値を4端子法により測定し、これに基づい
て算出している。ただし、上記の抵抗変化率ΔR/Rは
、磁界を変化させたときの電気抵抗の最大値をRmax
とし、最小値をRmin としたときに、次式
ΔR/R={(Rmax −Rmin )/Rmin
}×100〔%〕………(1)に従って演算したもの
である。
【0004】
【発明が解決しようとする課題】近年、〔Fe/Cr〕
人工格子膜で大きな磁気抵抗効果が起こることが発見さ
れた(フィジカル・レビュー・レターズ 第61巻
2472頁 1988年;Physical Re
view Letters Vol.61, p247
2, 1988)。しかし、この材料の場合は十数kO
e以上の大きな磁界を印加しないと、大きな抵抗変化率
ΔR/Rが得られず、実用性に難点があった。
人工格子膜で大きな磁気抵抗効果が起こることが発見さ
れた(フィジカル・レビュー・レターズ 第61巻
2472頁 1988年;Physical Re
view Letters Vol.61, p247
2, 1988)。しかし、この材料の場合は十数kO
e以上の大きな磁界を印加しないと、大きな抵抗変化率
ΔR/Rが得られず、実用性に難点があった。
【0005】この発明の目的は、上記の問題点を解決し
、実用性のある低磁界でより大きな抵抗変化率ΔR/R
を示す磁気抵抗効果素子を提供することである。
、実用性のある低磁界でより大きな抵抗変化率ΔR/R
を示す磁気抵抗効果素子を提供することである。
【0006】
【課題を解決するための手段】上記の課題を解決するた
めに、この発明の磁気抵抗効果素子は、以下のように構
成されている。すなわち、この磁気抵抗効果素子は、図
1(a) ,(b) に示すように、保磁力の異なる厚
さ10〜100Åの第1の磁性薄膜層1と厚さ10〜1
00Åの第2の磁性薄膜層3とを交互に積層し、積層さ
れる第1および第2の磁性薄膜層1,3の相互間に厚さ
10〜100Åの金属非磁性薄膜層2を介在させた構造
からなる。ただし、第1の磁性薄膜層1は主成分が
(NiX Co1−X ) X’Fe1−X’
……(2)であり、また第2の磁性薄膜層3は主成分
が (CoY Ni1−Y )Z Fe1−Z
……(3)で、X,X’,Y,Zはそれぞれ原子
組成比で 0.6≦X≦1.0, 0.7≦X
’≦1.0
……(4) 0.4≦Y≦1.0, 0.
8≦Z≦1.0
……(5)である。
めに、この発明の磁気抵抗効果素子は、以下のように構
成されている。すなわち、この磁気抵抗効果素子は、図
1(a) ,(b) に示すように、保磁力の異なる厚
さ10〜100Åの第1の磁性薄膜層1と厚さ10〜1
00Åの第2の磁性薄膜層3とを交互に積層し、積層さ
れる第1および第2の磁性薄膜層1,3の相互間に厚さ
10〜100Åの金属非磁性薄膜層2を介在させた構造
からなる。ただし、第1の磁性薄膜層1は主成分が
(NiX Co1−X ) X’Fe1−X’
……(2)であり、また第2の磁性薄膜層3は主成分
が (CoY Ni1−Y )Z Fe1−Z
……(3)で、X,X’,Y,Zはそれぞれ原子
組成比で 0.6≦X≦1.0, 0.7≦X
’≦1.0
……(4) 0.4≦Y≦1.0, 0.
8≦Z≦1.0
……(5)である。
【0007】金属非磁性薄膜層2としては、Ni−Co
−Fe系磁性薄膜と界面での反応が少ないものが必要で
、Cu,Ag,Au,Pt,Ru,Reのいずれかが適
している。ここで、上記の第1の磁性薄膜層1は、磁歪
が小さくかつ保磁力が小さい軟磁性材料であり、第2の
磁性薄膜層3は、磁歪が小さくかつ保磁力は比較的大き
な半硬質磁性材料である。
−Fe系磁性薄膜と界面での反応が少ないものが必要で
、Cu,Ag,Au,Pt,Ru,Reのいずれかが適
している。ここで、上記の第1の磁性薄膜層1は、磁歪
が小さくかつ保磁力が小さい軟磁性材料であり、第2の
磁性薄膜層3は、磁歪が小さくかつ保磁力は比較的大き
な半硬質磁性材料である。
【0008】また、第1の磁性薄膜層1としては、上記
のような3元系でなくとも、軟磁性を示しかつ抵抗変化
率ΔR/Rが比較的大きなNi−Fe系やNi−Co系
の2元系磁性薄膜層でもよい。例えば、第1の磁性薄膜
層1としては、主成分が NiX Fe1−X
……(6)で、Xは原子組成比で 0.7≦X≦0.9
……(7)でもよい。また、第1の磁性薄膜
層1としては、主成分が NiX Co1−X
……(8)で、Xは原子組成比で 0.6≦X≦0.9
……(9)でもよい。
のような3元系でなくとも、軟磁性を示しかつ抵抗変化
率ΔR/Rが比較的大きなNi−Fe系やNi−Co系
の2元系磁性薄膜層でもよい。例えば、第1の磁性薄膜
層1としては、主成分が NiX Fe1−X
……(6)で、Xは原子組成比で 0.7≦X≦0.9
……(7)でもよい。また、第1の磁性薄膜
層1としては、主成分が NiX Co1−X
……(8)で、Xは原子組成比で 0.6≦X≦0.9
……(9)でもよい。
【0009】
【作用】第1の磁性薄膜層1と第2の磁性薄膜層3とは
、保磁力が異なり、かつ金属非磁性薄膜層2によって分
離されているため、弱い磁界Hが印加されると、図1(
a) に示したように軟磁性の第1の磁性薄膜層1のス
ピンがまずその方向に回転し(矢印A1 で示す)、半
硬質磁性の第2の磁性薄膜層3のスピンはまだ反転しな
い状態が生ずる(矢印B1 で示す)。したがって、こ
のとき第1の磁性薄膜層1と第2の磁性薄膜層3のスピ
ン配列が互いに逆方向となり、伝導電子のスピン散乱が
極大となって図1において紙面に垂直な方向に電流を流
す場合に大きな電気抵抗値を示す。
、保磁力が異なり、かつ金属非磁性薄膜層2によって分
離されているため、弱い磁界Hが印加されると、図1(
a) に示したように軟磁性の第1の磁性薄膜層1のス
ピンがまずその方向に回転し(矢印A1 で示す)、半
硬質磁性の第2の磁性薄膜層3のスピンはまだ反転しな
い状態が生ずる(矢印B1 で示す)。したがって、こ
のとき第1の磁性薄膜層1と第2の磁性薄膜層3のスピ
ン配列が互いに逆方向となり、伝導電子のスピン散乱が
極大となって図1において紙面に垂直な方向に電流を流
す場合に大きな電気抵抗値を示す。
【0010】さらに、印加磁界を強くすると、図1(b
) に示したように第2の磁性薄膜層3のスピンも反転
する(矢印B2 で示す)。したがって、第1の磁性薄
膜層1と第2の磁性薄膜層3のスピン配列は平行となり
、伝導電子のスピン散乱が小さくなり、図1において紙
面に垂直な方向に電流を流す場合の電気抵抗値は減少す
る。図2は、上記した磁気抵抗効果素子において、磁界
Hを変化させたときの抵抗変化率ΔR/Rの変化を示し
ており、図2における(a)の位置は図1(a) の状
態に対応し、図2における(b)の位置は図1(b)
の位置に対応する。なお、図2における抵抗変化率ΔR
/Rは、磁気抵抗効果素子において、外部磁界Hを面内
に電流と垂直方法になるようにかけ(図1では、磁界は
紙面と平行で、電流は紙面と垂直である)、磁界Hを変
化させたときの電気抵抗値の変化を測定し、磁界Hを変
化させたときの各磁界Hの強さに対応した電気抵抗値を
RP とし、電気抵抗の最小値をRmin としたとき
に、次式 ΔR/R={(RP −Rmin )
/Rmin }×100〔%〕 ………(10) に
従って算出し、それを磁界H−抵抗変化率ΔR/Rの特
性としてグラフ化したものである。
) に示したように第2の磁性薄膜層3のスピンも反転
する(矢印B2 で示す)。したがって、第1の磁性薄
膜層1と第2の磁性薄膜層3のスピン配列は平行となり
、伝導電子のスピン散乱が小さくなり、図1において紙
面に垂直な方向に電流を流す場合の電気抵抗値は減少す
る。図2は、上記した磁気抵抗効果素子において、磁界
Hを変化させたときの抵抗変化率ΔR/Rの変化を示し
ており、図2における(a)の位置は図1(a) の状
態に対応し、図2における(b)の位置は図1(b)
の位置に対応する。なお、図2における抵抗変化率ΔR
/Rは、磁気抵抗効果素子において、外部磁界Hを面内
に電流と垂直方法になるようにかけ(図1では、磁界は
紙面と平行で、電流は紙面と垂直である)、磁界Hを変
化させたときの電気抵抗値の変化を測定し、磁界Hを変
化させたときの各磁界Hの強さに対応した電気抵抗値を
RP とし、電気抵抗の最小値をRmin としたとき
に、次式 ΔR/R={(RP −Rmin )
/Rmin }×100〔%〕 ………(10) に
従って算出し、それを磁界H−抵抗変化率ΔR/Rの特
性としてグラフ化したものである。
【0011】このようにして、磁界Hが比較的小さい領
域において、大きな抵抗変化率ΔR/Rが得られる訳で
あるが、金属非磁性薄膜層2が無いと、第1の磁性薄膜
層1と第2の磁性薄膜層3とが磁気的にカップリングし
てしまい、図1(a) のような状態が実現できないた
め、大きな磁気抵抗効果は得られない。また、第1の磁
性薄膜層1と第2の磁性薄膜層3とは磁歪が小さいこと
が望ましい。これはMRヘッド等に用いた場合は磁歪が
大きいとノイズの原因になるためである。
域において、大きな抵抗変化率ΔR/Rが得られる訳で
あるが、金属非磁性薄膜層2が無いと、第1の磁性薄膜
層1と第2の磁性薄膜層3とが磁気的にカップリングし
てしまい、図1(a) のような状態が実現できないた
め、大きな磁気抵抗効果は得られない。また、第1の磁
性薄膜層1と第2の磁性薄膜層3とは磁歪が小さいこと
が望ましい。これはMRヘッド等に用いた場合は磁歪が
大きいとノイズの原因になるためである。
【0012】第(2)式のNi−リッチのNi−Co−
Fe系合金は、その組成比が第(4)式を満足するとき
に、磁歪が小さく軟磁性を示す。その代表的なものはN
i0.8 Co0.1 Fe0.1 ,Ni0.8 F
e0.2 等である。 またさらに、軟磁性を改良したり、耐摩耗性および耐食
性を改良するために、第(2)式の組成にNb,Mo,
Cr,W,Ru等を添加しても良い。
Fe系合金は、その組成比が第(4)式を満足するとき
に、磁歪が小さく軟磁性を示す。その代表的なものはN
i0.8 Co0.1 Fe0.1 ,Ni0.8 F
e0.2 等である。 またさらに、軟磁性を改良したり、耐摩耗性および耐食
性を改良するために、第(2)式の組成にNb,Mo,
Cr,W,Ru等を添加しても良い。
【0013】一方、第(3)式を満足するCo−リッチ
のCo−Ni−Fe系合金は、第(5)式を満足すると
きに、比較的磁歪が小さくかつ半硬質磁性を示す。この
ように組成を選ぶことにより、保磁力の異なる第1およ
び第2の磁性薄膜層1,3が得られる。これら第1およ
び第2の磁性薄膜層1,3は、その厚さが10Å未満で
はキュリー温度の低下による室温での磁化の低減等が問
題となる。また実用上、磁気抵抗効果素子は全膜厚が数
百Åで用いられるため、この発明のように積層効果を利
用するには、各磁性薄膜層1,3を100Å以下にする
必要がある。したがって、これら磁性薄膜層1,3の厚
さは10〜100Åとすることが望ましい。
のCo−Ni−Fe系合金は、第(5)式を満足すると
きに、比較的磁歪が小さくかつ半硬質磁性を示す。この
ように組成を選ぶことにより、保磁力の異なる第1およ
び第2の磁性薄膜層1,3が得られる。これら第1およ
び第2の磁性薄膜層1,3は、その厚さが10Å未満で
はキュリー温度の低下による室温での磁化の低減等が問
題となる。また実用上、磁気抵抗効果素子は全膜厚が数
百Åで用いられるため、この発明のように積層効果を利
用するには、各磁性薄膜層1,3を100Å以下にする
必要がある。したがって、これら磁性薄膜層1,3の厚
さは10〜100Åとすることが望ましい。
【0014】これらの磁性薄膜層1,3の間に介在させ
る金属薄膜層2としては、Ni−Co−Fe系磁性薄膜
層と界面での反応が少なくかつ非磁性であることが必要
で、Cu,Ag,Au,Pt等が適している。また、耐
摩耗性を重視すれば、Ru,Re等が適している。この
金属非磁性薄膜層2の厚さは50Å程度が最適であり、
10Å未満では第1および第2の磁性薄膜層1,3が磁
気的にカップリングをして、図1(a) のように保磁
力の異なる第1の磁性薄膜層1と第2の磁性薄膜層3の
スピンが反平行となる状態の実現が困難となる。
る金属薄膜層2としては、Ni−Co−Fe系磁性薄膜
層と界面での反応が少なくかつ非磁性であることが必要
で、Cu,Ag,Au,Pt等が適している。また、耐
摩耗性を重視すれば、Ru,Re等が適している。この
金属非磁性薄膜層2の厚さは50Å程度が最適であり、
10Å未満では第1および第2の磁性薄膜層1,3が磁
気的にカップリングをして、図1(a) のように保磁
力の異なる第1の磁性薄膜層1と第2の磁性薄膜層3の
スピンが反平行となる状態の実現が困難となる。
【0015】また、厚さが100Åを超えると、この磁
気抵抗効果を示さない金属非磁性薄膜層2部分の電気抵
抗が磁気抵抗効果素子全体の抵抗変化を低減させること
になる。したがって、金属非磁性薄膜層2の厚さは10
〜100Åとすることが望ましい。
気抵抗効果を示さない金属非磁性薄膜層2部分の電気抵
抗が磁気抵抗効果素子全体の抵抗変化を低減させること
になる。したがって、金属非磁性薄膜層2の厚さは10
〜100Åとすることが望ましい。
【0016】
【実施例】以下具体的な実施例により、この発明の効果
の説明を行う。超高真空蒸着装置を用いて以下に示した
構成の磁気抵抗効果素子(試料No. A〜C)をガラ
ス基板上に作成した。 A:〔Ni−Fe(30)/Cu(50)/Co−
Ni(30)/Cu(50)〕 B:〔Ni−Fe(
30)/Au(50)/Co−Ni(30)/Au(5
0)〕 C:〔Ni−Fe(30)/Ag(50)/
Co−Ni−Fe(30)/Ag(50)〕 (ただ
し、( )内は厚さ(Å)を表わす)なお、Ni−F
e,Co−Ni,Co−Ni−Feの各蒸着源には、そ
れぞれNi0.8 Fe0.2 ,Co0.65Ni0
.35,Co0.8 Ni0.1 Fe0.1 を用い
、蒸着は電子ビームにより行い、また各膜厚は水晶振動
子モニタとシャッタにより制御した。
の説明を行う。超高真空蒸着装置を用いて以下に示した
構成の磁気抵抗効果素子(試料No. A〜C)をガラ
ス基板上に作成した。 A:〔Ni−Fe(30)/Cu(50)/Co−
Ni(30)/Cu(50)〕 B:〔Ni−Fe(
30)/Au(50)/Co−Ni(30)/Au(5
0)〕 C:〔Ni−Fe(30)/Ag(50)/
Co−Ni−Fe(30)/Ag(50)〕 (ただ
し、( )内は厚さ(Å)を表わす)なお、Ni−F
e,Co−Ni,Co−Ni−Feの各蒸着源には、そ
れぞれNi0.8 Fe0.2 ,Co0.65Ni0
.35,Co0.8 Ni0.1 Fe0.1 を用い
、蒸着は電子ビームにより行い、また各膜厚は水晶振動
子モニタとシャッタにより制御した。
【0017】同様に、各蒸着源にNi0.8 Co0.
2 ,Ni0.7 Co0.2 Fe0.1 ,Co0
.65Ni0.35を用いて、以下に示した構成の磁気
抵抗効果素子(試料No. D〜F)をガラス基板上に
作成した。 D:〔Ni−Co(30)/Pt(50)/Co−
Ni(30)/Pt(50)〕 E:〔Ni−Co−
Fe(30)/Cu(50)/Co−Ni(30)/C
u(50)〕 F:〔Ni−Co−Fe(30)/R
u(50)/Co−Ni(30)/Ru(50)〕を作
成した。
2 ,Ni0.7 Co0.2 Fe0.1 ,Co0
.65Ni0.35を用いて、以下に示した構成の磁気
抵抗効果素子(試料No. D〜F)をガラス基板上に
作成した。 D:〔Ni−Co(30)/Pt(50)/Co−
Ni(30)/Pt(50)〕 E:〔Ni−Co−
Fe(30)/Cu(50)/Co−Ni(30)/C
u(50)〕 F:〔Ni−Co−Fe(30)/R
u(50)/Co−Ni(30)/Ru(50)〕を作
成した。
【0018】得られた試料No. A〜Fの磁気抵抗効
果素子の諸特性(室温における抵抗変化率ΔR/Rおよ
び保磁力HC )を表1に示した。磁化測定は振動型磁
力計により測定した。また、電気抵抗の測定については
、表1に示される試料を0.3×10mmの形状にし、
外部磁界を面内に電流と垂直方向になるようにかけ、磁
界を変化させたとの電気抵抗値の変化を4端子法により
測定した。 そして、抵抗変化率ΔR/Rは前記した第(1)式に従
って算出した。
果素子の諸特性(室温における抵抗変化率ΔR/Rおよ
び保磁力HC )を表1に示した。磁化測定は振動型磁
力計により測定した。また、電気抵抗の測定については
、表1に示される試料を0.3×10mmの形状にし、
外部磁界を面内に電流と垂直方向になるようにかけ、磁
界を変化させたとの電気抵抗値の変化を4端子法により
測定した。 そして、抵抗変化率ΔR/Rは前記した第(1)式に従
って算出した。
【0019】
なお、膜は磁界中で蒸着し、その磁気抵抗効果は磁
界を膜の磁化困難軸方向に印加して測定した。表1中の
膜の保磁力HC は磁化容易軸方向の値である。
界を膜の磁化困難軸方向に印加して測定した。表1中の
膜の保磁力HC は磁化容易軸方向の値である。
【0020】上記の表1から、この実施例の磁気抵抗効
果素子は、室温で大きな抵抗変化率ΔR/Rを有し、か
つ保磁力Hcも比較的小さく実用的な特性を示すことが
明らかである。
果素子は、室温で大きな抵抗変化率ΔR/Rを有し、か
つ保磁力Hcも比較的小さく実用的な特性を示すことが
明らかである。
【0021】
【発明の効果】この発明によれば、室温でかつ実用的な
印加磁界で大きな磁気抵抗効果を示す磁気抵抗効果素子
を得ることができ、磁歪が小さいことより高感度MRヘ
ッド等への応用が可能となる。
印加磁界で大きな磁気抵抗効果を示す磁気抵抗効果素子
を得ることができ、磁歪が小さいことより高感度MRヘ
ッド等への応用が可能となる。
【図面の簡単な説明】
【図1】図1(a) ,(b) はこの発明の磁気抵抗
効果素子の構成および各磁性層のスピンの配列方向を示
す部分断面図である。
効果素子の構成および各磁性層のスピンの配列方向を示
す部分断面図である。
【図2】図2は磁気抵抗効果素子における磁界Hと抵抗
変化率ΔR/Rとの関係を示す特性図である。
変化率ΔR/Rとの関係を示す特性図である。
1 第1の磁性薄膜層
2 金属非磁性薄膜層
3 第2の磁性薄膜層
Claims (6)
- 【請求項1】 保磁力の異なる厚さ10〜100Åの
第1の磁性薄膜層と厚さ10〜100Åの第2の磁性薄
膜層とを交互に積層し、積層される第1および第2の磁
性薄膜層の相互間に厚さ10〜100Åの金属非磁性薄
膜層を介在させた構造からなる磁気抵抗効果素子。ただ
し、第1の磁性薄膜層は(NiX Co1−X ) X
’Fe1−X’を主成分とし、第2の磁性薄膜層は(C
oY Ni1−Y )Z Fe1−Z を主成分とし、
Xは0.6〜1.0、X’は0.7〜1.0、Yは0.
4〜1.0、Zは0.8〜1.0である。 - 【請求項2】 金属非磁性薄膜層がCu,Ag,Au
,Pt,Ru,Reのいずれかである請求項1記載の磁
気抵抗効果素子。 - 【請求項3】 保磁力の異なる厚さ10〜100Åの
第1の磁性薄膜層と厚さ10〜100Åの第2の磁性薄
膜層とを交互に積層し、積層される第1および第2の磁
性薄膜層の相互間に厚さ10〜100Åの金属非磁性薄
膜層を介在させた構造からなる磁気抵抗効果素子。ただ
し、第1の磁性薄膜層はNiX Fe1−X を主成分
とし、第2の磁性薄膜層は(CoY Ni1−Y )Z
Fe1−Z を主成分とし、Xは0.7〜0.9、Y
は0.4〜1.0、Zは0.8〜1.0である。 - 【請求項4】 金属非磁性薄膜層がCu,Ag,Au
,Pt,Ru,Reのいずれかである請求項3記載の磁
気抵抗効果素子。 - 【請求項5】 保磁力の異なる厚さ10〜100Åの
第1の磁性薄膜層と厚さ10〜100Åの第2の磁性薄
膜層とを交互に積層し、積層される第1および第2の磁
性薄膜層の相互間に厚さ10〜100Åの金属非磁性薄
膜層を介在させた構造からなる磁気抵抗効果素子。ただ
し、第1の磁性薄膜層はNiX Co1−X を主成分
とし、第2の磁性薄膜層は(CoY Ni1−Y )Z
Fe1−Z を主成分とし、Xは0.6〜0.9、Y
は0.4〜1.0、Zは0.8〜1.0である。 - 【請求項6】 金属非磁性薄膜層がCu,Ag,Au
,Pt,Ru,Reのいずれかである請求項5記載の磁
気抵抗効果素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3013620A JP2690623B2 (ja) | 1991-02-04 | 1991-02-04 | 磁気抵抗効果素子 |
US07/824,005 US5243316A (en) | 1991-02-04 | 1992-01-22 | Magnetoresistance effect element |
EP92101727A EP0498344B2 (en) | 1991-02-04 | 1992-02-03 | Magnetoresistance effect element |
DE69202258T DE69202258T3 (de) | 1991-02-04 | 1992-02-03 | Magnetoresistives Element. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3013620A JP2690623B2 (ja) | 1991-02-04 | 1991-02-04 | 磁気抵抗効果素子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04247607A true JPH04247607A (ja) | 1992-09-03 |
JP2690623B2 JP2690623B2 (ja) | 1997-12-10 |
Family
ID=11838278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3013620A Expired - Fee Related JP2690623B2 (ja) | 1991-02-04 | 1991-02-04 | 磁気抵抗効果素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US5243316A (ja) |
EP (1) | EP0498344B2 (ja) |
JP (1) | JP2690623B2 (ja) |
DE (1) | DE69202258T3 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05242436A (ja) * | 1992-03-02 | 1993-09-21 | Matsushita Electric Ind Co Ltd | 磁気抵抗効果素子 |
JPH06236527A (ja) * | 1993-02-08 | 1994-08-23 | Internatl Business Mach Corp <Ibm> | 非磁性背部層を有する磁気抵抗センサ |
JPH06310327A (ja) * | 1993-04-21 | 1994-11-04 | Nec Corp | 集積化磁気抵抗効果センサ |
US5841611A (en) * | 1994-05-02 | 1998-11-24 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistance effect device and magnetoresistance effect type head, memory device, and amplifying device using the same |
US6157523A (en) * | 1994-12-21 | 2000-12-05 | Fujitsu Limited | Spin valve magnetoresistive head having magnetic layers with different internal stress |
US6256222B1 (en) | 1994-05-02 | 2001-07-03 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3088478B2 (ja) * | 1990-05-21 | 2000-09-18 | 財団法人生産開発科学研究所 | 磁気抵抗効果素子 |
DE69219936T3 (de) * | 1991-03-29 | 2008-03-06 | Kabushiki Kaisha Toshiba | Magnetowiderstandseffekt-Element |
JPH05183212A (ja) * | 1991-07-30 | 1993-07-23 | Toshiba Corp | 磁気抵抗効果素子 |
JP3207477B2 (ja) * | 1991-12-24 | 2001-09-10 | 財団法人生産開発科学研究所 | 磁気抵抗効果素子 |
JP2812042B2 (ja) * | 1992-03-13 | 1998-10-15 | 松下電器産業株式会社 | 磁気抵抗センサー |
JP3285937B2 (ja) * | 1992-06-23 | 2002-05-27 | ティーディーケイ株式会社 | 磁性多層膜および磁気抵抗変化素子ならびにそれらの製造方法 |
JPH06220609A (ja) * | 1992-07-31 | 1994-08-09 | Sony Corp | 磁気抵抗効果膜及びその製造方法並びにそれを用いた磁気抵抗効果素子、磁気抵抗効果型磁気ヘッド |
US5500633A (en) * | 1992-08-03 | 1996-03-19 | Kabushiki Kaisha Toshiba | Magnetoresistance effect element |
JP3381957B2 (ja) * | 1992-08-03 | 2003-03-04 | 株式会社東芝 | 磁気抵抗効果素子、磁気ヘッドおよび磁気センサ |
JP3411626B2 (ja) * | 1992-08-27 | 2003-06-03 | ティーディーケイ株式会社 | 磁性多層膜および磁気抵抗効果素子ならびにそれらの製造方法 |
US5287238A (en) * | 1992-11-06 | 1994-02-15 | International Business Machines Corporation | Dual spin valve magnetoresistive sensor |
US5569544A (en) * | 1992-11-16 | 1996-10-29 | Nonvolatile Electronics, Incorporated | Magnetoresistive structure comprising ferromagnetic thin films and intermediate layers of less than 30 angstroms formed of alloys having immiscible components |
US5617071A (en) * | 1992-11-16 | 1997-04-01 | Nonvolatile Electronics, Incorporated | Magnetoresistive structure comprising ferromagnetic thin films and intermediate alloy layer having magnetic concentrator and shielding permeable masses |
DE69332699T2 (de) * | 1992-11-16 | 2003-09-18 | Nve Corp., Eden Prairie | Magnetoresistive struktur mit einer legierungsschicht |
DE4401476A1 (de) * | 1993-01-20 | 1994-07-28 | Fuji Electric Co Ltd | Magneto-resistives Element, magnetisches Induktionselement und solche enthaltender Dünnschicht-Magnetkopf |
US5657190A (en) * | 1993-03-02 | 1997-08-12 | Tdk Corporation | Apparatus for detecting a magnetic field using a giant magnetoresistance effect multilayer |
US5585198A (en) * | 1993-10-20 | 1996-12-17 | Sanyo Electric Co., Ltd. | Magnetorsistance effect element |
US5736921A (en) * | 1994-03-23 | 1998-04-07 | Sanyo Electric Co., Ltd. | Magnetoresistive element |
JP2629583B2 (ja) * | 1993-05-13 | 1997-07-09 | 日本電気株式会社 | 磁気抵抗効果膜およびその製造方法 |
US5475304A (en) * | 1993-10-01 | 1995-12-12 | The United States Of America As Represented By The Secretary Of The Navy | Magnetoresistive linear displacement sensor, angular displacement sensor, and variable resistor using a moving domain wall |
DE69407158T2 (de) * | 1993-10-06 | 1998-05-28 | Koninkl Philips Electronics Nv | Magnetoresistive anordnung und diese verwendender magnetkopf |
EP0685746A3 (en) * | 1994-05-30 | 1996-12-04 | Sony Corp | Magnetoresistive effect device having improved thermal resistance. |
US5874886A (en) * | 1994-07-06 | 1999-02-23 | Tdk Corporation | Magnetoresistance effect element and magnetoresistance device |
EP0725936A1 (en) * | 1994-08-28 | 1996-08-14 | Koninklijke Philips Electronics N.V. | Magnetic field detector device |
JP3574186B2 (ja) * | 1994-09-09 | 2004-10-06 | 富士通株式会社 | 磁気抵抗効果素子 |
JPH08130337A (ja) * | 1994-09-09 | 1996-05-21 | Sanyo Electric Co Ltd | 磁気抵抗素子及びその製造方法 |
US5818323A (en) * | 1994-09-09 | 1998-10-06 | Sanyo Electric Co., Ltd. | Magnetoresistive device |
US6088204A (en) * | 1994-12-01 | 2000-07-11 | International Business Machines Corporation | Magnetoresistive magnetic recording head with permalloy sensor layer deposited with substrate heating |
US5695864A (en) * | 1995-09-28 | 1997-12-09 | International Business Machines Corporation | Electronic device using magnetic components |
JP3471520B2 (ja) * | 1996-04-30 | 2003-12-02 | 富士通株式会社 | 磁気抵抗効果型磁気ヘッドの製造方法及び磁気抵抗効果型磁気ヘッドの製造装置 |
US6166539A (en) * | 1996-10-30 | 2000-12-26 | Regents Of The University Of Minnesota | Magnetoresistance sensor having minimal hysteresis problems |
US5747997A (en) * | 1996-06-05 | 1998-05-05 | Regents Of The University Of Minnesota | Spin-valve magnetoresistance sensor having minimal hysteresis problems |
US5666248A (en) * | 1996-09-13 | 1997-09-09 | International Business Machines Corporation | Magnetizations of pinned and free layers of a spin valve sensor set by sense current fields |
DE19706106A1 (de) | 1997-02-17 | 1998-08-27 | Siemens Ag | Ventileinrichtung eines Verbrennungsmotors |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0449607A (ja) * | 1990-06-18 | 1992-02-19 | Tdk Corp | 磁性多層膜 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1252739B (de) * | 1964-03-17 | 1967-10-26 | Siemens Aktiengesellschaft, Berlin und München, München | Speicherelement mit gestapelten magnetischen Schichten |
EP0304280B1 (en) * | 1987-08-21 | 1996-05-29 | Nippondenso Co., Ltd. | A device for detecting magnetism |
JPH0223681A (ja) * | 1988-07-12 | 1990-01-25 | Nec Corp | 磁気抵抗効果素子 |
FR2648942B1 (fr) * | 1989-06-27 | 1995-08-11 | Thomson Csf | Capteur a effet magnetoresistif |
-
1991
- 1991-02-04 JP JP3013620A patent/JP2690623B2/ja not_active Expired - Fee Related
-
1992
- 1992-01-22 US US07/824,005 patent/US5243316A/en not_active Expired - Lifetime
- 1992-02-03 DE DE69202258T patent/DE69202258T3/de not_active Expired - Lifetime
- 1992-02-03 EP EP92101727A patent/EP0498344B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0449607A (ja) * | 1990-06-18 | 1992-02-19 | Tdk Corp | 磁性多層膜 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05242436A (ja) * | 1992-03-02 | 1993-09-21 | Matsushita Electric Ind Co Ltd | 磁気抵抗効果素子 |
JPH06236527A (ja) * | 1993-02-08 | 1994-08-23 | Internatl Business Mach Corp <Ibm> | 非磁性背部層を有する磁気抵抗センサ |
JPH06310327A (ja) * | 1993-04-21 | 1994-11-04 | Nec Corp | 集積化磁気抵抗効果センサ |
US5841611A (en) * | 1994-05-02 | 1998-11-24 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistance effect device and magnetoresistance effect type head, memory device, and amplifying device using the same |
US6005798A (en) * | 1994-05-02 | 1999-12-21 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistance effect device, and magnetoresistance effect type head, memory device, and amplifying device using the same |
US6111782A (en) * | 1994-05-02 | 2000-08-29 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistance effect device, and magnetoresistance effect type head, memory device, and amplifying device using the same |
US6256222B1 (en) | 1994-05-02 | 2001-07-03 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same |
US6157523A (en) * | 1994-12-21 | 2000-12-05 | Fujitsu Limited | Spin valve magnetoresistive head having magnetic layers with different internal stress |
Also Published As
Publication number | Publication date |
---|---|
DE69202258T3 (de) | 1999-12-02 |
DE69202258D1 (de) | 1995-06-08 |
EP0498344B2 (en) | 1999-07-07 |
US5243316A (en) | 1993-09-07 |
EP0498344B1 (en) | 1995-05-03 |
DE69202258T2 (de) | 1996-01-04 |
EP0498344A1 (en) | 1992-08-12 |
JP2690623B2 (ja) | 1997-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04247607A (ja) | 磁気抵抗効果素子 | |
EP0681338B1 (en) | Magnetoresistance effect device and magnetoresistance effect type head, memory device, and amplifying device using the same | |
US6340520B1 (en) | Giant magnetoresistive material film, method of producing the same magnetic head using the same | |
JP3574186B2 (ja) | 磁気抵抗効果素子 | |
US6295186B1 (en) | Spin-valve magnetoresistive Sensor including a first antiferromagnetic layer for increasing a coercive force and a second antiferromagnetic layer for imposing a longitudinal bias | |
JP2654316B2 (ja) | 磁気抵抗センサ | |
US5955211A (en) | Magnetoresistive film | |
JP2901501B2 (ja) | 磁性多層膜およびその製造方法ならびに磁気抵抗効果素子 | |
JPH0821166B2 (ja) | 磁気抵抗センサ | |
JP3184352B2 (ja) | メモリー素子 | |
JPH0261572A (ja) | 強磁性薄膜を有する磁場センサ | |
JP2000340858A (ja) | 磁気抵抗効果膜および磁気抵抗効果型ヘッド | |
JPH05347013A (ja) | 磁気記録再生装置 | |
JPH0950613A (ja) | 磁気抵抗効果素子及び磁界検出装置 | |
US6256222B1 (en) | Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same | |
US6083632A (en) | Magnetoresistive effect film and method of manufacture thereof | |
EP0560350B1 (en) | Magneto-resistance effect element | |
US6215631B1 (en) | Magnetoresistive effect film and manufacturing method therefor | |
JP2961914B2 (ja) | 磁気抵抗効果材料およびその製造方法 | |
JPH08235540A (ja) | 多層磁気抵抗効果膜および磁気ヘッド | |
JPH076329A (ja) | 磁気抵抗効果素子並びにそれを用いた磁気ヘッド及び磁気記録再生装置 | |
EP0620572B1 (en) | Element having magnetoresistive effect | |
JP2848083B2 (ja) | 磁気抵抗効果素子 | |
JP2000173026A (ja) | 磁気抵抗効果素子および磁気ヘッド | |
JP3021785B2 (ja) | 磁気抵抗効果材料およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19960604 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970819 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |