JPH04220618A - variable wavelength filter - Google Patents
variable wavelength filterInfo
- Publication number
- JPH04220618A JPH04220618A JP41273690A JP41273690A JPH04220618A JP H04220618 A JPH04220618 A JP H04220618A JP 41273690 A JP41273690 A JP 41273690A JP 41273690 A JP41273690 A JP 41273690A JP H04220618 A JPH04220618 A JP H04220618A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- wavelength filter
- etalon
- variable wavelength
- alignment film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
- G02F1/216—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference using liquid crystals, e.g. liquid crystal Fabry-Perot filters
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/05—Function characteristic wavelength dependent
- G02F2203/055—Function characteristic wavelength dependent wavelength filtering
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Liquid Crystal (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【0001】0001
【産業上の利用分野】本発明は1.3 〜1.55μm
帯波長多重、周波数多重通信用の液晶エタロン形可変
波長フィルタに関するものである。[Industrial Application Field] The present invention applies to 1.3 to 1.55 μm.
This invention relates to a liquid crystal etalon type variable wavelength filter for band wavelength multiplexing and frequency multiplexing communications.
【0002】0002
【従来の技術】光ファイバによる光通信は大容量の情報
を高速に伝送することができるので、最近急速に実用化
されつつある。しかし現時点では、ある特定の波長の光
パルスを伝送しているのみである。多数の異なった波長
の光パルスを伝送することができれば、さらに大容量の
情報を伝送することができる。これを波長多重通信と呼
び、現在活発に研究されている。波長多重通信において
は、多数の波長の光パルスの中から選択的に任意の波長
の光のみを選び出す可変波長フィルタが必要となる。2. Description of the Related Art Optical communication using optical fibers is capable of transmitting large amounts of information at high speed, and has recently been rapidly put into practical use. However, at present, they only transmit light pulses of a specific wavelength. If optical pulses of many different wavelengths can be transmitted, even larger amounts of information can be transmitted. This is called wavelength division multiplexing communication, and is currently being actively researched. In wavelength division multiplexing communication, a variable wavelength filter is required to selectively select only light of an arbitrary wavelength from among optical pulses of many wavelengths.
【0003】種々の可変波長フィルタがあるが、エタロ
ン内に液晶を充填し、電圧を印加することにより、エタ
ロンの光学的ギャップを可変するようにしたフィルタが
ある(Stephen R. Mallinson,
Applied Optics Vol. 23, N
o.3(1987) p.430) 。しかしこの液晶
を用いた可変波長フィルタでは液晶層の損失や配向膜の
損失が大きく、ミラーの反射率が90%と低いので、ピ
ークの半値幅は1nm、フィネスは30であり、可変幅
は15nmであり、透過率は38%であり、性能が悪く
て波長多重、周波数多重に適用することが困難である。
この原因は液晶および液晶配向膜による散乱、吸収が大
きいことにある。[0003] There are various variable wavelength filters, but there is one in which the etalon is filled with liquid crystal and the optical gap of the etalon is varied by applying a voltage (Stephen R. Mallinson,
Applied Optics Vol. 23, N
o. 3 (1987) p. 430). However, in this variable wavelength filter using liquid crystal, the loss in the liquid crystal layer and the alignment film are large, and the reflectance of the mirror is as low as 90%, so the half width of the peak is 1 nm, the finesse is 30, and the variable width is 15 nm. The transmittance is 38%, and the performance is poor, making it difficult to apply to wavelength multiplexing and frequency multiplexing. The reason for this is that the scattering and absorption by the liquid crystal and liquid crystal alignment film are large.
【0004】また特開昭62−178219 (光波長
選択素子)、特開昭63−29737(光波長選択素子
)、特開昭63−5327 (ファブリーペロ共振器)
、特開昭58−3524 (液晶ファブリーペロ干渉装
置)、英国特許GB2219099A (Tunabl
e Fabry−Perot Filter) 等の液
晶エンタロ形可変波長フィルタに関する発明が特許出願
されている。しかしこれらの発明の明細書には、液晶層
の散乱、透明電極の吸収、配向膜の吸収を低減する方法
については、何にも記載されていない。[0004] Also, JP-A No. 62-178219 (optical wavelength selection element), JP-A No. 63-29737 (optical wavelength selection element), and JP-A No. 63-5327 (Fabry-Perot resonator).
, JP 58-3524 (Liquid crystal Fabry-Perot interference device), British patent GB2219099A (Tunabl
Patent applications have been filed for inventions relating to liquid crystal entero type variable wavelength filters such as Fabry-Perot Filter. However, the specifications of these inventions do not describe any methods for reducing scattering in the liquid crystal layer, absorption in the transparent electrode, and absorption in the alignment film.
【0005】ファブリーペロエタロン内に液晶、配向膜
、電極を充填した場合、これらの吸収、散乱により、そ
のエタロン特性は非常に悪くなる(その理由については
後述する)。例えばこれらの発明では、誘電体ミラーの
上に透明電極を配置した構造を持つか、または金属ミラ
ーを持つ構造となっているが、インジュムチンオキサイ
ド(ITO)透明電極は1.3 〜1.55μm 帯に
おいては大きな光吸収を持つので、エタロン内の吸収が
増加し、特性が非常に悪くなるという欠点がある。さら
に金属ミラーを使用した場合も同様に、1.3 〜1.
55μm 帯においては光の反射率を98%以上にする
ことができず、特性が悪い。また液晶、配向膜の光の吸
収、散乱が大きい。前記の発明の明細書には、基体構造
が示されているのみで、エタロン内部の散乱、吸収を低
減する液晶配向膜の膜厚、ラビング条件、透明電極の材
料、膜厚については何も記載されていない。[0005] When a Fabry-Perot etalon is filled with a liquid crystal, an alignment film, and an electrode, the properties of the etalon become extremely poor due to their absorption and scattering (the reason for this will be described later). For example, these inventions have a structure in which a transparent electrode is placed on a dielectric mirror or a structure in which a metal mirror is provided, but the indium tin oxide (ITO) transparent electrode has a thickness of 1.3 to 1.55 μm. Since the band has a large amount of light absorption, the absorption inside the etalon increases, resulting in very poor characteristics. Furthermore, when a metal mirror is used, 1.3 to 1.
In the 55 μm band, the light reflectance cannot be increased to 98% or more, and the characteristics are poor. In addition, the liquid crystal and alignment film absorb and scatter light to a large extent. The above-mentioned specification of the invention only shows the base structure, but does not mention anything about the thickness of the liquid crystal alignment film that reduces scattering and absorption inside the etalon, the rubbing conditions, the material of the transparent electrode, and the film thickness. It has not been.
【0006】[0006]
【発明が解決しようとする課題】本発明は、液晶エタロ
ン内部の吸収、散乱を低減し、エタロンの特性(フイネ
ス、透過率)を向上させる構造を有する1.3〜1.5
5μm 帯波長多重、周波数多重通信用の可変波長フィ
ルタを提供することにある。Problems to be Solved by the Invention The present invention has a structure that reduces absorption and scattering inside a liquid crystal etalon and improves the characteristics (finesse, transmittance) of the etalon.
The object of the present invention is to provide a variable wavelength filter for wavelength multiplexing and frequency multiplexing communications in the 5 μm band.
【0007】[0007]
【課題を解決するための手段】本発明は、液晶を充填し
た可変波長フィルタにおいて、1.3 〜1.55μm
帯において、波長多重通信、可変波長レーザに適用で
きる透過率、フィネスを達成するため、エタロン内の吸
収、散乱を低減させる。すなわち透明電極をガラス基板
とミラー間に配置し、その透明電極を500nm 以下
のインジュムチンオキサイド(ITO)とし、誘電体ミ
ラーの反射率を98%以上とし、配向膜を100nm
以下に薄くし、互いに反平行にラビング処理し、ネマチ
ック液晶の液晶分子をホモジニアス配列させることによ
って、液晶による散乱、吸収を少なくし、液晶エタロン
形可変波長フィルタのピーク幅を狭くし、フィネスを上
げ、透過率を上げる。[Means for Solving the Problems] The present invention provides a variable wavelength filter filled with liquid crystal with a wavelength of 1.3 to 1.55 μm.
In order to achieve transmittance and finesse applicable to wavelength division multiplexing communications and tunable wavelength lasers, absorption and scattering within the etalon is reduced. That is, a transparent electrode is placed between the glass substrate and the mirror, the transparent electrode is made of indiumtin oxide (ITO) with a thickness of 500 nm or less, the reflectance of the dielectric mirror is 98% or more, and the alignment film is 100 nm or less.
By making the nematic liquid crystal thinner and rubbing it antiparallel to each other and aligning the liquid crystal molecules of the nematic liquid crystal homogeneously, scattering and absorption by the liquid crystal are reduced, the peak width of the liquid crystal etalon type variable wavelength filter is narrowed, and finesse is increased. , increase the transmittance.
【0008】[0008]
【作用】液晶を充填したエタロンが可変波長フィルタと
して動作することを簡単に説明する。図1に可変波長フ
ィルタの構造を示す。1はガラス基板、2は無反射コー
ト膜、3は透明電極、4は誘電体ミラー、5は液晶配向
膜、6は液晶、7はスペーサ、8は液晶の電圧を印加す
るリード線である。誘電体ミラー4を蒸着したガラス基
板1(裏面の無反射コート2が施されている)を間隔L
で平行に配置すると、透過率の波長依存性は次の式で表
わされる。
T=1/〔1+Fsin2 (2
πnL/λ)〕 (1) ここ
でnはエタロンキャビテイの屈折率、λは波長、Fはエ
タロンのFである。
F=4R /(1− R)2
(2) 透過スペクトルを図2に示す。鋭いピークが
何本も現れる。このピークの半値幅はミラーの反射率に
依存し、通常99%のミラーの場合、ファネス200以
上の鋭いピークとなる。ピークの波長λres は
λres = m/2nL
( m=1,2,....)
(3) で表わされる。誘電体ミラー4の上に配向
膜を塗布し、反平行にラビング処理して、ネマチック形
液晶を充填すると、図3(a) に示すように液晶が配
向する。9は液晶分子である。液晶分子9は大きな誘電
異方性(ne 、no ) を持ち、入射光の偏光方向
が液晶の配向方向と一致すると、この光はne の屈折
率を感じる。これに電圧を印加すると、図3(b) に
示すように液晶が立ち上がり、偏光は屈折率がne か
らno へ変化するのを感じる。このため式(3) に
より、ピーク波長は、液晶層への電圧を印加することに
より、シフトしていく。式(1) はエタロンのキャビ
ティ内に吸収、散乱のある場合のものであるが、エタロ
ンのキャビティ内に吸収、散乱のある材料がある場合に
は、透過率は
T=Tmax /{1+Fsin2 (2πmL/
λ)} (
4) Tmax :最大透過率={(1−R)2ex
p (−αL)}/{1−Rexp(−αL)}2
(5) F=4Rexp(−αL)/(1−Rexp
(−αL)}2
(6) フィネス=πF/2
(7) FWEM:
半値幅=2λo /KπF
(8)ここではαは
キャビティの吸収係数、Lはキャビティギャップ、Rは
ミラーの反射率、mは整数である。[Operation] We will briefly explain that an etalon filled with liquid crystal operates as a variable wavelength filter. Figure 1 shows the structure of a tunable wavelength filter. 1 is a glass substrate, 2 is a non-reflective coating film, 3 is a transparent electrode, 4 is a dielectric mirror, 5 is a liquid crystal alignment film, 6 is a liquid crystal, 7 is a spacer, and 8 is a lead wire for applying a voltage to the liquid crystal. A glass substrate 1 (with a non-reflection coating 2 on the back surface) on which a dielectric mirror 4 is deposited is spaced L.
When arranged in parallel, the wavelength dependence of transmittance is expressed by the following equation. T=1/[1+Fsin2 (2
πnL/λ)] (1) where n is the refractive index of the etalon cavity, λ is the wavelength, and F is the F of the etalon. F=4R/(1-R)2
(2) The transmission spectrum is shown in Figure 2. Many sharp peaks appear. The half-width of this peak depends on the reflectance of the mirror, and normally in the case of a 99% mirror, it will be a sharp peak with a fanness of 200 or more. The peak wavelength λres is λres = m/2nL
(m=1,2,....)
(3) It is expressed as When an alignment film is applied on the dielectric mirror 4, rubbed antiparallelly, and filled with nematic liquid crystal, the liquid crystal is aligned as shown in FIG. 3(a). 9 is a liquid crystal molecule. The liquid crystal molecules 9 have large dielectric anisotropy (ne, no), and when the polarization direction of incident light matches the orientation direction of the liquid crystal, this light senses a refractive index of ne. When a voltage is applied to this, the liquid crystal rises as shown in FIG. 3(b), and the refractive index of the polarized light changes from ne to no. Therefore, according to equation (3), the peak wavelength is shifted by applying a voltage to the liquid crystal layer. Equation (1) is for the case where there is absorption and scattering inside the etalon cavity, but if there is a material that absorbs and scatters inside the etalon cavity, the transmittance is T=Tmax /{1+Fsin2 (2πmL /
λ)} (
4) Tmax: Maximum transmittance = {(1-R)2ex
p (-αL)}/{1-Rexp(-αL)}2
(5) F=4Rexp(-αL)/(1-Rexp
(-αL)}2
(6) Finesse = πF/2
(7) FWEM:
Half width=2λo/KπF
(8) Here, α is the absorption coefficient of the cavity, L is the cavity gap, R is the reflectance of the mirror, and m is an integer.
【0009】最大透過率およびエタロンのF値のミラー
の反射率依存性を、α×Lをパラメータとして図4(a
),(b) に示す。F値を上げることは半値幅を狭く
、フィネスを上げることに通じる。半値幅を狭くし、フ
ィネスを上げ、透過率を上げるためには、ミラーの反射
率を90%以上に高くし、液晶および配向膜の散乱、吸
収を少なくする必要があることがわかる。The dependence of the maximum transmittance and the F value of the etalon on the reflectance of the mirror is shown in FIG. 4 (a) using α×L as a parameter.
), (b). Increasing the F value narrows the half width and increases finesse. It can be seen that in order to narrow the half-width, increase finesse, and increase transmittance, it is necessary to increase the reflectance of the mirror to 90% or more and to reduce scattering and absorption of the liquid crystal and alignment film.
【0010】液晶が吸収や散乱を持つのは、液晶分子の
軸が均一の方向を向いていないことに原因がある。The reason why liquid crystal exhibits absorption and scattering is that the axes of liquid crystal molecules are not oriented in uniform directions.
【0011】我々は種々の配向膜のラビング処理につい
て、液晶の吸収、散乱を最小にするような条件を検討し
た。検討した液晶の配向状態を図5(a),(b),(
c),(d) に示す。→はラビング処理の方向を示す
。[0011] We investigated conditions for minimizing absorption and scattering of liquid crystals regarding various rubbing treatments for alignment films. The orientation states of the liquid crystals studied are shown in Figures 5(a), (b), and (
Shown in c) and (d). → indicates the direction of the rubbing process.
【外1】
はラビングの方向が紙面に垂直で、それぞれ紙面の前か
ら後の方向および後から前の方向であることを示す。こ
の中で最も散乱が少ないのは、(a) と(b) であ
った。ただし、(a) は電圧を印加するに従って散乱
が増大した。
この結果、(b) に示すように互いに反平行になるよ
うにラビング処理した基板で、ネマチック液晶を狭めれ
ばよいことがわかった。その時の吸収係数はα=0.5
cm−1であった。[Example 1] indicates that the rubbing direction is perpendicular to the paper surface, and is from the front to the back of the paper and from the back to the front, respectively. Among these, the ones with the least scattering were (a) and (b). However, in (a), scattering increased as the voltage was applied. As a result, it was found that the nematic liquid crystals can be narrowed using substrates that have been rubbed so that they are antiparallel to each other, as shown in (b). The absorption coefficient at that time is α=0.5
cm-1.
【0012】また配向膜自体の吸収、散乱は、軽くラビ
ング処理すれば、ほとんどその影響を受けないが、膜厚
を100nm 以上にすると増大する傾向にあった。こ
こでは配向膜は100nm 以下にすることとした。Further, the absorption and scattering of the alignment film itself is hardly affected by light rubbing treatment, but it tends to increase when the film thickness is increased to 100 nm or more. Here, the alignment film was designed to have a thickness of 100 nm or less.
【0013】ITO透明電極の透過率は膜厚に依存し、
1.5 μm 帯においては膜厚とともに急激に透過率
が落ちていく。透過率の膜厚依存を図6 に示す。膜厚
を50nm以下にすることにより、90%以上の透過率
を得ることができる。これまでに報告されている発明に
よると、透明電極はミラーの上に形成されるので、エタ
ロン内の吸収層となるため、エタロンの透過率、フイネ
スが著しく劣化する。このため透明電極は、エタロン共
振器外部、すなわちガラスとミラーの間に配置するのが
望ましい。[0013] The transmittance of the ITO transparent electrode depends on the film thickness.
In the 1.5 μm band, the transmittance drops rapidly with increasing film thickness. Figure 6 shows the dependence of transmittance on film thickness. By setting the film thickness to 50 nm or less, a transmittance of 90% or more can be obtained. According to the inventions reported so far, since the transparent electrode is formed on the mirror, it becomes an absorption layer within the etalon, and the transmittance and finesse of the etalon are significantly deteriorated. Therefore, it is desirable that the transparent electrode be placed outside the etalon resonator, that is, between the glass and the mirror.
【0014】[0014]
【実施例】本発明の可変波長フィルタの構造を図1に示
す。基板は25×20×6mmの石英基板である。これ
にITO40nmをスパッタ法によって作製した。IT
Oの透過率は92.3%であった。次にTiO2とSi
O2の多層膜からなる誘電体ミラーを蒸着法によって形
成した。反射率は98.9%であった。さらに配向膜を
60nm塗布し、互いに反平行になるようにラビング処
理した。この1対の基板に18μmのスペーサを挟み、
基板が平行となるように調整した後、接着した。マネチ
ィック液晶を充填し、素子の作製を完了した。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the structure of a variable wavelength filter according to the present invention. The substrate is a 25×20×6 mm quartz substrate. A 40 nm thick layer of ITO was formed on this by sputtering. IT
The O transmittance was 92.3%. Next, TiO2 and Si
A dielectric mirror made of a multilayer film of O2 was formed by a vapor deposition method. The reflectance was 98.9%. Furthermore, an alignment film was applied to a thickness of 60 nm, and rubbed so that they were antiparallel to each other. An 18 μm spacer is sandwiched between this pair of substrates,
After adjusting the substrates so that they were parallel, they were adhered. Manetic liquid crystal was filled and the device fabrication was completed.
【0015】電圧無印加時、電圧印加時(V=10V)
の素子の透過スペクトルを図7(a),(b) に示す
。鋭いピークが観察され、電圧印加により、ピークA,
Bは、図に示すようにシフトすることが確認された。図
7(C) は図7(a) の拡大図で、この図に示すよ
うに、半値幅は0.23nmである。フィネスは210
である。透過率は70%である。1.5 μm 帯に
おいてピークとピークの間隔は約45nmである。ピー
ク波長の印加電圧依存性を図8を示す。電圧を印加する
ことにより、ピーク波長は1.53μm から1.48
μm にシフトする。半値幅、透過率は電圧印加によっ
て影響を受けない。[0015] When no voltage is applied, when voltage is applied (V=10V)
The transmission spectra of the element are shown in Figures 7(a) and (b). Sharp peaks were observed, and by applying voltage, peaks A,
It was confirmed that B shifted as shown in the figure. FIG. 7(C) is an enlarged view of FIG. 7(a), and as shown in this figure, the half-width is 0.23 nm. finesse is 210
It is. The transmittance is 70%. The interval between peaks in the 1.5 μm band is about 45 nm. FIG. 8 shows the dependence of peak wavelength on applied voltage. By applying voltage, the peak wavelength changes from 1.53μm to 1.48μm.
Shift to μm. Half width and transmittance are not affected by voltage application.
【0016】[0016]
【発明の効果】以上説明したように、本発明の可変波長
フィルタは、従来からある液晶エタロン形可変波長フィ
ルタにおいて、透明電極がガラス基板と誘電体ミラーの
間に配置されており、その透明電極が50nm以下のイ
ンジュムチンオキサイドであり、液晶用配向膜の厚さが
100nm 以下であり、その配向膜が基板を対向させ
た場合、互いに反平行になるようにラビング処理されて
おり、充填されるネマチック形であり、さらに誘電体ミ
ラーの反射率が98%以上とすることにより、半値幅が
狭く、フィネスが高く、透過率の高い可変波長フィルタ
を実現することができ、1.3 〜1.55μm 帯に
おいて波長多重通信、波長可変レーザに適用することが
可能になる。As explained above, the tunable wavelength filter of the present invention differs from the conventional liquid crystal etalon type tunable wavelength filter in that the transparent electrode is disposed between the glass substrate and the dielectric mirror. is injumutin oxide with a thickness of 50 nm or less, the thickness of the liquid crystal alignment film is 100 nm or less, and the alignment film is rubbed so that it becomes antiparallel to each other when the substrates are placed facing each other. By making the dielectric mirror nematic and having a reflectance of 98% or more, it is possible to realize a variable wavelength filter with a narrow half-width, high finesse, and high transmittance. It becomes possible to apply it to wavelength multiplexing communications and wavelength tunable lasers in the 55 μm band.
【図1】可変波長フィルタの構造を示す図である。FIG. 1 is a diagram showing the structure of a variable wavelength filter.
【図2】液晶エタロン形可変波長フィルタの透過スペク
トルを示す図である。FIG. 2 is a diagram showing a transmission spectrum of a liquid crystal etalon type variable wavelength filter.
【図3】(a) は、電圧無印加時の液晶エタロン形可
変波長フィルタの液晶分子の配向状態を示す図である。
(b) は、電圧印加時の液晶エタロン形可変波長フィ
ルタの液晶分子の配向状態を示す図である。FIG. 3(a) is a diagram showing the alignment state of liquid crystal molecules in a liquid crystal etalon type variable wavelength filter when no voltage is applied. (b) is a diagram showing the alignment state of liquid crystal molecules of the liquid crystal etalon type variable wavelength filter when voltage is applied.
【図4】(a) は、吸収、散乱のキャビティを持つエ
タロンのαL をパラメータとした最大透過率(Tma
x)とミラーの反射率(R) と関係を示す図である。
(b) は、吸収、散乱のあるキャビティを持つエタロ
ンのαL をパラメータとしたF値のミラーの反射率依
存性(計算結果)を示す図である。[Figure 4] (a) shows the maximum transmittance (Tma) with αL as a parameter for an etalon with absorption and scattering cavities.
FIG. (b) is a diagram showing the dependence of the F value on the reflectance of the mirror (calculation results) using αL of an etalon having a cavity with absorption and scattering as a parameter.
【図5】(a) は、液晶配向膜が互いに平行であると
きの検討した液晶の配向状態を示す図である。
(b) は、液晶配向膜が互いに反平行であるときの検
討した液晶の配向状態を示す図である。
(c) は、液晶配向膜が互いに直角で、ラビング処理
の方向が紙面の後から前の方向であるときの検討した液
晶の配向状態を示す図である。
(d) は、液晶配向膜が互いに直角で、ラビング処理
の方向が紙面の前から後の方向であるときの検討した液
晶の配向状態を示す図である。FIG. 5(a) is a diagram showing the examined liquid crystal alignment state when the liquid crystal alignment films are parallel to each other. (b) is a diagram showing the examined liquid crystal alignment state when the liquid crystal alignment films are antiparallel to each other. (c) is a diagram showing the examined liquid crystal alignment state when the liquid crystal alignment films are at right angles to each other and the direction of the rubbing treatment is from the back to the front of the page. (d) is a diagram showing the examined liquid crystal alignment state when the liquid crystal alignment films are perpendicular to each other and the direction of the rubbing treatment is from the front to the back of the paper.
【図6】インヂウムチンオキサイド(ITO)透明電極
の1.5 μm 帯における透過率の膜厚依存性を示す
図てある。FIG. 6 is a diagram showing the film thickness dependence of transmittance in the 1.5 μm band of an indium tin oxide (ITO) transparent electrode.
【図7】(a) は、本発明の液晶エタロン形可変波長
フィルタの電圧無印加時の透過スペクトルを示す図であ
る。
(b) は、本発明の液晶エタロン形可変波長フィルタ
の電圧印加時(V=10V)の透過スペクトルを示す図
である。
(c) は、(a) 図に示す透過スペクトルの拡大図
である。FIG. 7(a) is a diagram showing the transmission spectrum of the liquid crystal etalon type variable wavelength filter of the present invention when no voltage is applied. (b) is a diagram showing the transmission spectrum of the liquid crystal etalon type variable wavelength filter of the present invention when voltage is applied (V=10V). (c) is an enlarged view of the transmission spectrum shown in (a).
【図8】本発明は液晶エタロン形可変波長フィルタのピ
ーク波長の印加電圧依存性を示す図である。FIG. 8 is a diagram showing the applied voltage dependence of the peak wavelength of a liquid crystal etalon type variable wavelength filter.
1 ガラス基板 2 無反射コート 3 透明電極 4 誘電体ミラー 5 液晶配向膜 6 液晶 7 スペーサ 8 リード線 9 液晶分子 1 Glass substrate 2. Non-reflective coating 3 Transparent electrode 4 Dielectric mirror 5 Liquid crystal alignment film 6.LCD 7 Spacer 8 Lead wire 9 Liquid crystal molecules
Claims (3)
ー、液晶用配向膜を付けた1対の基板で液晶層をサンド
イッチした構造を持つ可変波長フィルタにおいて、前記
液晶用配向膜が前記基板を対向させた場合に互いに反平
行になるようにラビング処理されており、充填される液
晶がマネチック形であることを特徴とする可変波長フィ
ルタ。1. A variable wavelength filter having a structure in which a liquid crystal layer is sandwiched between a pair of substrates each having a transparent electrode, a dielectric mirror, and an alignment film for liquid crystal on a glass substrate, wherein the alignment film for liquid crystal covers the substrate. A tunable wavelength filter characterized in that the filter is rubbed so that the filters are antiparallel to each other when they are opposed to each other, and that the liquid crystal filled therein is of a manetic type.
ラーの間に配置されていることを特徴とする請求項1に
記載の可変波長フィルタ。2. The variable wavelength filter according to claim 1, wherein the transparent electrode is disposed between a glass substrate and a dielectric mirror.
ュムオキサイドであり、前記液晶用配向膜の厚さが10
0nm 以下であり、前記誘電体ミラーの反射率が98
%以上であることを特徴とする請求項1または請求項2
に記載の可変波長フィルタ。3. The transparent electrode is made of indium oxide with a thickness of 50 nm or less, and the thickness of the liquid crystal alignment film is 10 nm or less.
0 nm or less, and the reflectance of the dielectric mirror is 98
% or more.
The tunable wavelength filter described in .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41273690A JPH04220618A (en) | 1990-12-21 | 1990-12-21 | variable wavelength filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41273690A JPH04220618A (en) | 1990-12-21 | 1990-12-21 | variable wavelength filter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04220618A true JPH04220618A (en) | 1992-08-11 |
Family
ID=18521517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP41273690A Pending JPH04220618A (en) | 1990-12-21 | 1990-12-21 | variable wavelength filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04220618A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5592314A (en) * | 1993-12-02 | 1997-01-07 | Yazaki Corporation | Tunable wavelength filter formed by 2 lcds in series having opposite twist angles of n*π/2 and a dielectric mirror layer on each substrate |
EP0903615A3 (en) * | 1997-09-19 | 2000-01-12 | Nippon Telegraph and Telephone Corporation | Tunable wavelength-selective filter and its manufacturing method |
JP2011107452A (en) * | 2009-11-18 | 2011-06-02 | Citizen Finetech Miyota Co Ltd | Liquid crystal optical modulation element |
-
1990
- 1990-12-21 JP JP41273690A patent/JPH04220618A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5592314A (en) * | 1993-12-02 | 1997-01-07 | Yazaki Corporation | Tunable wavelength filter formed by 2 lcds in series having opposite twist angles of n*π/2 and a dielectric mirror layer on each substrate |
EP0903615A3 (en) * | 1997-09-19 | 2000-01-12 | Nippon Telegraph and Telephone Corporation | Tunable wavelength-selective filter and its manufacturing method |
JP2011107452A (en) * | 2009-11-18 | 2011-06-02 | Citizen Finetech Miyota Co Ltd | Liquid crystal optical modulation element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6271899B1 (en) | Tunable nano-phase polymer dispersed liquid crystal filter | |
JP4075781B2 (en) | Tunable filter | |
US7623291B2 (en) | Polarized diffractive filter and layered polarized diffractive filter | |
US4443065A (en) | Interference color compensation double layered twisted nematic display | |
US5710609A (en) | Liquid crystal projection-type display device specific liquid crystal layer retardation and two alignment films having orientation directions 180 degrees different | |
CN106646934A (en) | Multi-wavelength tunable narrow-band filter based on lithium niobate crystal | |
US5510914A (en) | Smectic liquid crystal analog phase modulator | |
KR100284647B1 (en) | Nematic liquid crystal Fabry-Perot wavelength tunable filter device | |
Lequime | Tunable thin film filters: review and perspectives | |
JPH04220618A (en) | variable wavelength filter | |
JP2888372B2 (en) | Tunable wavelength filter module | |
JP2568782B2 (en) | Tunable wavelength filter | |
US4560240A (en) | Liquid crystal device with anti-reflection function in electrode | |
JPH06148692A (en) | Tunable liquid crystal optical filter | |
JP5150992B2 (en) | Liquid crystal device and optical attenuator | |
JPS62240928A (en) | lcd light shutter | |
JP3031394B2 (en) | Transmission wavelength control method | |
JPH04116515A (en) | Reflective liquid crystal electro-optical device | |
Fujii et al. | Acousto‐optic tunable filter with controllable passband | |
KR20020041053A (en) | Nematic liquid crystal Fabry-Perot tunable filter | |
JP3795608B2 (en) | Reflective guest-host type liquid crystal display device | |
JPH0139084B2 (en) | ||
JPH04141622A (en) | liquid crystal electro-optical device | |
JP3201668B2 (en) | Tunable wavelength filter | |
KR0161377B1 (en) | Ferroelectric liquid crystal display element |