[go: up one dir, main page]

JPH04206455A - Oxygen permeating composite film and battery using composite film - Google Patents

Oxygen permeating composite film and battery using composite film

Info

Publication number
JPH04206455A
JPH04206455A JP2338046A JP33804690A JPH04206455A JP H04206455 A JPH04206455 A JP H04206455A JP 2338046 A JP2338046 A JP 2338046A JP 33804690 A JP33804690 A JP 33804690A JP H04206455 A JPH04206455 A JP H04206455A
Authority
JP
Japan
Prior art keywords
battery
oxygen
saturated aliphatic
aliphatic amine
composite membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2338046A
Other languages
Japanese (ja)
Inventor
Masahiko Ogawa
小川 昌彦
Shigeto Noya
重人 野矢
Nobuo Eda
江田 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2338046A priority Critical patent/JPH04206455A/en
Publication of JPH04206455A publication Critical patent/JPH04206455A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PURPOSE:To obtain the oxygen penetrating power and the shielding effect of steam from the atmosphere for a battery by coating polyamino phosphazen introduced with a substituent made of saturated aliphatic amine on porous fluororesin. CONSTITUTION:A composite film 11 is provided between a porous film 2 of polytetra fluoroethylene(PTFE) and a porous body 4 diffusing the oxygen. Polyamino phosphazen introduced with a substituent made of saturated aliphatic amine expressed by the formula I is coated on a porous polymer film to form the oxygen permeating composite film 11, where R, R' are an alkyl group or hydrogen. The good oxygen permeating speed and the shielding effect of water vapor or carbon dioxide from the atmosphere for a battery are kept in the satisfactory state, and the high-load discharge performance required for the practical battery and the performance when the battery discharged in the high- humidity or low-humidity atmosphere for a long time can be satisfied.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸素を活物質に用いるガス拡散電極を備えた
電池の酸素透過性膜、及びその膜を用いた電池に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an oxygen permeable membrane for a battery equipped with a gas diffusion electrode using oxygen as an active material, and a battery using the membrane.

従来の技術 ガス拡散電極を備え、酸素を活物質とする電池としては
、空気電池、燃料電池等がある。電解質には、アルカリ
性、中性、酸性の溶液かまたは固体電解質が使用される
BACKGROUND OF THE INVENTION BACKGROUND ART Batteries equipped with gas diffusion electrodes and using oxygen as an active material include air cells, fuel cells, and the like. As the electrolyte, an alkaline, neutral, or acidic solution or a solid electrolyte is used.

特に溶液を電解質として使用する電池においては、ガス
拡散電極(酸素極)より、内部の電解液の蒸気圧に応じ
て水蒸気の出入りがあり、電池的電解液の濃度変化2体
積変化が起こり、これか電池緒特性に影響を与えていた
。ボタン形空気電池を例にとり、第2図を用いてその状
況を説明する。図中1は酸素極(空気極)、2はガスの
拡散性はあるが、液体は阻止するポリテトラプルオロエ
チレン(PTFE)製多孔膜である。3は外部からの空
気取り入れ孔、4は酸素極の支持と空気の拡散を行なう
多孔膜、5,6(まセパレータ、7は水酸化カリウム水
溶液と本化亜鉛粉末との混合体からなる負極である。一
般にアルカリ電解液には水酸化カリウム水溶液を使用し
、その濃度は30−35%である。このため、相対湿度
が47〜59%より高いと、外部の湿気を取り込み電解
液濃度の低下と体積膨張とが起こり、放電性能の低下、
電解液の漏液を生していた。一方、相対湿度が前記以下
の場合には電解液の蒸発が起こり、内部抵抗の増大や放
電性能の低下をもたらしていた。従って、環境雰囲気に
よって著しい影響を受は易いため長期間保存後の特性に
問題があり、空気電池や燃料電池はある特定の分野用に
設計されるにとどまり、汎用化を図る上で大きな課題を
有していた。なお、図中8は負極容器、9は絶縁ガスケ
ット、10は正極容器である。
In particular, in batteries that use a solution as an electrolyte, water vapor flows in and out from the gas diffusion electrode (oxygen electrode) depending on the vapor pressure of the internal electrolyte, causing changes in the concentration and volume of the electrolyte in the battery. This had an effect on the battery characteristics. Taking a button-type air battery as an example, the situation will be explained using FIG. 2. In the figure, 1 is an oxygen electrode (air electrode), and 2 is a porous membrane made of polytetrafluoroethylene (PTFE) that allows gas to diffuse but blocks liquid. 3 is an air intake hole from the outside, 4 is a porous membrane that supports the oxygen electrode and diffuses air, 5 and 6 are separators, and 7 is a negative electrode made of a mixture of potassium hydroxide aqueous solution and zinc oxide powder. Generally, an aqueous potassium hydroxide solution is used as the alkaline electrolyte, and its concentration is 30-35%. Therefore, if the relative humidity is higher than 47-59%, external moisture will be taken in and the electrolyte concentration will decrease. and volumetric expansion occur, resulting in a decrease in discharge performance,
The electrolyte was leaking. On the other hand, when the relative humidity is below the above range, evaporation of the electrolytic solution occurs, resulting in an increase in internal resistance and a decrease in discharge performance. Therefore, since they are easily affected by the environmental atmosphere, there are problems with their properties after long-term storage. Air cells and fuel cells are only designed for use in a specific field, and there are major challenges in making them more general-purpose. had. In the figure, 8 is a negative electrode container, 9 is an insulating gasket, and 10 is a positive electrode container.

これらの課題を改善するため、従来より種々の対策が検
討されてきた。例えば、空気孔周辺の一部に電解液と反
応する物質を挿入し、電池外部への電解液漏出を防止す
る。あるいは紙または高分子材料よりなる不織布等の電
解液吸収材を設けて、電池外部への電解液漏出を防止す
る。さらには空気孔を極端に小さくして酸素の供給量を
制限してまでも、水蒸気や炭酸ガスの電池内部への侵入
を防止する等の提案がなされている。しかし、いずれの
方法も漏液防止や放電性能、特に長期間使用での性能に
大きな課題を残していた。これらの主要原因は空気中の
水蒸気の電池内への侵入による電解液の希釈と体積膨張
、及び炭酸ガスの侵入による炭酸塩の生成に基づく放電
反応の阻害と空気流通経路の閉塞によるもので、外気が
低湿の場合には逆に電解液中の水分の蒸発が性能低下の
原因となっていた。この原因を取り除くため、近年では
、水蒸気や炭酸ガスの透過を抑制し、選択的に酸素を優
先して透過する膜を介して空気を酸素極に供給する方法
、例えばポリシロキサン系の無孔性の均一な薄膜や金属
酸化物、あるいは金属原子を含有する有機化合物の薄膜
と適宜な多孔性膜とを一体化させた膜を用いる方法が提
案されていた。
In order to improve these problems, various countermeasures have been considered in the past. For example, a substance that reacts with the electrolyte is inserted into a portion around the air hole to prevent the electrolyte from leaking to the outside of the battery. Alternatively, an electrolyte absorbing material such as a nonwoven fabric made of paper or a polymeric material is provided to prevent leakage of the electrolyte to the outside of the battery. Furthermore, proposals have been made to prevent water vapor and carbon dioxide from entering the battery by making the air holes extremely small to limit the amount of oxygen supplied. However, both methods had major problems in preventing leakage and discharging performance, especially in long-term use. The main causes of these are the dilution and volumetric expansion of the electrolytic solution due to the intrusion of water vapor from the air into the battery, and the inhibition of the discharge reaction due to the formation of carbonates due to the intrusion of carbon dioxide gas and the blockage of the air circulation path. Conversely, when the outside air is low-humidity, evaporation of water in the electrolyte causes a decline in performance. In order to eliminate this cause, in recent years, methods have been developed to supply air to the oxygen electrode through a membrane that suppresses the permeation of water vapor and carbon dioxide gas and selectively allows oxygen to permeate. A method using a film that integrates a uniform thin film of , a thin film of a metal oxide, or a thin film of an organic compound containing metal atoms with a suitable porous film has been proposed.

発明が解決しようとする課題 しかしながら、現在までのところ、充分に有効な酸素ガ
ス選択透過性が得られないことや水蒸気、炭酸ガスの透
過阻止能が充分でないことなどから、満足な放電性能が
得られず、長期の使用や貯蔵に耐えられないという技術
課題をもっていた。
Problems to be Solved by the Invention However, until now, satisfactory discharge performance has not been achieved due to the inability to obtain sufficiently effective oxygen gas selective permeability and insufficient permeation blocking ability for water vapor and carbon dioxide gas. However, there were technical issues in that it could not withstand long-term use or storage.

そこで本発明は上記の電池の貯蔵性、長期使用における
性能を改善するとともに低負荷から高負荷に至る放電条
件で満足な放電性能を得るために、大気中の酸素ガスを
選択的に電池内に取り入れ、大気中の水蒸気及び炭酸ガ
スの電池内への侵入を長期にわたり防止する有効な酸素
透過性複合膜を提供することを目的とするものである。
Therefore, the present invention aims to improve the storability and long-term use performance of the above-mentioned battery, as well as to selectively inject oxygen gas from the atmosphere into the battery in order to obtain satisfactory discharge performance under discharge conditions ranging from low to high loads. The object of the present invention is to provide an effective oxygen-permeable composite membrane that prevents atmospheric water vapor and carbon dioxide from entering a battery over a long period of time.

課題を解決するための手段 上記の目的を達成するため、本発明の酸素透過性複合膜
は、多孔性高分子膜に飽和脂肪族アミンからなる置換基
を導入したポリアミノホスファゼンを塗布したものであ
る。
Means for Solving the Problems In order to achieve the above objects, the oxygen permeable composite membrane of the present invention is a porous polymer membrane coated with polyaminophosphazene into which a substituent consisting of a saturated aliphatic amine is introduced. .

本発明では、ポリアミノホスファゼンを塗布するため高
分子膜を用いるが、一般にホスファゼン系高分子はポリ
プロピレン、ポリヒニルアルコールなどの高分子よりは
低いカラス転移温度を示すものが多く、このため、シロ
キサン系高分子と同様に高い酸素透過性を示すことが知
られている。
In the present invention, a polymer film is used to apply polyaminophosphazene, but in general, many phosphazene polymers exhibit a lower glass transition temperature than polymers such as polypropylene and polyhinyl alcohol. It is known to exhibit high oxygen permeability similar to polymers.

また、ホスファゼン系高分子はシロキサン系高分子より
も耐アルカリ性に優れている。
Furthermore, phosphazene polymers have better alkali resistance than siloxane polymers.

上述のように、本発明は、ポリアミノホスファゼンの酸
素透過性が高いことと、耐アルカリ性に優れていること
に着目し、鋭意検討を重ね完成したものである。
As mentioned above, the present invention was completed after intensive studies focusing on the high oxygen permeability and excellent alkali resistance of polyaminophosphazene.

作用 この構成により上述の複合膜は後述の実施例における気
体透過率測定装置及びカップ法によるガス透過速度の結
果、並びに電池試験の結果からも明らかなように、電池
用′としての良好な酸素透過速度と、水蒸気や炭酸ガス
を大気から遮断する効果を共に満足すべき状態に保ち、
実用的な電池に要求される高負荷放電性能と、高湿度や
低湿度の雰囲気下で長時間放電した場合の性能も共に満
足することとなる。
Effect: Due to this structure, the above-mentioned composite membrane has good oxygen permeability for use in batteries, as is clear from the gas permeation rate results using a gas permeability measuring device and cup method in the examples described later, as well as from the results of battery tests. Maintaining satisfactory speed and effectiveness in blocking water vapor and carbon dioxide from the atmosphere,
This satisfies both the high-load discharge performance required of a practical battery and the performance when discharging for a long time in an atmosphere of high or low humidity.

実施例 以下に本発明の一実施例を示す。Example An example of the present invention is shown below.

(実施例1) ヘキサクロロシクロホスファゼン5g、p−トルエンス
ルホン酸0.1 g及び硫酸カルシウム0.01gを1
.2.4−トリクロロヘンゼン4 m Q中に加え、不
活性ガス雰囲気下、210°Cに加熱する。溶液が粘性
を帯びた時点で加熱を止め、室温まで冷却する。この溶
液を乾燥させたn−へブタン溶液中に注ぎ、ポリジクロ
ロホスファゼンを沈澱させた後、ポリマーをろ別し、乾
燥させる。得られたポリマーをテトラヒドロフランに溶
解し、イソブチルアミン及びトリエチルアミンを等量刑
えたテトラヒドロフラン溶液に徐々に添加した後、−昼
夜、室温でかくはんすることにより、ポリジクロロホス
ファゼンにアミン基を導入する。この溶液を水に注ぎ、
ポリマーを沈澱させ、ろ別及び乾燥後、ポリアミノホス
ファゼンが得られる。
(Example 1) 5 g of hexachlorocyclophosphazene, 0.1 g of p-toluenesulfonic acid and 0.01 g of calcium sulfate were mixed into 1
.. Add 2.4-trichlorohenzene to 4 m Q and heat to 210°C under an inert gas atmosphere. When the solution becomes viscous, stop heating and cool to room temperature. This solution is poured into a dry n-hebutane solution to precipitate the polydichlorophosphazene, after which the polymer is filtered off and dried. The resulting polymer is dissolved in tetrahydrofuran, gradually added to a tetrahydrofuran solution containing equal amounts of isobutylamine and triethylamine, and then stirred day and night at room temperature to introduce amine groups into polydichlorophosphazene. Pour this solution into water,
After precipitation of the polymer, filtration and drying, polyaminophosphazene is obtained.

このようにして合成したポリアミノホスファゼンをテト
ラヒドロフランに溶解し、この溶液を多孔性フッ素樹脂
膜に適当量塗布した後、乾燥させ、複合膜を得る。
The polyaminophosphazene thus synthesized is dissolved in tetrahydrofuran, and an appropriate amount of this solution is applied to a porous fluororesin membrane and dried to obtain a composite membrane.

上記実施例1の条件で、イソブチルアミンをジエチルア
ミン及びイソブチルアミンの等量混合物に置き代えたも
のを実施例2とする。
Example 2 is obtained by maintaining the conditions of Example 1 above, but replacing isobutylamine with a mixture of equal amounts of diethylamine and isobutylamine.

上記実施例1の条件で、イソブチルアミンをシーn−プ
ロピルアミン及びイソブチルアミンの等量混合物に置き
代えたものを実施例3とする。
Example 3 is the same as in Example 1, except that isobutylamine is replaced with a mixture of equal amounts of sheen-n-propylamine and isobutylamine.

(実施例4) テトラヒドロフラン溶液中で、イソプロピルアルコール
及び、水素化ナトリウムを反応させ、ナトリウムイソプ
ロポキシドとし、この溶液にポリジクロロホスファゼン
のテトラヒドロフラン溶液を徐々に添加した後、24時
間、溶媒還流条件下、かくはんすることにより、ポリジ
クロロホスファゼンにアルコキシ基を導入する。この溶
液を水に注ぎ、ポリマーを沈澱させ、ろ別及び乾燥後、
ポリアルコキシホスファゼンが得られる。
(Example 4) Isopropyl alcohol and sodium hydride were reacted in a tetrahydrofuran solution to form sodium isopropoxide, and after gradually adding a tetrahydrofuran solution of polydichlorophosphazene to this solution, the solution was heated under refluxing conditions for 24 hours. , an alkoxy group is introduced into polydichlorophosphazene by stirring. This solution was poured into water to precipitate the polymer, and after filtering and drying,
A polyalkoxyphosphazene is obtained.

得られたポリマーを使い、実施例1と同様の方法で複合
膜を得る。
Using the obtained polymer, a composite membrane is obtained in the same manner as in Example 1.

(比較例1) 多孔性フッ素樹脂のみを用いたものを比較例1とする。(Comparative example 1) Comparative Example 1 uses only porous fluororesin.

以上の実施例1〜4までの4種類の複合膜と比較例1の
膜の酸素透過速度を差圧式ガス透過率測定装置(柳本製
作所■製、GTR−10XD)を用いて測定し、水蒸気
の透過速度をJ lS−20208に準じたカップ法に
より測定した。
The oxygen permeation rates of the four types of composite membranes of Examples 1 to 4 and the membrane of Comparative Example 1 were measured using a differential pressure gas permeability measuring device (manufactured by Yanagimoto Seisakusho ■, GTR-10XD). The permeation rate was measured by the cup method according to JIS-20208.

以上の結果を第1表に示した。The above results are shown in Table 1.

なお、表中の分離比はく酸素の透過速度)(水蒸気の透
過速度)であり、水蒸気に対する酸素の選択透過性を示
すものである。
The separation ratio in the table is oxygen permeation rate) (water vapor permeation rate), which indicates the selective permeability of oxygen to water vapor.

飽和脂肪族アミンからなる置換基を導入した実施例1〜
3とイソプロポキシ基を導入した実施例4を比較すると
、いずれの実施例も酸素透過性は同程度であるが、実施
例4は、実施例1〜3と比べ、水蒸気透過性が10倍前
後大きく、酸素と水蒸気の分離比も0.58と非常に低
い。このため、イソプロポキシ基を導入した実施例4は
、水蒸気を大気から遮断するという目的には不適当と言
える。
Examples 1 to 3 in which a substituent consisting of a saturated aliphatic amine was introduced
Comparing Example 3 and Example 4 in which an isopropoxy group was introduced, the oxygen permeability of each example is about the same, but the water vapor permeability of Example 4 is about 10 times that of Examples 1 to 3. The separation ratio between oxygen and water vapor is very low at 0.58. For this reason, it can be said that Example 4, in which isopropoxy groups were introduced, is inappropriate for the purpose of blocking water vapor from the atmosphere.

以上のように本実施例によれば、ポリアミノポスファゼ
ンを多孔性フッ素樹脂に塗布した複合膜を作製すること
により、電池用としての酸素透過能と同時に、水蒸気を
大気から遮断する効果も共に有する膜を得ることかでき
る。
As described above, according to this example, by producing a composite membrane in which polyaminophosphazene is coated on a porous fluororesin, it has both oxygen permeability for battery use and the effect of blocking water vapor from the atmosphere. It is possible to obtain a membrane with

また、本発明の効果を確認するために、実施例1〜4で
作製した複合膜を使用した電池と、複合膜を使用してい
ない電池(比較例1)を試作し、評価、検討した。まず
、複合膜を使用していない比較例1の場合は第2図と全
く同一に構成した。
In addition, in order to confirm the effects of the present invention, a battery using the composite membrane produced in Examples 1 to 4 and a battery not using the composite membrane (Comparative Example 1) were prototyped, evaluated, and studied. First, in the case of Comparative Example 1 in which no composite membrane was used, the structure was exactly the same as that shown in FIG. 2.

複合膜を使用した実施例も第2図とほぼ同様であり、第
1図に示すようにPTFEの多孔膜2と酸素の拡散を行
う多孔体4との間にそれぞれの実施例の複合膜が介在し
た構成としたものである。
Examples using composite membranes are almost the same as those shown in FIG. 2, and as shown in FIG. This is an intervening configuration.

試作した電池の寸法は直径11.6mm、総高5.4m
mであり、比較的高負荷(75Ω)で20℃、常湿(6
0%RH)での連続放電により電池内への空気中の酸素
の取り込み速度の充足性を訂価し、比較的低負荷(3に
Ω)で20 ’c、高湿度(90%RH)、及び低湿度
(20%RH)での長時間連続放電により、長期の放電
期間中における雰囲気からの水蒸気の電池内への取り込
みや電池内の水分の蒸発、及び炭酸ガスの取り込みなど
電池性能への影響度を評価した。
The dimensions of the prototype battery are 11.6 mm in diameter and 5.4 m in total height.
m, at 20°C and normal humidity (6
The sufficiency of the oxygen uptake rate from the air into the battery was evaluated by continuous discharging at 0% RH), and at relatively low load (3Ω) at 20'C, high humidity (90% RH), Continuous discharge for a long period of time at low humidity (20% RH) may affect battery performance, such as the introduction of water vapor from the atmosphere into the battery, evaporation of moisture within the battery, and intake of carbon dioxide gas during the long-term discharge period. The degree of impact was evaluated.

第2表に試作電池の性能試験結果を示す。Table 2 shows the performance test results of the prototype battery.

第2表において放電終止電圧はいずれも0.9vであり
、重量変化は放電試験前後の増減を示しでおり、主とし
て放電中の水分の取り込み、あるいは蒸発の多少を示唆
する数値である。
In Table 2, the end-of-discharge voltage is 0.9 V in all cases, and the weight change indicates the increase or decrease before and after the discharge test, and is a numerical value that mainly indicates the amount of moisture taken in or evaporated during discharge.

(以  下  余  白) これらの電池の特性を複合膜を使用していない比較例1
と対比すると最も端的に本発明の詳細な説明できる。
(Left below) The characteristics of these batteries are compared to Comparative Example 1, which does not use a composite membrane.
The present invention can be most clearly explained in detail by comparing it with the following.

まず20℃、常湿での高負荷試験では放電期間が短く、
水分の取り込みや蒸発の影響や炭酸ガスの影響が少ない
ので、電池の性能は酸素の供給速度が充分であれば水分
や炭酸ガスの透過阻止はあまり考虜する必要がない。従
って、このような条件では比較例1ても優れた特性が得
られる。これに対し、前述の実施例1〜4は比較例1と
同等の放電特性が得られており、複合膜を酸素が透過す
る速度が放電反応で酸素が消費される速度に充分追従し
ていることを示している。
First, in high-load tests at 20°C and normal humidity, the discharge period was short;
Since the effects of moisture uptake, evaporation, and carbon dioxide gas are small, there is no need to think too much about blocking moisture and carbon dioxide permeation in terms of battery performance as long as the oxygen supply rate is sufficient. Therefore, under such conditions, excellent characteristics can be obtained even in Comparative Example 1. In contrast, in Examples 1 to 4 described above, discharge characteristics equivalent to Comparative Example 1 were obtained, and the rate at which oxygen permeates through the composite membrane sufficiently follows the rate at which oxygen is consumed in the discharge reaction. It is shown that.

一方、低負荷放電の場合は放電期間が長く、しかも外気
が高湿度あるいは低湿度の場合には酸素の供給速度より
も水分や炭酸ガス、特に水分の透過防止が優れた電池特
性を得るために重要となり、水分や炭酸ガスの透過阻止
機構をもたない比較例1及び実施例4の電池は水分の枯
渇、あるいは逆に水分の過剰取り入れによる漏液による
空気孔の閉塞などにより、放電の途中で電圧が低下し、
高負荷試験で得られた放電容量の一部分に相当する容量
か得られるにすぎない。また、放電途中での漏液は実用
面で致命的な間顧であることはいうまでもない。これに
対し実施例1〜3はきわめて優れた性能を示し、これら
は高負荷試験の放電容量とほぼ等しい容量が得られてい
る。これらの傾向は試験雰囲気が高湿度、低湿度、いず
れの場合とも同様である。このことは、実施例の場合、
複合膜の水分の透過阻止効果か充分に発揮されているこ
とを示している。
On the other hand, in the case of low-load discharge, the discharge period is long, and in addition, when the outside air is high or low humidity, it is necessary to obtain battery characteristics that are superior to moisture and carbon dioxide gas, especially moisture permeation prevention, rather than oxygen supply rate. The batteries of Comparative Example 1 and Example 4, which do not have a moisture or carbon dioxide permeation prevention mechanism, may experience problems during discharge due to depletion of moisture or, conversely, blockage of air holes due to leakage caused by excessive intake of moisture. The voltage decreases at
The capacity obtained is only a portion of the discharge capacity obtained in the high load test. Moreover, it goes without saying that liquid leakage during discharge is a fatal oversight from a practical standpoint. On the other hand, Examples 1 to 3 showed extremely excellent performance, and in these cases, a capacity almost equal to the discharge capacity in the high load test was obtained. These trends are the same whether the test atmosphere is high humidity or low humidity. This means that in the case of the example,
This shows that the moisture permeation blocking effect of the composite membrane is fully exhibited.

以上を総合して、多孔性フッ素樹脂にポリアミノホスフ
ァゼンを塗布した酸素透過性複合膜を用いた試作電池は
、高負荷特性、低負荷特性とも優れ、外部雰囲気の変化
も良好であり、優れた電池を提供できることが結論でき
る。
In summary, the prototype battery using an oxygen-permeable composite membrane made of porous fluororesin coated with polyaminophosphazene has excellent high-load and low-load characteristics, and changes in the external atmosphere well, making it an excellent battery. It can be concluded that it is possible to provide

なお、実施例では複合膜が空気取り入れ孔側に当接され
た場合について示したか、逆にガス拡散電極側に当接さ
せた場合でもほぼ同一の結果となることを確認している
In addition, although the example shows the case where the composite membrane is brought into contact with the air intake hole side, it has been confirmed that almost the same result is obtained even when the composite membrane is brought into contact with the gas diffusion electrode side.

また、本発明の複合膜を上記実施例では電池容器との間
に空気拡散用の多孔体を介して設置したが、本発明の複
合膜の機械的強度が充分な場合は、前記空気拡散用の多
孔体を除いても電池特性の差異はない。さらに、上記実
施例では本発明の複合膜を酸素極との間に酸素極を支持
する多孔膜を介して設置したが、酸素極の強度が充分で
あれば前記支持用多孔膜は不要にでき、その場合にも電
池特性は変わらない。また、塩化アンモニウム、塩化亜
鉛などの中性塩水溶液を電解液に用いた空気電池に対し
ても、実施例で示したアルカリ性の電解液に用いた電池
と同様の効果があるこ七も確認しており、実施例と同様
の理由で本発明の詳細な説明できる。
Further, in the above embodiment, the composite membrane of the present invention was installed between the battery container and the porous body for air diffusion, but if the mechanical strength of the composite membrane of the present invention is sufficient, the air diffusion There is no difference in battery characteristics even if the porous material is removed. Furthermore, in the above example, the composite membrane of the present invention was installed between the oxygen electrode and the porous membrane supporting the oxygen electrode, but if the oxygen electrode has sufficient strength, the supporting porous membrane can be omitted. In that case, the battery characteristics remain unchanged. We also confirmed that air batteries using neutral salt aqueous solutions such as ammonium chloride and zinc chloride as electrolytes have the same effect as batteries using alkaline electrolytes as shown in the examples. Therefore, the present invention can be explained in detail for the same reason as the examples.

発明の効果 以上のように本発明は、多孔性フッ素樹脂に、飽和脂肪
族アミンからなる置換基を導入したポリアミノホスファ
ゼンを塗布することにより、電池用としての酸素透過能
と同時に、水蒸気を大気から遮断する効果も共に有する
優れた酸素透過性複合膜を実現できるものである。
Effects of the Invention As described above, the present invention has a porous fluororesin coated with polyaminophosphazene into which a substituent consisting of a saturated aliphatic amine has been introduced, thereby improving oxygen permeability for batteries and at the same time removing water vapor from the atmosphere. This makes it possible to realize an excellent oxygen permeable composite membrane that also has a blocking effect.

以上の説明で明らかなように、本発明による酸素透過性
複合膜によれば、中性もしくはアルカリ性の水溶液を電
解液とする電池の高負荷から低負荷にわたる広い範囲で
優れた実用性能と、優れた耐漏液性、長期貯蔵性を具備
させることができるという効果が得られる。
As is clear from the above explanation, the oxygen permeable composite membrane of the present invention has excellent practical performance and excellent performance in a wide range from high to low loads of batteries using neutral or alkaline aqueous solutions as electrolytes. This provides the advantage of being able to provide liquid leakage resistance and long-term storability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の検討に用いたボタン形空気亜
鉛電池の半断面図、第2図は複合膜を使用していない従
来のボタン形空気亜鉛電池の半断面図である。 1・・・・・・酸素極(空気極)、2・・・・・・撥水
膜、3・・・・・・空気取り入れ孔、4・・・・・・多
孔膜、5,6・・・・・・セパレータ、7・・・・・・
負極亜鉛、8・・・・・・負極容器、9・・・・・・絶
縁ガスケット、1o・・・・・・正極容器、11・・・
・・・複合膜。
FIG. 1 is a half-sectional view of a button-type zinc-air battery used for studying the embodiments of the present invention, and FIG. 2 is a half-sectional view of a conventional button-type zinc-air battery that does not use a composite membrane. 1... Oxygen electrode (air electrode), 2... Water repellent membrane, 3... Air intake hole, 4... Porous membrane, 5, 6...・・・Separator, 7・・・・・・
Negative electrode zinc, 8... Negative electrode container, 9... Insulating gasket, 1o... Positive electrode container, 11...
...Composite membrane.

Claims (8)

【特許請求の範囲】[Claims] (1)多孔性高分子膜に、下記の一般式で示される飽和
脂肪族アミンからなる置換基を導入したポリアミノホス
ファゼンを塗布したことを特徴とする酸素透過性複合膜
。 R、R′N− (但し、R、R′はアルキル基もしくは水素である。)
(1) An oxygen-permeable composite membrane characterized in that a porous polymer membrane is coated with polyaminophosphazene into which a substituent consisting of a saturated aliphatic amine represented by the following general formula is introduced. R, R'N- (However, R and R' are an alkyl group or hydrogen.)
(2)飽和脂肪族アミンが、イソブチルアミン、ジエチ
ルアミン及びジ−n−プロピルアミンからなる群のうち
から選ばれる少なくとも1種の飽和脂肪族アミンである
ことを特徴とする特許請求の範囲第1項記載の酸素透過
性複合膜。
(2) Claim 1, wherein the saturated aliphatic amine is at least one saturated aliphatic amine selected from the group consisting of isobutylamine, diethylamine, and di-n-propylamine. The oxygen permeable composite membrane described.
(3)多孔性高分子膜がフッ素樹脂を主成分とすること
を特徴とする特許請求の範囲第1項記載の酸素透過性複
合膜。
(3) The oxygen permeable composite membrane according to claim 1, wherein the porous polymer membrane has a fluororesin as a main component.
(4)酸素を活物質とするガス拡散電極と、外気に通じ
る空気取入れ孔を有する電池容器を備え、前記ガス拡散
電極の空気取り入れ側と前記電池容器の内面との間に下
記の一般式で示される飽和脂肪族アミンからなる置換基
を導入したポリアミノホスファゼンを多孔性高分子膜に
塗布した酸素透過性複合膜を介在させたことを特徴とす
る電池。 R、R′N− (但し、R、R′はアルキル基もしくは水素である。)
(4) A gas diffusion electrode having oxygen as an active material and a battery container having an air intake hole communicating with the outside air are provided, and the following general formula is provided between the air intake side of the gas diffusion electrode and the inner surface of the battery container. 1. A battery characterized by interposing an oxygen-permeable composite membrane in which a porous polymer membrane is coated with polyaminophosphazene into which a substituent consisting of a saturated aliphatic amine is introduced. R, R'N- (However, R and R' are an alkyl group or hydrogen.)
(5)飽和脂肪族アミンが、イソブチルアミン、ジエチ
ルアミン及びジ−n−プロピルアミンからなる群のうち
から選ばれる少なくとも1種の飽和脂肪族アミンである
ことを特徴とする特許請求の範囲第4項記載の電池。
(5) Claim 4, wherein the saturated aliphatic amine is at least one saturated aliphatic amine selected from the group consisting of isobutylamine, diethylamine, and di-n-propylamine. Batteries listed.
(6)多孔性高分子膜がフッ素樹脂を主成分とすること
を特徴とする特許請求の範囲第4項記載の電池。
(6) The battery according to claim 4, wherein the porous polymer membrane has a fluororesin as a main component.
(7)複合膜が、空気取り入れ孔を有する前記電池容器
の内面に当接され、前記複合膜の多孔性高分子膜側に、
直接ガス拡散電極が接していることを特徴とする特許請
求の範囲第4項から第6項のいずれかに記載の電池。
(7) A composite membrane is brought into contact with the inner surface of the battery container having an air intake hole, and the porous polymer membrane side of the composite membrane is
The battery according to any one of claims 4 to 6, characterized in that the gas diffusion electrode is in direct contact with the battery.
(8)前記複合膜において、飽和脂肪族アミンからなる
置換基を導入したポリアミノホスファチッを塗布した側
が直接ガス拡散電極に接し、多孔性高分子膜側が空気取
り入れ孔を有する前記電池容器の内面に当接しているこ
とを特徴とする特許請求の範囲第4項から第6項のいず
れかに記載の電池。
(8) In the composite membrane, the side coated with polyaminophosphatide introduced with a substituent consisting of a saturated aliphatic amine is in direct contact with the gas diffusion electrode, and the porous polymer membrane side has air intake holes on the inner surface of the battery container. The battery according to any one of claims 4 to 6, characterized in that the battery is in contact with the battery.
JP2338046A 1990-11-30 1990-11-30 Oxygen permeating composite film and battery using composite film Pending JPH04206455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2338046A JPH04206455A (en) 1990-11-30 1990-11-30 Oxygen permeating composite film and battery using composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2338046A JPH04206455A (en) 1990-11-30 1990-11-30 Oxygen permeating composite film and battery using composite film

Publications (1)

Publication Number Publication Date
JPH04206455A true JPH04206455A (en) 1992-07-28

Family

ID=18314412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2338046A Pending JPH04206455A (en) 1990-11-30 1990-11-30 Oxygen permeating composite film and battery using composite film

Country Status (1)

Country Link
JP (1) JPH04206455A (en)

Similar Documents

Publication Publication Date Title
JP3078066B2 (en) Air battery
JPH04206455A (en) Oxygen permeating composite film and battery using composite film
JPH0417259A (en) Battery
JPH07105991A (en) Oxygen enriched film for battery
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JPH05326037A (en) Battery
JPH03108256A (en) Battery
JP2778078B2 (en) Battery
JPH05205784A (en) Oxygen permeable composite film and battery employing said composite film
JPH04312771A (en) Air battery
JPH0547421A (en) Oxygen permeable complex film and cell having the same
JP2757383B2 (en) Battery
JPH04188575A (en) Manufacture of battery
JPH042046A (en) Battery
JPH042067A (en) Battery
JPH0287459A (en) Battery
JPH0475253A (en) Manufacture of battery
JPH04162374A (en) Battery
JPH03297073A (en) Battery
JPH03108255A (en) Battery
JPH05205786A (en) Oxygen permeable compound membrane and battery using said compound membrane
JPH03108258A (en) Battery
JPH04188574A (en) Manufacture of battery
JPH05205785A (en) Oxygen permeable composite film and battery employing said composite film
JPH08241737A (en) Oxygen selective permeable film, and air battery using it