[go: up one dir, main page]

JPH05205784A - Oxygen permeable composite film and battery employing said composite film - Google Patents

Oxygen permeable composite film and battery employing said composite film

Info

Publication number
JPH05205784A
JPH05205784A JP1455592A JP1455592A JPH05205784A JP H05205784 A JPH05205784 A JP H05205784A JP 1455592 A JP1455592 A JP 1455592A JP 1455592 A JP1455592 A JP 1455592A JP H05205784 A JPH05205784 A JP H05205784A
Authority
JP
Japan
Prior art keywords
oxygen
battery
membrane
permeable composite
composite membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1455592A
Other languages
Japanese (ja)
Inventor
Shigeto Noya
重人 野矢
Masahiko Ogawa
昌彦 小川
Nobuo Eda
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1455592A priority Critical patent/JPH05205784A/en
Publication of JPH05205784A publication Critical patent/JPH05205784A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/02Details

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To enhance storage properties and performance for a long use of a battery equipped with gas diffusing electrodes using oxygen as active material. CONSTITUTION:Mixture of fluorine contained resin soluble to solvent and metallic oxide powder is applied to a porous film to obtain an oxygen permeable film 11 which restrains vapor from being permeated and selectively takes in oxygen. By this constitution, satisfactory discharge performance required by a discharge condition for a range of low load to high load can be obtained, and battery excellent in storage properties and performance for long use can also be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸素透過性複合膜およ
びその複合膜を用いた電池に関し、特に酸素を活物質に
用いるガス拡散電極を備えた電池の酸素透過性複合膜お
よびその複合膜を用いた電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen permeable composite membrane and a battery using the composite membrane, and more particularly to an oxygen permeable composite membrane for a battery equipped with a gas diffusion electrode using oxygen as an active material and the composite membrane thereof. Relates to a battery using.

【0002】[0002]

【従来の技術】ガス拡散電極を備え、酸素を活物質とす
る電池としては、空気電池、燃料電池などがある。電解
質には、アルカリ性、中性、酸性の電解質かまたは固体
電解質が使用される。
2. Description of the Related Art Batteries equipped with gas diffusion electrodes and using oxygen as an active material include air batteries and fuel cells. As the electrolyte, an alkaline, neutral or acidic electrolyte or a solid electrolyte is used.

【0003】特に、溶液を電解質として使用する電池に
おいては、ガス拡散電極(酸素極)より、内部の電解質
の蒸気圧に応じて水蒸気の出入りがあり、電池内電解液
の濃度変化、体積変化が起こり、これが電池諸特性に影
響を与えていた。ボタン形電池を例にとり、図2を用い
てその状況を説明する。図中、1は酸素極(空気極)、
2はガスの拡散性はあるが、液体は阻止するポリテトラ
フルオロエチレン(PTFE)撥水膜である。3は外部
からの空気取り入れ孔、4は酸素極の支持と空気の拡散
を行う多孔膜、5,6はセパレータ、7は水酸化カリウ
ム水溶液と汞化亜鉛粉末との混合体からなる負極であ
る。一般にアルカリ電解液には水酸化カリウム水溶液を
使用し、その濃度は30〜35%である。このため、相
対湿度が47〜59%より高いと、外部の湿気を取り込
み電解液濃度の低下と体積膨張とが起こり、放電性能の
低下、電解液の漏液を生じていた。一方、相対湿度が前
記以下の場合には電解液の蒸発が起こり、内部抵抗の増
大や放電性能の低下をもたらしていた。したがって、環
境雰囲気によって著しい影響を受けやすいため長期間保
存後の特性に問題があり、空気電池や燃料電池はある特
定の分野用に設計されるにとどまり、汎用化を図る上で
大きな課題を有していた。なお、図中8は負極容器、9
は絶縁ガスケット、10は正極容器(電池容器)であ
る。
Particularly, in a battery using a solution as an electrolyte, water vapor flows in and out of a gas diffusion electrode (oxygen electrode) in accordance with the vapor pressure of the electrolyte inside, so that the concentration change and volume change of the electrolytic solution in the battery occur. It happened, and this affected various battery characteristics. Taking a button type battery as an example, the situation will be described with reference to FIG. In the figure, 1 is an oxygen electrode (air electrode),
Reference numeral 2 is a polytetrafluoroethylene (PTFE) water-repellent film that has gas diffusivity but blocks liquid. 3 is an air intake hole from the outside, 4 is a porous film for supporting an oxygen electrode and diffusing air, 5 and 6 are separators, and 7 is a negative electrode composed of a mixture of an aqueous potassium hydroxide solution and zinc hydride powder. .. Generally, a potassium hydroxide aqueous solution is used as the alkaline electrolyte, and the concentration thereof is 30 to 35%. For this reason, when the relative humidity is higher than 47 to 59%, external humidity is taken in, the concentration of the electrolytic solution is reduced, and the volume is expanded, resulting in deterioration of discharge performance and leakage of the electrolytic solution. On the other hand, when the relative humidity is less than the above, evaporation of the electrolytic solution occurs, causing an increase in internal resistance and a decrease in discharge performance. Therefore, there is a problem in the characteristics after long-term storage because it is significantly affected by the environmental atmosphere, and air batteries and fuel cells are only designed for certain specific fields, and there is a major problem in generalization. Was. In the figure, 8 is a negative electrode container, and 9
Is an insulating gasket, and 10 is a positive electrode container (battery container).

【0004】これらの課題を改善するため、従来より種
々の対策が検討されてきた。たとえば、空気孔周辺の一
部に電解液と反応する物質を挿入し、電池外部への電解
液漏出を防止する。あるいは紙または高分子材料よりな
る不織布などの電解液吸収材を設けて、電池外部への電
解液漏出を防止する。さらには空気取り入れ孔を極端に
小さくして酸素の供給量を制限してまでも、水蒸気や炭
酸ガスの電池内部への侵入を防止するなどの提案がなさ
れている。しかし、いずれの方法も漏液防止や放電性
能、特に長期間での性能に大きな課題を残していた。こ
れらの主要原因は空気中の水蒸気の電池内への侵入によ
る電解液の希釈と体積膨張、および炭酸ガスの侵入によ
る炭酸塩の生成に基づく放電反応の阻害と空気流通経路
の閉塞によるもので、外気が低湿の場合には逆に電解液
中の水分の蒸発が性能低下の原因となっていた。この原
因を取り除くため、近年では、水蒸気や炭酸ガスの透過
を抑制し、選択的に酸素を優先して透過する膜を介して
空気を酸素極に供給する方法、例えばポリシロキサン系
の無孔性の均質な薄膜や金属酸化物、あるいは金属原子
を含有する有機化合物の薄膜と適宜な多孔質膜とを一体
化させた膜とを用いる方法が提案されていた。
In order to improve these problems, various countermeasures have been conventionally studied. For example, a substance that reacts with the electrolytic solution is inserted in a part of the periphery of the air hole to prevent the electrolytic solution from leaking to the outside of the battery. Alternatively, an electrolytic solution absorbent such as paper or a non-woven fabric made of a polymer material is provided to prevent leakage of the electrolytic solution to the outside of the battery. Furthermore, even if the air intake holes are made extremely small to limit the supply amount of oxygen, it has been proposed to prevent water vapor or carbon dioxide gas from entering the inside of the battery. However, all of the methods still have major problems in prevention of liquid leakage and discharge performance, especially in long-term performance. The main causes of these are the dilution and volume expansion of the electrolytic solution due to the entry of water vapor into the battery, and the inhibition of the discharge reaction based on the formation of carbonate due to the entry of carbon dioxide gas and the blockage of the air flow path. On the contrary, when the outside air is low in humidity, the evaporation of water in the electrolytic solution causes the performance deterioration. In order to eliminate this cause, in recent years, a method of suppressing the permeation of water vapor or carbon dioxide gas and supplying air to the oxygen electrode through a membrane that selectively preferentially permeates oxygen, for example, polysiloxane-based non-porous material A method using a homogeneous thin film, a metal oxide, or a thin film of an organic compound containing a metal atom and a film in which an appropriate porous film is integrated has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、現在ま
でのところ、十分に有効な酸素ガス選択透過性が得られ
ないことや水蒸気、炭酸ガスの透過阻止能が十分でない
ことから、満足な放電性能が得られず、長期の使用や貯
蔵に耐えられないという技術課題をもっていた。
However, so far, satisfactory discharge performance is not obtained because sufficient effective oxygen gas selective permeability cannot be obtained and the ability to prevent permeation of water vapor and carbon dioxide is insufficient. There was a technical problem that it could not be obtained and could not withstand long-term use and storage.

【0006】そこで本発明は上記の電池の貯蔵性、長期
使用における性能を改善するとともに低負荷から高負荷
に至る放電条件で満足な放電性能を得るために、大気中
の酸素ガスを選択的に電池内に取り入れ、大気中の水蒸
気および炭酸ガスの電池内への侵入を長期にわたり防止
する有効な酸素透過性複合膜およびその複合膜を用いた
電池を提供することを目的とする。
Therefore, the present invention selectively improves the storability of the above-mentioned battery and the performance during long-term use, and selectively obtains oxygen gas in the atmosphere in order to obtain satisfactory discharge performance under discharge conditions from low load to high load. An object of the present invention is to provide an effective oxygen-permeable composite membrane which is incorporated into a battery and prevents invasion of water vapor and carbon dioxide gas in the atmosphere into the battery for a long period of time, and a battery using the composite membrane.

【0007】[0007]

【課題を解決するための手段】この目的を達成するた
め、本発明の酸素透過性複合膜は、溶媒可溶性ふっ素樹
脂と、金属酸化物との混合物を塗布した多孔性高分子膜
を主体として構成するものである。また本発明の上記複
合膜を用いた電池は、酸素を活物質とするガス拡散電極
と、外気に通じる空気取り入れ孔を有する電池容器を備
え、前記ガス拡散電極の空気取り入れ側と前記電池容器
の内側との間に、溶媒可溶性ふっ素樹脂と金属酸化物と
の混合物を塗布した多孔性高分子膜を主体として構成す
る酸素透過性複合膜を介在させたものである。
To achieve this object, the oxygen-permeable composite membrane of the present invention is mainly composed of a porous polymer membrane coated with a mixture of a solvent-soluble fluororesin and a metal oxide. To do. A battery using the composite membrane of the present invention comprises a gas diffusion electrode having oxygen as an active material, and a battery container having an air intake hole communicating with the outside air, and the air intake side of the gas diffusion electrode and the battery container An oxygen-permeable composite membrane mainly composed of a porous polymer membrane coated with a mixture of a solvent-soluble fluorine resin and a metal oxide is interposed between the inner side and the inner side.

【0008】[0008]

【作用】一般にふっ素系高分子物質は酸素との親和性お
よび撥水性に富み、しかも一般の高分子物質のなかでも
耐アルカリ性に優れていることが知られているが、ふっ
素系高分子物質は化学的に安定なため溶剤に不溶で、塗
布法やスピンコータ法などの薄膜形成には適していなか
った。近年、溶剤に可溶なふっ素樹脂が開発され、この
樹脂をポリオレフィン、ふっ素樹脂やポリスルホンを主
成分とする多孔膜に塗布することにより、耐アルカリ性
で酸素選択性透過性を有する膜が得られることが提案さ
れている(公開特許 平成3−225513号公報)。
この場合には、多孔性高分子膜とふっ素樹脂との親和性
が小さいためふっ素樹脂が不均一に凝集し、特に塗布量
が少ない場合、多孔性膜の膜表面全体を均一に覆うこと
が難しいという問題点があった。このため、多孔性高分
子膜表面全体がふっ素樹脂で覆われた膜を安定して作る
には、ふっ素樹脂の塗布量をある程度多くする必要があ
るが、そうすると酸素透過速度をより向上させることが
困難である。本発明では、酸素親和性、撥水性、耐アル
カリ性に優れている溶剤に可溶なふっ素樹脂と金属酸化
物粉体とを混合することにより酸素透過性が向上するこ
とを見出したもので、この構成により上述の複合膜は後
述の実施例における気体透過率測定装置およびカップ法
によるガス透過速度の結果、並びに電池試験の結果から
も明らかなように、電池用としての良好な酸素透過速度
と、水蒸気や炭酸ガスを大気から遮断する効果をともに
満足すべき状態に保ち、実用的な電池に要求される高負
荷放電性能と、高湿度や低湿度の雰囲気下で長時間放電
した場合の性能もともに満足することとなる。
[Function] Generally, it is known that a fluorine-based polymer substance has a high affinity for oxygen and water repellency, and is also excellent in alkali resistance among general polymer substances. Since it is chemically stable, it is insoluble in solvents and was not suitable for thin film formation such as coating method and spin coater method. In recent years, a solvent-soluble fluororesin has been developed, and by applying this resin to a porous film containing polyolefin, fluororesin or polysulfone as a main component, a film having alkali resistance and oxygen selective permeability can be obtained. Has been proposed (Japanese Patent Laid-Open No. Hei 3-225513).
In this case, since the affinity between the porous polymer film and the fluororesin is small, the fluororesin aggregates unevenly, and it is difficult to uniformly cover the entire surface of the porous film, especially when the coating amount is small. There was a problem. Therefore, in order to stably form a film in which the entire surface of the porous polymer film is covered with the fluororesin, it is necessary to increase the coating amount of the fluororesin to some extent, which can further improve the oxygen permeation rate. Have difficulty. In the present invention, it has been found that oxygen permeability is improved by mixing a solvent-soluble fluororesin and a metal oxide powder, which have excellent oxygen affinity, water repellency, and alkali resistance. According to the configuration, the above-mentioned composite membrane has a gas permeability measuring device and a gas permeation rate result by a cup method in Examples described below, and as is clear from the results of a battery test, a good oxygen permeation rate for a battery, Keeping the effect of blocking water vapor and carbon dioxide from the atmosphere in a satisfactory state, the high-load discharge performance required for a practical battery and the performance when discharged for a long time in an atmosphere of high humidity or low humidity Both will be satisfied.

【0009】[0009]

【実施例】以下に本発明の実施例の酸素透過性複合膜お
よびその複合膜を用いた電池を図面を参照して説明す
る。
EXAMPLE An oxygen-permeable composite membrane and a battery using the composite membrane of an embodiment of the present invention will be described below with reference to the drawings.

【0010】ふっ素樹脂系多孔質膜のみを用いたものを
比較例1とする。ふっ素樹脂系多孔質膜(16cm2
に、溶剤可溶型ふっ素樹脂(商品名:サイトップ、旭硝
子(株)製)のパーフルオロ溶液(5重量%)をパーフ
ルオロ溶媒で2分の1に希釈した溶液1ミリリットルを
塗布し、乾燥させた膜を比較例2とする。
Comparative Example 1 uses only a fluororesin-based porous film. Fluororesin-based porous membrane (16 cm 2 )
Then, 1 ml of a solution of a solvent-soluble fluororesin (trade name: Cytop, manufactured by Asahi Glass Co., Ltd.) diluted with the perfluoro solvent (5% by weight) to 1/2 is applied and dried. The film thus formed is referred to as Comparative Example 2.

【0011】ふっ素樹脂系多孔質膜(16cm2)に、溶
剤可溶型ふっ素樹脂(商品名:サイトップ、旭硝子
(株)製)のパーフルオロ溶液(5重量%)をパーフル
オロ溶媒で2分の1に希釈した溶液1ミリリットルに平
均粒径20μmのAl23粉末を20mg加えた混合溶液
を塗布し、乾燥させた酸素透過性複合膜(以下複合膜と
いう)を実施例1とする。
A perfluoro solution (5% by weight) of a solvent-soluble fluororesin (trade name: Cytop, manufactured by Asahi Glass Co., Ltd.) (5% by weight) was applied to a fluororesin-based porous membrane (16 cm 2 ) with a perfluorosolvent for 2 minutes. A mixed solution of 20 mg of Al 2 O 3 powder having an average particle size of 20 μm was applied to 1 ml of the diluted solution of Example 1 and dried to form an oxygen permeable composite membrane (hereinafter referred to as a composite membrane) as Example 1.

【0012】上記実施例1においてAl23粉末を40
mg加えて塗布した複合膜を実施例2、60mg加えて塗布
したものを実施例3、80mg加えて塗布した複合膜を実
施例4、100mg加えて塗布した複合膜を実施例5とす
る。
Al 2 O 3 powder was added in the amount of 40 in Example 1 above.
A composite film obtained by adding 60 mg to the composite film applied in Example 2 was applied as Example 3, a composite film obtained by adding 80 mg in Example 3 was used as Example 4, and a composite film obtained by adding 100 mg as Example 5 is referred to as Example 5.

【0013】ふっ素樹脂系多孔質膜(16cm2)に、溶
剤可溶型ふっ素樹脂(商品名:サイトップ、旭硝子
(株)製)のパーフルオロ溶液(5重量%)をパーフル
オロ溶媒で2分の1に希釈した溶液1ミリリットルに平
均粒径10μmのTiO2粉末を40mg加えた混合溶液
を塗布し、乾燥させた複合膜を実施例6とする。
A perfluoro solution (5% by weight) of a solvent-soluble fluororesin (trade name: CYTOP, manufactured by Asahi Glass Co., Ltd.) was applied to a fluororesin-based porous membrane (16 cm 2 ) with a perfluorosolvent for 2 minutes. A mixed solution prepared by applying 40 mg of TiO 2 powder having an average particle size of 10 μm to 1 ml of the solution diluted to 1 and drying the composite film is referred to as Example 6.

【0014】ふっ素樹脂系多孔質膜(16cm2)に、溶
剤可溶型ふっ素樹脂(商品名:サイトップ、旭硝子
(株)製)のパーフルオロ溶液(5重量%)をパーフル
オロ溶媒で2分の1に希釈した溶液1ミリリットルに平
均粒径10μmのAgO粉末を40mg加えた混合溶液を
塗布し、乾燥させた複合膜を実施例7とする。
A perfluoro solution (5% by weight) of a solvent-soluble fluororesin (trade name: Cytop, manufactured by Asahi Glass Co., Ltd.) (5% by weight) was applied to a fluororesin-based porous membrane (16 cm 2 ) with a perfluorosolvent for 2 minutes. A composite film obtained by applying 40 mg of AgO powder having an average particle size of 10 μm to 1 ml of the diluted solution of Example 1 and drying the composite film is referred to as Example 7.

【0015】塊状のLi2WO4をめのうの乳鉢で粉砕
し、ふるいの目の開きが32μmのふるいでふるい分け
たLi2WO4粉末(粒径32μm以下のもの)40mgを
溶剤可溶型ふっ素樹脂(商品名:サイトップ、旭硝子
(株)製)のパーフルオロ溶液(5重量%)をパーフル
オロ溶媒で2分の1に希釈した溶液1ミリリットルに加
えた混合溶液をふっ素樹脂系多孔質膜(16cm2)に塗
布し、乾燥させた複合膜を実施例8とする。
40 mg of Li 2 WO 4 powder (having a particle size of 32 μm or less) obtained by pulverizing massive Li 2 WO 4 in an agate mortar and sieving with a sieve having a sieve opening of 32 μm is used as a solvent-soluble fluororesin. (Product name: CYTOP, manufactured by Asahi Glass Co., Ltd.) A perfluoro solution (5% by weight) diluted with the perfluoro solvent to 1/2 was added to 1 ml of a mixed solution to give a fluororesin-based porous membrane ( Example 8 is a composite film applied to 16 cm 2 ) and dried.

【0016】上記実施例8においてふるい分けた粉末を
Li2MoO4粉末とした複合膜を実施例9とする。
Example 9 is a composite film in which the powder screened in Example 8 is Li 2 MoO 4 powder.

【0017】以上の実施例1〜9までの複合膜の酸素透
過速度を差圧式ガス透過率測定装置(柳本製作所(株)
製、GTR−10XD)を用いて測定し、水蒸気の透過
速度をJIS−Z0208に準じたカップ法により測定
した。
A differential pressure type gas permeation rate measuring apparatus (Yanagimoto Seisakusho Co., Ltd.) was used to measure the oxygen permeation rate of the composite membranes of Examples 1 to 9 above.
Manufactured by GTR-10XD), and the water vapor transmission rate was measured by the cup method according to JIS-Z0208.

【0018】以上の結果を(表1)に示した。なお、表
中の分離比は(酸素の透過速度)/(水蒸気の透過速
度)であり、水蒸気に対する酸素の選択透過性を示すも
のである。
The above results are shown in (Table 1). The separation ratio in the table is (oxygen permeation rate) / (water vapor permeation rate), which indicates the selective permeability of oxygen to water vapor.

【0019】[0019]

【表1】 [Table 1]

【0020】以上のように本実施例によれば、溶剤に可
溶なふっ素樹脂と金属酸化物粉体との混合物を多孔性高
分子膜に塗布した複合膜を作製することにより、電池用
としての酸素透過性能と同時に、水蒸気を大気から遮断
する効果もともに有する複合膜を得ることができる。な
お、実施例ではふっ素樹脂系多孔質膜を用いた場合につ
いて示したが、ポリオレフィン系多孔質膜またはポリス
ルホン系多孔質膜を用いた場合でも本実施例の効果は変
わらないことを確認している。さらに、乾燥温度として
常温からパーフルオロ溶媒の沸点(100℃)までであ
ればいずれの温度であっても同一の効果が得られること
を確認している。
As described above, according to this example, a composite film in which a mixture of a solvent-soluble fluororesin and a metal oxide powder was applied to a porous polymer film was prepared, and thus a composite film for a battery was prepared. It is possible to obtain a composite membrane having both the oxygen permeability and the effect of blocking water vapor from the atmosphere. Although the examples show the case where the fluororesin-based porous membrane is used, it has been confirmed that the effect of this example does not change even when the polyolefin-based porous membrane or the polysulfone-based porous membrane is used. .. Further, it has been confirmed that the same effect can be obtained at any temperature as long as the drying temperature is from room temperature to the boiling point (100 ° C.) of the perfluoro solvent.

【0021】また、本実施例の効果を確認するために、
比較例2および実施例1〜9で作製した複合膜を使用し
た電池と、実施例の複合膜を使用していない電池(比較
例1)を試作し、評価、検討した。比較例2と実施例1
〜9においては試験の便宜上、図1に示すボタン形電池
を構成した。図1において、複合膜11を用いている以
外の構成は、図2のボタン形電池の構成と同一のため、
その説明を省略する。まず、複合膜を使用していない比
較例1の場合は図2と全く同一に構成した。複合膜を使
用した実施例は図1に示すようにPTFEの撥水膜2と
酸素の拡散を行う多孔膜4との間にそれぞれの実施例の
複合膜11が介在した構成としたものである。試作した
電池の寸法は直径11.6mm、総高5.4mmであり、比
較的高負荷(75Ω)で20℃、常温(60%RH)で
の連続放電により電池内への空気中の酸素の取り込み速
度の充足性を評価し、比較的低負荷(3kΩ)で20
℃、高湿度(90%RH)および低湿度(20%RH)
での長期間連続放電により、長期の放電期間中における
雰囲気からの水蒸気の電池内への取り込みや電池内の水
分の蒸発および炭酸ガスの取り込みなど電池性能への影
響度を評価した。(表2)に試作電池の内訳を示す。
In order to confirm the effect of this embodiment,
A battery using the composite film produced in Comparative Example 2 and Examples 1 to 9 and a battery not using the composite film of Example (Comparative Example 1) were prototyped, evaluated, and examined. Comparative Example 2 and Example 1
9 to 9, the button type battery shown in FIG. 1 was constructed for the convenience of the test. In FIG. 1, the configuration other than the use of the composite membrane 11 is the same as that of the button type battery of FIG.
The description is omitted. First, in the case of Comparative Example 1 in which the composite film was not used, the structure was exactly the same as in FIG. In the embodiment using the composite film, as shown in FIG. 1, the composite film 11 of each embodiment is interposed between the water repellent film 2 of PTFE and the porous film 4 for diffusing oxygen. .. The size of the prototype battery was 11.6 mm in diameter and 5.4 mm in total height, and the oxygen in the air was discharged into the battery by continuous discharge at a relatively high load (75Ω) at 20 ° C and room temperature (60% RH). The sufficiency of the uptake rate was evaluated, and the load was 20 (3kΩ)
℃, high humidity (90% RH) and low humidity (20% RH)
By the long-term continuous discharge in the above, the degree of influence on the battery performance such as the uptake of water vapor from the atmosphere into the battery during the long-term discharge period, the evaporation of water in the battery and the uptake of carbon dioxide gas was evaluated. Table 2 shows the breakdown of the prototype battery.

【0022】[0022]

【表2】 [Table 2]

【0023】(表2)において放電終止電圧はいずれも
0.9Vであり、重量変化は放電試験前後の増減を示し
ており、主として放電中の水分の取り込み、あるいは蒸
発の多少を示唆する数値である。これらの電池の特性を
複合膜を使用していない比較例1と対比すると最も端的
に本実施例の効果が説明できる。まず20℃、常温での
高負荷試験では放電期間が短く、水分の取り込みや蒸発
の影響や炭酸ガスの影響が少ないので、電池の性能は酸
素の供給速度が十分であれば水分や炭酸ガスの透過阻止
はあまり考慮する必要がない。したがって、このような
条件では比較例1でも優れた特性が得られる。これに対
し、前述の実施例1〜9は比較例1と同等の放電特性が
得られており、複合膜を酸素が透過する速度が放電反応
で酸素が消費される速度に十分追従していることを示し
ている。しかしながら、比較例2の場合は複合膜の酸素
の供給速度が十分でなく、満足した放電特性が得られな
い。
In Table 2, the discharge end voltage is 0.9 V, and the weight change shows increase and decrease before and after the discharge test. Mainly, it is a numerical value that suggests the uptake of water during discharge or the amount of evaporation. is there. By comparing the characteristics of these batteries with Comparative Example 1 in which the composite film is not used, the effect of this example can be most simply explained. First, in a high-load test at 20 ° C and room temperature, the discharge period is short, and the effects of water uptake and evaporation and carbon dioxide gas are small, so the performance of the battery is that if the oxygen supply rate is sufficient, Permeation prevention does not need to be considered so much. Therefore, under such conditions, excellent characteristics can be obtained even in Comparative Example 1. On the other hand, in Examples 1 to 9 described above, discharge characteristics equivalent to those of Comparative Example 1 were obtained, and the rate at which oxygen permeated through the composite film sufficiently followed the rate at which oxygen was consumed in the discharge reaction. It is shown that. However, in the case of Comparative Example 2, the oxygen supply rate of the composite film is not sufficient, and satisfactory discharge characteristics cannot be obtained.

【0024】一方、低負荷放電の場合は放電期間が長
く、しかも外気が高湿度あるいは低湿度の場合には酸素
の供給速度よりも水分や炭酸ガス、特に水分の透過防止
が優れた電池特性を得るために重要となり、水分や炭酸
ガスの透過阻止機能をもたない比較例1の電池は水分の
枯渇、あるいは水分の過剰取り入れによる漏液による空
気孔の閉塞などにより、放電途中で電圧が低下し、高負
荷試験で得られた放電容量の一部分に相当する容量が得
られるに過ぎない。また、放電途中での漏液は実用面で
致命的な問題であることはいうまでもない。これに対
し、実施例1〜9はきわめて優れた性能を示し、これら
は高負荷試験の放電容量とほぼ等しい容量が得られてい
る。これらの傾向は試験雰囲気が高湿度、低湿度、いず
れの場合とも同様である。このことは、実施例の場合、
複合膜の水分の透過阻止効果が十分に発揮されているこ
とを示している。
On the other hand, in the case of low-load discharge, the discharge period is long, and when the outside air has a high humidity or a low humidity, the battery characteristics are excellent in preventing the permeation of water and carbon dioxide gas, especially water, than the oxygen supply rate. The battery of Comparative Example 1 which does not have the function of preventing the permeation of water and carbon dioxide is important for obtaining the voltage, and the voltage drops during discharge due to the depletion of water or the clogging of air holes due to liquid leakage due to excessive intake of water. However, only the capacity corresponding to a part of the discharge capacity obtained in the high load test can be obtained. Needless to say, liquid leakage during discharge is a fatal problem in practical use. On the other hand, Examples 1 to 9 show extremely excellent performances, and these have capacities almost equal to the discharge capacity in the high load test. These tendencies are the same whether the test atmosphere is high humidity or low humidity. This means that in the case of the embodiment,
It is shown that the moisture permeation inhibiting effect of the composite membrane is sufficiently exerted.

【0025】以上を総合して、多孔性高分子膜に溶剤に
可溶なふっ素樹脂と金属酸化物粉体との混合物を塗布し
た酸素透過性複合膜を用いた試作電池は、高負荷特性、
低負荷特性とも優れ、外部雰囲気の変化に対しても良好
であり、優れた電池を提供できることが結論できる。な
お、実施例では、複合膜を電池容器との間に空気拡散用
の多孔膜を介して設置したが、複合膜の機械的強度が十
分な場合は、前記空気拡散用の多孔膜を除いても電池特
性の差異はないことを確認している。さらに、複合膜を
酸素極との間に、酸素極を支持する撥水膜を介して設置
したが、酸素極の強度が十分であれば前記支持用撥水膜
は不要にでき、その場合にも電池特性は変わらないこと
を確認している。また、塩化アンモニウム、塩化亜鉛な
どの中性塩水溶液を電解液に用いた空気亜鉛電池に対し
ても、実施例で示したアルカリ性の電解液に用いた電池
と同様の効果があることも確認しており、実施例と同様
の理由で本発明の作用を説明できる。
Based on the above, the prototype battery using the oxygen permeable composite membrane in which the mixture of the solvent-soluble fluorine resin and the metal oxide powder is applied to the porous polymer membrane has a high load characteristic,
It can be concluded that an excellent battery can be provided because it has excellent low-load characteristics and is also good against changes in the external atmosphere. In the examples, the composite membrane was placed between the battery container and the porous membrane for air diffusion, but when the mechanical strength of the composite membrane was sufficient, the porous membrane for air diffusion was excluded. Has confirmed that there is no difference in battery characteristics. Further, the composite film was placed between the oxygen electrode and the water-repellent film supporting the oxygen electrode, but if the strength of the oxygen electrode is sufficient, the supporting water-repellent film can be omitted. Has confirmed that the battery characteristics do not change. In addition, it was confirmed that the same effect as the battery used in the alkaline electrolyte shown in the example was obtained for the air zinc battery using the neutral salt aqueous solution such as ammonium chloride and zinc chloride as the electrolyte. Therefore, the operation of the present invention can be explained for the same reason as in the embodiment.

【0026】[0026]

【発明の効果】以上の実施例の説明により明らかなよう
に本発明の酸素透過性複合膜およびその複合膜を用いた
電池によれば、多孔性高分子膜に溶剤に可溶なふっ素樹
脂と金属酸化物粉体との混合物を塗布することにより、
電池用としての酸素透過能と同時に、水蒸気を大気から
遮断する効果もともに有する優れた酸素透過性複合膜を
実現できるものである。また、中性もしくはアルカリ性
の水溶液を電解液とする電池の高負荷から低負荷にわた
る広い範囲で優れた実用性能と、優れた耐漏液性、長期
貯蔵性を具備させることができるという効果が得られ
る。
As is apparent from the above description of the embodiments, according to the oxygen-permeable composite membrane and the battery using the composite membrane of the present invention, the porous polymer membrane contains a fluorine-soluble resin soluble in a solvent. By applying the mixture with the metal oxide powder,
It is possible to realize an excellent oxygen-permeable composite membrane having not only the oxygen permeability for a battery but also the effect of blocking water vapor from the atmosphere. Further, it is possible to obtain an effect that excellent practical performance, excellent leakage resistance, and long-term storability can be provided in a wide range from high load to low load of a battery using a neutral or alkaline aqueous solution as an electrolytic solution. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の酸素透過性複合膜の検討に用
いたボタン形空気亜鉛電池の半截縦断面図
FIG. 1 is a vertical cross-sectional view of a button type zinc-air battery used for studying an oxygen-permeable composite membrane of an example of the present invention.

【図2】従来のボタン形空気亜鉛電池の半截縦断面図FIG. 2 is a vertical cross-sectional view of a conventional button-type zinc-air battery.

【符号の説明】 1 酸素極(ガス拡散電極) 2 撥水膜 3 空気取り入れ孔 4 多孔膜 10 電池容器 11 酸素透過性複合膜[Explanation of reference numerals] 1 oxygen electrode (gas diffusion electrode) 2 water repellent film 3 air intake hole 4 porous film 10 battery container 11 oxygen permeable composite film

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】多孔性高分子膜に、溶剤に可溶なふっ素樹
脂と金属酸化物粉体との混合物を塗布した酸素透過性複
合膜。
1. An oxygen-permeable composite membrane comprising a porous polymer membrane coated with a mixture of a solvent-soluble fluororesin and a metal oxide powder.
【請求項2】多孔性高分子膜がポリオレフィン、ふっ素
樹脂、ポリスルホンのいずれかを主成分とする請求項1
記載の酸素透過性複合膜。
2. The porous polymer film contains, as a main component, any one of polyolefin, fluororesin and polysulfone.
The oxygen-permeable composite membrane as described.
【請求項3】金属酸化物粉体が酸化アルミニウム(Al
23)、酸化チタン(TiO2)、酸化銀(AgO)、
タングステン酸リチウム(Li2WO4)、モリブデン酸
リチウム(Li2MoO4)のいずれかである請求項1記
載の酸素透過性複合膜。
3. A metal oxide powder is aluminum oxide (Al
2 O 3 ), titanium oxide (TiO 2 ), silver oxide (AgO),
The oxygen-permeable composite membrane according to claim 1, which is one of lithium tungstate (Li 2 WO 4 ) and lithium molybdate (Li 2 MoO 4 ).
【請求項4】酸素を活物質とするガス拡散電極と、外気
に通じる空気取り入れ孔を有する電池容器を備え、前記
ガス拡散電極の空気取り入れ側と前記電池容器の内面と
の間に、溶剤に可溶なふっ素樹脂と金属酸化物との混合
物を多孔性高分子膜に塗布した酸素透過性複合膜を介在
させた電池。
4. A gas diffusion electrode using oxygen as an active material, and a battery container having an air intake hole communicating with the outside air. A solvent is provided between the air intake side of the gas diffusion electrode and the inner surface of the battery container. A battery in which an oxygen permeable composite membrane in which a mixture of a soluble fluorine resin and a metal oxide is applied to a porous polymer membrane is interposed.
【請求項5】多孔性高分子膜がポリオレフィン、ふっ素
樹脂、ポリスルホンのいずれかを主成分とする請求項4
記載の電池。
5. The porous polymer film contains, as a main component, one of polyolefin, fluororesin and polysulfone.
Battery described.
【請求項6】金属酸化物粉体が酸化アルミニウム(Al
23)、酸化チタン(TiO2)、酸化銀(AgO)、
タングステン酸リチウム(Li2WO4)、モリブデン酸
リチウム(Li2MoO4)のいずれかである請求項4記
載の電池。
6. The metal oxide powder is aluminum oxide (Al
2 O 3 ), titanium oxide (TiO 2 ), silver oxide (AgO),
The battery according to claim 4, which is one of lithium tungstate (Li 2 WO 4 ) and lithium molybdate (Li 2 MoO 4 ).
【請求項7】酸素透過性複合膜の溶剤に可溶なふっ素樹
脂と金属酸化物との混合物を塗布した側が、空気取り入
れ孔を有する前記電池容器の内面に当接され、前記酸素
透過性複合膜の多孔性高分子側に、直接ガス拡散電極が
接している請求項4から6のいずれかに記載の電池。
7. The oxygen-permeable composite film is coated with a mixture of a solvent-soluble fluororesin and a metal oxide, and the side of the oxygen-permeable composite film is brought into contact with the inner surface of the battery container having an air intake hole. The battery according to any one of claims 4 to 6, wherein the gas diffusion electrode is in direct contact with the porous polymer side of the membrane.
【請求項8】酸素透過性複合膜の溶剤に可溶なふっ素樹
脂と金属酸化物との混合物を塗布した側が直接ガス拡散
電極に接し、前記酸素透過性複合膜の多孔性高分子膜側
が空気取り入れ孔を有する電池容器の内面に当接してい
る請求項4から6にいずれかに記載の電池。
8. A solvent-soluble fluorine resin-mixed mixture of a metal oxide and a side of the oxygen-permeable composite membrane are directly in contact with a gas diffusion electrode, and a porous polymer membrane side of the oxygen-permeable composite membrane is air. The battery according to any one of claims 4 to 6, which is in contact with an inner surface of a battery container having an intake hole.
JP1455592A 1992-01-30 1992-01-30 Oxygen permeable composite film and battery employing said composite film Pending JPH05205784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1455592A JPH05205784A (en) 1992-01-30 1992-01-30 Oxygen permeable composite film and battery employing said composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1455592A JPH05205784A (en) 1992-01-30 1992-01-30 Oxygen permeable composite film and battery employing said composite film

Publications (1)

Publication Number Publication Date
JPH05205784A true JPH05205784A (en) 1993-08-13

Family

ID=11864401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1455592A Pending JPH05205784A (en) 1992-01-30 1992-01-30 Oxygen permeable composite film and battery employing said composite film

Country Status (1)

Country Link
JP (1) JPH05205784A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132904A (en) * 1997-07-24 2000-10-17 Sanyo Electric Co., Ltd. Polyelectrolytic battery having a polyelectrolyte based on a polystyrene main chain and polyethylene oxide side chain
JP2004288572A (en) * 2003-03-25 2004-10-14 Toshiba Battery Co Ltd Metal air battery
JP2013033721A (en) * 2011-07-06 2013-02-14 Ngk Insulators Ltd Selective oxygen permeable substrate, positive electrode for air cell, air cell, and selective oxygen permeable film
KR20140078545A (en) * 2012-12-17 2014-06-25 쇼와 덴코 패키징 가부시키가이샤 Oxygen permeable membrane for air secondary battery, armouring material for air secondary battery and secondary battery
JP2022175824A (en) * 2021-05-14 2022-11-25 株式会社エクスプロア Metal air electrolytic solution, metal air battery, metal air power generating system, power self-sufficiency system using metal air power generating system, and power self-sufficiency type apparatus integration system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132904A (en) * 1997-07-24 2000-10-17 Sanyo Electric Co., Ltd. Polyelectrolytic battery having a polyelectrolyte based on a polystyrene main chain and polyethylene oxide side chain
JP2004288572A (en) * 2003-03-25 2004-10-14 Toshiba Battery Co Ltd Metal air battery
JP2013033721A (en) * 2011-07-06 2013-02-14 Ngk Insulators Ltd Selective oxygen permeable substrate, positive electrode for air cell, air cell, and selective oxygen permeable film
KR20140078545A (en) * 2012-12-17 2014-06-25 쇼와 덴코 패키징 가부시키가이샤 Oxygen permeable membrane for air secondary battery, armouring material for air secondary battery and secondary battery
JP2014120338A (en) * 2012-12-17 2014-06-30 Showa Denko Packaging Co Ltd Oxygen permeable membrane for air secondary battery, jacket material for air secondary battery, and air secondary battery
JP2022175824A (en) * 2021-05-14 2022-11-25 株式会社エクスプロア Metal air electrolytic solution, metal air battery, metal air power generating system, power self-sufficiency system using metal air power generating system, and power self-sufficiency type apparatus integration system

Similar Documents

Publication Publication Date Title
US4189526A (en) Metal/oxygen cells and method for optimizing the active life properties thereof
EP0054688B1 (en) Air electrode
JP4927071B2 (en) Air cell with improved leakage resistance
JPH05205784A (en) Oxygen permeable composite film and battery employing said composite film
JPH07105991A (en) Oxygen enriched film for battery
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JPH05205786A (en) Oxygen permeable compound membrane and battery using said compound membrane
JPH0417259A (en) Battery
JPH05205785A (en) Oxygen permeable composite film and battery employing said composite film
JP2782837B2 (en) Battery
JPH05200928A (en) Oxygen-permeable composite membrane and battery using the same
JP2817343B2 (en) Battery
JP2778078B2 (en) Battery
JPH04312771A (en) Air battery
JP2743574B2 (en) Battery
JP2757383B2 (en) Battery
JP2817341B2 (en) Battery
JP2822485B2 (en) Battery
JPS58218774A (en) Air cell
JPH0547421A (en) Oxygen permeable complex film and cell having the same
JPS6261275A (en) Air cell
JPH042067A (en) Battery
JP2782911B2 (en) Battery
JPH0475253A (en) Manufacture of battery
JP2734057B2 (en) Battery manufacturing method