JPH0419809A - Magnetoresistive head - Google Patents
Magnetoresistive headInfo
- Publication number
- JPH0419809A JPH0419809A JP12249790A JP12249790A JPH0419809A JP H0419809 A JPH0419809 A JP H0419809A JP 12249790 A JP12249790 A JP 12249790A JP 12249790 A JP12249790 A JP 12249790A JP H0419809 A JPH0419809 A JP H0419809A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic field
- recording medium
- annular
- magnetoresistive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 81
- 230000008878 coupling Effects 0.000 claims description 11
- 238000010168 coupling process Methods 0.000 claims description 11
- 238000005859 coupling reaction Methods 0.000 claims description 11
- 239000004020 conductor Substances 0.000 abstract description 17
- 230000005330 Barkhausen effect Effects 0.000 abstract description 8
- 230000005415 magnetization Effects 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 6
- 230000005292 diamagnetic effect Effects 0.000 abstract description 2
- 239000003302 ferromagnetic material Substances 0.000 abstract description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 abstract 1
- 230000007423 decrease Effects 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 19
- 239000010408 film Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 12
- 238000000605 extraction Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000005381 magnetic domain Effects 0.000 description 8
- 239000010409 thin film Substances 0.000 description 7
- 230000005294 ferromagnetic effect Effects 0.000 description 3
- 230000005290 antiferromagnetic effect Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005293 ferrimagnetic effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
磁気抵抗効果型ヘッドに関し、
磁気抵抗効果型ヘッドの再生波形に生しるバルクハウセ
ン雑音を防いだり、磁気抵抗効果素子の出力レベルの変
動を回避することを目的とし、磁気抵抗効果型ヘッドを
磁気ギャップを有さない円環状に形成されている磁気抵
抗効果素子によって構成する。[Detailed Description of the Invention] [Summary] Regarding a magnetoresistive head, the purpose is to prevent Barkhausen noise occurring in the reproduced waveform of the magnetoresistive head and to avoid fluctuations in the output level of the magnetoresistive element. The magnetoresistive head is constituted by a magnetoresistive element formed in an annular shape without a magnetic gap.
本発明は、磁気抵抗効果型ヘッド(以下、MRヘッドと
いう。)に関する。The present invention relates to a magnetoresistive head (hereinafter referred to as an MR head).
近年、コンピューターの外部記憶装置である磁気ディス
ク装置の大容量化に伴い、高性能磁気ヘッドが要求され
ている。この要求を満足するものとして記録媒体の速度
に依存せず高出力か得られるMRヘッドか注目されてい
る。In recent years, with the increase in the capacity of magnetic disk drives, which are external storage devices for computers, there has been a demand for high-performance magnetic heads. An MR head that can obtain high output regardless of the speed of the recording medium is attracting attention as one that satisfies this requirement.
MRヘッドは強磁性薄膜(MR膜)で構成された再生専
用の磁気ヘッドてあり、パーマロイ等によって形成され
る強磁性薄膜の電気抵抗か外部磁界によって変化すると
いう磁気抵抗効果を利用して信号磁界の変化を電気抵抗
の変化として検出するものである。そして、上記強磁性
薄膜によって構成される素子は磁気抵抗効果素子(以下
、MR素子という。)といわれている。The MR head is a read-only magnetic head made of a ferromagnetic thin film (MR film), and uses the magnetoresistance effect, which changes depending on the electrical resistance of the ferromagnetic thin film made of permalloy or the like or an external magnetic field, to generate a signal magnetic field. This method detects changes in electrical resistance as changes in electrical resistance. The element constituted by the ferromagnetic thin film is called a magnetoresistive element (hereinafter referred to as an MR element).
従来のMRヘッドは、第6図(a)、(b)に示すよう
な構造となっていた。61は矩形のMR素子、62は引
き出し導体層、63a、63bは磁気シールドである。A conventional MR head has a structure as shown in FIGS. 6(a) and 6(b). 61 is a rectangular MR element, 62 is an extraction conductor layer, and 63a and 63b are magnetic shields.
MR素子61は、その長手方向(y軸方向)I:MR膜
の容易軸方向か一致するようにパターン形成されている
。ここて、容易軸とは磁化容易軸ともいわれ、MR膜か
磁化されやすい方向である。引き出し導体層62は、M
R素子61の長手方向に対して所定幅で切除されてMR
素子610両端で素子に接合している。MR素子61及
び引き出し導体層62は、2つの磁気ノールドロ3a、
63bの間(再生ギャップに相当する。)に配置され、
非磁性絶縁層64を介して磁気シールド63a、63b
と電気的に絶縁されている。センス電流65は引き出し
導体層62を通して素子に流れ、MR素子61及び引き
出し導体層62によって画定される長方形の信号検出領
域66に流れる。そして、磁気記録媒体67はヘッドの
下をX軸方向に移動し、MRヘッドは、媒体からの信号
磁界を該信号検出領域66で抵抗変化として検知する。The MR element 61 is patterned so that its longitudinal direction (y-axis direction) I: coincides with the easy axis direction of the MR film. Here, the easy axis is also called the easy axis of magnetization, and is the direction in which the MR film is easily magnetized. The lead-out conductor layer 62 is M
The R element 61 is cut with a predetermined width in the longitudinal direction and the MR
Both ends of the element 610 are connected to the element. The MR element 61 and the lead-out conductor layer 62 are composed of two magnetic nodes 3a,
63b (corresponding to the reproduction gap),
Magnetic shields 63a, 63b via nonmagnetic insulating layer 64
electrically insulated. A sense current 65 flows through the element through the extraction conductor layer 62 and into a rectangular signal detection area 66 defined by the MR element 61 and the extraction conductor layer 62. Then, the magnetic recording medium 67 moves under the head in the X-axis direction, and the MR head detects the signal magnetic field from the medium as a resistance change in the signal detection area 66.
またこの場合、センス電流65は、信号磁界に対してM
Rヘッドの再生を線型化するためにも利用されていた。Further, in this case, the sense current 65 is M
It was also used to linearize the reproduction of the R head.
即ち、MR素子61は、一方の磁気シールド63aに近
接させて配置され、センス電流65によって磁化した磁
気シールド63a表面からの漏洩磁界によって素子高さ
方向にバイアス磁界か印加されていた(このバイアス方
式をセルフバイアス法という。)〔発明が解決しようと
する課題〕
■従来のMR素子61の形状ては、容易軸(y軸方向)
の磁化方向に対してMR素子61か有限長であるため素
子端部に磁極(N、S極)か生し、素子内部には磁化方
向とは反対向きの磁界(反磁界)か発生していた。この
ためMR素子61は、反磁界によって誘起された静磁エ
ネルギーを下げるために、第6図(C)に示すようない
くつかの磁区に分割した磁区構造を示し、磁区の境界に
は磁壁か生じていた。That is, the MR element 61 is placed close to one magnetic shield 63a, and a bias magnetic field is applied in the element height direction by a leakage magnetic field from the surface of the magnetic shield 63a magnetized by the sense current 65 (this bias method (This is called the self-bias method.) [Problems to be solved by the invention] ■The shape of the conventional MR element 61 is easy axis (y-axis direction)
Since the MR element 61 has a finite length with respect to the magnetization direction, magnetic poles (N and S poles) are generated at the ends of the element, and a magnetic field (diamagnetic field) in the opposite direction to the magnetization direction is generated inside the element. Ta. For this reason, the MR element 61 has a magnetic domain structure divided into several magnetic domains as shown in FIG. was occurring.
一方、一般にはMR膜においては、成膜の不完全さから
結晶粒界、格子欠陥、不純物介在等の不均一性かある。On the other hand, in general, MR films have non-uniformities such as crystal grain boundaries, lattice defects, impurity inclusions, etc. due to incomplete film formation.
このため従来のMRヘッドでは、記録媒体からの信号磁
界に対して磁壁は引っ掛かりなから移動し、磁化回転か
不連続となって再生波形にはバルクハウセン雑音か生し
たり、MR素子の出力レベルか変動するという課題かあ
った。For this reason, in conventional MR heads, the domain wall moves from being caught in the signal magnetic field from the recording medium, causing magnetization rotation to become discontinuous, producing Barkhausen noise in the reproduced waveform, and causing the output level of the MR element to change. There was an issue with fluctuations.
■また、従来のMR素子61は信号検出領域66かそれ
以外の部分と一体になっているために、隣接記録トラッ
クからのサイト・クロストークを受は易いという課題か
あった。即ち、磁気記録媒体は容易軸方向に磁化されて
いるか、被記録検出トラックに隣接するトラックの磁界
か記録検出部に影響しMRヘッドに雑音か生し、再生処
理の性能を悪くするという課題もあった。(2) Furthermore, since the conventional MR element 61 is integrated with the signal detection area 66 or other parts, there is a problem that it is easily susceptible to site crosstalk from adjacent recording tracks. That is, the magnetic recording medium may be magnetized in the easy axis direction, or the magnetic field of a track adjacent to the track to be recorded and detected may affect the recording detection section, producing noise in the MR head and deteriorating the performance of reproduction processing. there were.
■更に、MR素子の表面に不均一な加工部分かあれば、
局部的に微少の磁壁か生し前記バルクハウセン雑音や8
カレベルの変動か生しるという課題もあった。■Furthermore, if there are unevenly processed parts on the surface of the MR element,
The Barkhausen noise and 8.
There was also the issue of fluctuations in power level.
上記課題のうち■の課題を解決するために、本発明では
、MRヘッドにおけるMR素子を円環状とした。In order to solve the problem (2) among the above problems, in the present invention, the MR element in the MR head is formed into an annular shape.
また、■の課題を解決するために、本発明では、円環形
状としたMR素子を磁気記録媒体から離し、該MR素子
のうち記録媒体から信号検出する部分(以下、記録検出
部という。)だけを記録媒体まで延長した。Furthermore, in order to solve the problem (2), in the present invention, an annular MR element is separated from the magnetic recording medium, and a part of the MR element that detects a signal from the recording medium (hereinafter referred to as a recording detection section) Only this was extended to recording media.
更に、■の課題を解決するために、本発明では、円環形
状としたMR素子に交換結合磁界、電流磁界等の磁界を
円周方向たる磁化容易軸方向に印加した。Furthermore, in order to solve the problem (2), in the present invention, a magnetic field such as an exchange coupling magnetic field or a current magnetic field is applied to the annular MR element in the direction of the easy magnetization axis, which is the circumferential direction.
MR素子か円環状であるため磁極か生じず反磁界は発生
しない。このため、静磁エネルギーは零となって、素子
は磁壁か発生しない単一磁区構造となる。Since the MR element is annular, no magnetic poles are generated and no demagnetizing field is generated. Therefore, the magnetostatic energy becomes zero, and the element has a single magnetic domain structure in which no domain walls are generated.
また、MR素子を磁気記録媒体から離せは、サイド・ク
ロストークに強くなる。Furthermore, separating the MR element from the magnetic recording medium increases resistance to side crosstalk.
更に、MR素子を容易軸方向に印加すれは、磁区は安定
化される。Furthermore, when the MR element is applied in the easy axis direction, the magnetic domains are stabilized.
次に本発明の一実施例について図面と共に説明する。第
1図に本発明の一実施例の説明するための図として(a
)〜(c)を示す。Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining one embodiment of the present invention (a
) to (c) are shown.
第1図(a)は本発明のMRヘッドの要部断面図である
。MRヘッドは同図に示すように、2つの磁気シールド
13a・13bの間に、非磁性絶縁層14を介して引き
出し導体層12の内部にMR素子11が配置される構造
となる。FIG. 1(a) is a sectional view of a main part of the MR head of the present invention. As shown in the figure, the MR head has a structure in which an MR element 11 is placed inside an extraction conductor layer 12 with a nonmagnetic insulating layer 14 interposed between two magnetic shields 13a and 13b.
MR素子11は、例えばN、F。膜等の強磁性体から成
り、厚さtlは400〜500人の薄膜構造て、幅t2
は3μm1外径t3は50〜100μm程度に設定され
ている。ここに、MR素子11の形状は第1図(b)に
示すように円環状になっている。そして、所定幅で切除
され、幅t、を有する引き出し導体層12と第1図(C
)に示すように円環の信号検出領域16の両端で接続し
ている。The MR element 11 is, for example, N or F. It is made of a ferromagnetic material such as a film, and has a thickness tl of 400 to 500 people, and a width t2.
is set to 3 μm, and the outer diameter t3 is set to about 50 to 100 μm. Here, the shape of the MR element 11 is annular as shown in FIG. 1(b). Then, the lead-out conductor layer 12 is cut out with a predetermined width and has a width t, and the lead-out conductor layer 12 shown in FIG.
), they are connected at both ends of the annular signal detection area 16.
かかるMR素子の形状異方性からMR素子の容易軸は円
環の円周方向に一致する。即ち、容易軸の方向は形状に
よって異なり、容易軸方向は長さの長い方向、二の場合
は無限長の円周方向と一致するということである。ここ
で、MR素子11か円環状で、磁化方向に対してその長
さか有限長に形成されていないため素子内部には磁極は
発生せず、反磁界は生じない。従って、静磁エネルギー
か零となって素子は磁壁か発生しない単一磁区構造とな
る。Due to the shape anisotropy of the MR element, the easy axis of the MR element coincides with the circumferential direction of the ring. That is, the direction of the easy axis varies depending on the shape, and the easy axis direction coincides with the long direction, and in the second case, the direction of the circumference of infinite length. Here, since the MR element 11 has an annular shape and is not formed to have a finite length with respect to the magnetization direction, no magnetic pole is generated inside the element, and no demagnetizing field is generated. Therefore, the magnetostatic energy becomes zero, and the element has a single magnetic domain structure with no domain walls.
引き出し導体層12はA。膜等からなる。本実施例では
、第1図(C)のように、MR素子11の輻t2とほぼ
同一の幅t、を有し、直角り型に形成されているか、か
かる形状に限定されることはない。信号検出領域16に
センス電流15か流れれば十分だからである。信号検出
領域の輻t4は、2〜3μm程度である。The lead conductor layer 12 is A. It consists of a membrane, etc. In this embodiment, as shown in FIG. 1(C), the MR element 11 has a width t that is almost the same as the radius t2, and is formed in a right-angled shape, but is not limited to such a shape. . This is because it is sufficient if only the sense current 15 flows through the signal detection region 16. The convergence t4 of the signal detection area is about 2 to 3 μm.
磁気シールド13a、13bはN、F、あるいはフェラ
イト材等からできている。これらは、記録媒体17から
の信号磁界に対し、MR素子11の再生分解能を高める
働きをするものである。The magnetic shields 13a and 13b are made of N, F, ferrite, or the like. These serve to enhance the reproduction resolution of the MR element 11 with respect to the signal magnetic field from the recording medium 17.
MR素子11及び引き出し導体層12は2つの磁気シー
ルド13a、+3bの間に配置され、両者はS、O2膜
あるいはΔ1203膜の非磁性絶縁層14を介して磁気
シールドと電気的に絶縁される構成となっている。MR
素子11は非磁性絶縁層14の内部に配置されている。The MR element 11 and the extraction conductor layer 12 are arranged between two magnetic shields 13a and +3b, and both are electrically insulated from the magnetic shield via a nonmagnetic insulating layer 14 of S, O2 film or Δ1203 film. It becomes. M.R.
Element 11 is arranged inside nonmagnetic insulating layer 14 .
外部磁界あるいは外部電流の影響を受けないようにする
ためである。This is to avoid being influenced by external magnetic fields or external currents.
センス電流15は、引き出し導体層12を通してMR素
子11の信号検出領域16に流れる。そして、前述のセ
ルフバイアス方式によりMRか線型動作することによっ
て、MRヘッドは、直下を移動する磁気記録媒体17か
らの信号磁界を検知する。二の際、前述した発明原理に
従いMR素子11は単一磁区構造となってバルクハウセ
ン雑音は発生しない。また、MR素子の出力レベルの変
動を回避できる。The sense current 15 flows into the signal detection region 16 of the MR element 11 through the extraction conductor layer 12. Then, the MR head detects a signal magnetic field from the magnetic recording medium 17 moving directly below by linearly operating the MR using the above-described self-bias method. In the second case, the MR element 11 has a single magnetic domain structure according to the above-described inventive principle, and no Barkhausen noise is generated. Furthermore, fluctuations in the output level of the MR element can be avoided.
第3図は本発明の第2の実施例であり、MRへラドの平
面図である。同図中、MR素子31、引き出し導体層3
2は、第1図と同じ構成であり、また、図示しない磁気
シールドも第1図と同じ構成である。FIG. 3 shows a second embodiment of the present invention, and is a plan view of an MR herad. In the figure, an MR element 31, an extraction conductor layer 3
2 has the same configuration as in FIG. 1, and a magnetic shield (not shown) also has the same configuration as in FIG.
第3図に示す実施例ては、MR素子31を磁気記録媒体
33から離し、信号検出部34aを磁気記録媒体33ま
て延長させて配置する構成としている。本実施例ではM
R素子31か磁気記録媒体33から離れているため、第
1図の実施例に比へて隣接記録トラックからのサイド・
クロストークに強いとい−う特徴がある。具体的には第
】図と同じ寸法であれば、1μm程度である。即ち、円
環としての形状が保たれる範囲でなければならない。In the embodiment shown in FIG. 3, the MR element 31 is separated from the magnetic recording medium 33, and the signal detecting section 34a is arranged to extend from the magnetic recording medium 33. In this example, M
Since the R element 31 is located further away from the magnetic recording medium 33, compared to the embodiment shown in FIG.
It has the characteristic of being resistant to crosstalk. Specifically, if the dimensions are the same as those shown in Figure 1, it is about 1 μm. That is, it must be within a range where the circular ring shape can be maintained.
磁壁の発生を防ぐためである。なお、MR素子の形状に
かかわらず、MR素子を磁気記録媒体から離し、記録検
出部だけを磁気記録媒体まで延長する方法は、サイド・
ストロークに強いという特徴を有する。This is to prevent the generation of domain walls. Regardless of the shape of the MR element, the method of separating the MR element from the magnetic recording medium and extending only the recording detection section to the magnetic recording medium is the side
It has the characteristic of being resistant to strokes.
第4図(a)に示す本発明の第3の実施例は、MR素子
41の円周方向に交換結合磁界を発生させる膜42を積
層するというものである。交換結合磁界は局部的に発生
した磁界を容易軸方向へ向けようとするための磁界であ
る。交換結合磁界を発生させる膜としては、反強磁性膜
(F、M、 )あるいはフェリ磁性膜(T、C,) 、
高抗磁性膜(N、F、C0’)が適当であり、これらの
膜は蒸着法あるいはスパッタ法にて形成される。これら
のうち、交換結合磁界の強さか最も強いものはフ工り磁
性膜であり、次いて反強磁性膜、高抗磁性膜となるが、
どれを用いても本発明の目的は達成できる。In a third embodiment of the present invention shown in FIG. 4(a), a film 42 for generating an exchange coupling magnetic field is laminated in the circumferential direction of an MR element 41. The exchange coupling magnetic field is a magnetic field that attempts to direct a locally generated magnetic field in the easy axis direction. Films that generate exchange coupling magnetic fields include antiferromagnetic films (F, M, ) or ferrimagnetic films (T, C,),
High antimagnetic films (N, F, C0') are suitable, and these films are formed by vapor deposition or sputtering. Among these, the one with the strongest exchange coupling magnetic field is the textured magnetic film, followed by the antiferromagnetic film and the high antimagnetic film.
The purpose of the present invention can be achieved no matter which one is used.
第4図(b)は、同図(a)における積層箇所の右断面
図である。積層は同図(b)に示すようf:MR素子4
】の片面にのみ積層していれば十分てあり、MR素子4
1の表面全体を覆うよりも交換結合磁界の発生に適して
いる。積層箇所は同図(a)において縦幅t6はMR素
子41の輻t2よりも大きければよく、横幅t7は、信
号検出領域36に及はなければ特に制限はない。信号検
出領域36に及ぶと信号検出に影響するからである。FIG. 4(b) is a right sectional view of the laminated portion in FIG. 4(a). The lamination is as shown in the same figure (b): f: MR element 4
] It is sufficient if it is laminated only on one side of the MR element 4.
This is more suitable for generating an exchange coupling magnetic field than covering the entire surface of the magnetic field. In the laminated portion, the vertical width t6 of the laminated portion in FIG. 4A is only required to be larger than the radius t2 of the MR element 41, and the horizontal width t7 is not particularly limited as long as it does not extend to the signal detection area 36. This is because if it reaches the signal detection area 36, it will affect signal detection.
また、交換結合磁界を発生させる膜42はMR素子41
の曲率に合わせて積層される必要はない。Further, the film 42 that generates the exchange coupling magnetic field is the MR element 41.
It is not necessary to stack the layers according to the curvature of.
MR素子と接合さえすれば、交換結合磁界か発生するか
らである。This is because an exchange coupling magnetic field is generated as long as it is connected to the MR element.
第5図は、MR素子に蒸着あるいはスパッタ法にて形成
された薄膜コイル53を巻いてMR素子51i:電流磁
界を印加するという本発明の第4の実施例である。ここ
で、薄膜コイル53はMR素子51に数ターン巻かれれ
ば十分である。また、薄膜コイル53にはセンス電流5
4とほぼ同等な電流(例えば、10mA程度)かかけら
れる。第4図及び第5図に示す実施例では、磁界がMR
素子の容易軸(円周方向)に印加され、第1図及び第3
図に示す実施例に比へて更に磁区を安定化てきる。これ
らは、MR素子の表面加工か不均一て磁壁か生しても、
バルクハウセン雑音を抑制できる効果かある。なお、こ
れらの例では、MRヘッド再生の線型化方式にはセルフ
バイアス法を用いているか、本発明は、線型化のバイア
ス手段について特に制限しない。バイアス方式としては
、他のシャントバイアス法あるいは永久磁石バイアス法
、電流バイアス法、バーバーポールバイアス法等のいず
れてあっても良い。また、本実施例では第4図と第5図
において容易軸方向に印加する磁界を交換結合磁界と電
流磁界としたか、加える磁界はこれらに限定されない。FIG. 5 shows a fourth embodiment of the present invention in which a thin film coil 53 formed by vapor deposition or sputtering is wound around the MR element to apply a current magnetic field to the MR element 51i. Here, it is sufficient that the thin film coil 53 is wound around the MR element 51 several turns. Further, the thin film coil 53 has a sense current 5
4 (for example, about 10 mA) is applied. In the embodiment shown in FIGS. 4 and 5, the magnetic field is MR
The voltage is applied to the easy axis (circumferential direction) of the element, and
The magnetic domain can be further stabilized compared to the embodiment shown in the figure. These may be due to the uneven surface processing of the MR element, resulting in domain walls.
It has the effect of suppressing Barkhausen noise. Note that in these examples, the self-bias method is used as the linearization method for MR head reproduction, and the present invention does not particularly limit the bias means for linearization. The bias method may be any other shunt bias method, permanent magnet bias method, current bias method, barber pole bias method, etc. Further, in this embodiment, the magnetic fields applied in the easy axis direction in FIGS. 4 and 5 are an exchange coupling magnetic field and a current magnetic field, but the applied magnetic fields are not limited to these.
例えは、永久磁石を用いて印加することも可能である。For example, it is also possible to apply using a permanent magnet.
以上説明したように、本発明によれは以下の効果を生し
る。即ち、
■MR素子の形状を磁気ギャップを育さない円管状に形
成されることによって再生波形のバルクハウゼン雑音の
発生を抑えるとともに、MR素子の出力レベルの変動を
防止する。As explained above, the present invention produces the following effects. That is, (1) By forming the MR element into a circular tube shape that does not create a magnetic gap, the occurrence of Barkhausen noise in the reproduced waveform is suppressed, and fluctuations in the output level of the MR element are prevented.
■MR素子を磁気記録媒体から離し、信号検出部を磁気
記録媒体まで延長することによって、被検出トラックに
隣接するトラックからのサイド・タロストークを防ぎ、
雑音を抑える。■ By separating the MR element from the magnetic recording medium and extending the signal detection section to the magnetic recording medium, side tarostalk from tracks adjacent to the detected track is prevented.
Reduce noise.
■MR素子の容易軸方向たる円周方向に磁界を印加する
ことによって、表面加工か不均一であっても、局部的に
発生する磁壁によるバルクハウゼン雑音を抑制できる。(2) By applying a magnetic field in the circumferential direction, which is the easy axis direction of the MR element, Barkhausen noise due to locally generated domain walls can be suppressed even if the surface treatment is uneven.
第1図(a)は本発明の第一実施例によるMRヘッドの
要部断面図、
第1図(b)は本発明の第一実施例によるMR素子の平
面図、
第1図(C)は本発明の第一実施例によるMRヘッドの
要部斜視図、
第2図はMR素子が閉ループ構造の場合に信号検出領域
に流れる電流を説明する図、
第3図は本発明の第二実施例を説明する図、第4図(a
)は本発明の第三実施例を説明する図、
第4図(b)は第4図(a)の積層箇所における右断面
図、
第5図は本発明の第4実施例を説明する図、第6図(a
)は従来のMRヘッドを示す要部断面図、
第6図(b)は従来のMRヘッ
祖国、
第6図(c)は従来のMRヘツ
素子磁区構造である。
ドを示す要部斜
ドにおけるMR
図において、
1はMR素子、
2は引き出し導体層、
3aは磁気シールド、
3bは磁気シールド、
4は非磁性絶縁層、
5はセンス電流、
6は信号検出領域、
6aは信号検出部、
7は磁気記録媒体、
7aは磁気記録媒体の接合面
1はMR素子、
2は引き出し導体層、
3は磁気記録媒体、
33aは磁気記録媒体の接合面、
34は信号検出領域、
34aは信号検出部、
41はMR素子、
42は交換結合磁界を発生させる膜、
43は引き出し導体層、
51はMR素子、
52は引き出し導体層、
53は薄膜コイル、
54はセンス電流
を示す。FIG. 1(a) is a sectional view of essential parts of an MR head according to a first embodiment of the present invention, FIG. 1(b) is a plan view of an MR element according to a first embodiment of the present invention, FIG. 1(C) 1 is a perspective view of essential parts of an MR head according to the first embodiment of the present invention, FIG. 2 is a diagram illustrating the current flowing in the signal detection region when the MR element has a closed loop structure, and FIG. 3 is a diagram illustrating a second embodiment of the present invention. A diagram explaining an example, Figure 4 (a
) is a diagram illustrating the third embodiment of the present invention, FIG. 4(b) is a right sectional view of the laminated portion in FIG. 4(a), and FIG. 5 is a diagram illustrating the fourth embodiment of the present invention. , Figure 6 (a
) is a sectional view of a main part of a conventional MR head, FIG. 6(b) is a diagram of a conventional MR head, and FIG. 6(c) is a diagram of a conventional MR head element magnetic domain structure. In the MR diagram in the oblique view of the main parts showing the code, 1 is the MR element, 2 is the extraction conductor layer, 3a is the magnetic shield, 3b is the magnetic shield, 4 is the nonmagnetic insulating layer, 5 is the sense current, 6 is the signal detection area , 6a is a signal detection unit, 7 is a magnetic recording medium, 7a is a bonding surface 1 of the magnetic recording medium is an MR element, 2 is an extraction conductor layer, 3 is a magnetic recording medium, 33a is a bonding surface of the magnetic recording medium, 34 is a signal Detection region, 34a is a signal detection section, 41 is an MR element, 42 is a film that generates an exchange coupling magnetic field, 43 is an extraction conductor layer, 51 is an MR element, 52 is an extraction conductor layer, 53 is a thin film coil, 54 is a sense current shows.
Claims (5)
の変化として検出する磁気抵抗効果型ヘッドおいて、該
磁気抵抗効果素子(11)を、磁気ギャップを有さない
円環状に形成したことを特徴とする磁気抵抗効果型ヘッ
ド。(1) In a magnetoresistive head that detects changes in the magnetic field as changes in the resistance value of a magnetoresistive element (11), the magnetoresistive element (11) is formed in an annular shape with no magnetic gap. A magnetoresistive head characterized by:
該磁気抵抗効果素子(31)を磁気記録媒体(33)か
ら離し、該磁気抵抗効果素子のうち磁気記録媒体(33
)から信号検出する部分(34a)だけを磁気記録媒体
(33)まで延長したことを特徴とする磁気抵抗効果型
ヘッド。(2) In the magnetoresistive head according to claim 1,
The magnetoresistive element (31) is separated from the magnetic recording medium (33), and the magnetic recording medium (33) of the magnetoresistive element is separated from the magnetic recording medium (33).
) A magnetoresistive head characterized in that only a signal detecting portion (34a) extends to a magnetic recording medium (33).
ドにおいて、該磁気抵抗効果素子(41)の円周方向に
交換結合磁界を印加するための部材(42)を有するこ
とを特徴とする磁気抵抗効果型ヘッド。(3) The magnetoresistive head according to claim 1 or 2, further comprising a member (42) for applying an exchange coupling magnetic field in the circumferential direction of the magnetoresistive element (41). Magnetoresistive head.
ドにおいて、該磁気抵抗効果素子(51)の円周方向に
電流磁界を印加するための部材(53)を有することを
特徴とする磁気抵抗効果型ヘッド。(4) The magnetoresistive head according to claim 1 or 2, further comprising a member (53) for applying a current magnetic field in the circumferential direction of the magnetoresistive element (51). Magnetoresistive head.
ドにおいて、該磁気抵抗効果素子の円周方向に磁界を印
加することを特徴とする磁気抵抗効果型ヘッド。(5) The magnetoresistive head according to claim 1 or 2, wherein a magnetic field is applied in the circumferential direction of the magnetoresistive element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12249790A JPH0419809A (en) | 1990-05-11 | 1990-05-11 | Magnetoresistive head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12249790A JPH0419809A (en) | 1990-05-11 | 1990-05-11 | Magnetoresistive head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0419809A true JPH0419809A (en) | 1992-01-23 |
Family
ID=14837310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12249790A Pending JPH0419809A (en) | 1990-05-11 | 1990-05-11 | Magnetoresistive head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0419809A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0675371A2 (en) * | 1994-03-31 | 1995-10-04 | Yamaha Corporation | Magnetic head having magnetoresistive sensor |
JPH08297814A (en) * | 1995-04-28 | 1996-11-12 | Nec Corp | Magneto-resistance effect element |
US6529352B1 (en) | 1996-05-13 | 2003-03-04 | Nec Corporation | Magnetoresistive sensing element and magnetic head using the magnetoresistive sensing element |
-
1990
- 1990-05-11 JP JP12249790A patent/JPH0419809A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0675371A2 (en) * | 1994-03-31 | 1995-10-04 | Yamaha Corporation | Magnetic head having magnetoresistive sensor |
EP0675371A3 (en) * | 1994-03-31 | 1995-12-27 | Yamaha Corp | Magnetic head having magnetoresistive sensor. |
JPH08297814A (en) * | 1995-04-28 | 1996-11-12 | Nec Corp | Magneto-resistance effect element |
US6529352B1 (en) | 1996-05-13 | 2003-03-04 | Nec Corporation | Magnetoresistive sensing element and magnetic head using the magnetoresistive sensing element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5705926A (en) | Magnetic sensor and magnetic field sensing method of using same based on impedance changes of a high frequency supplied conductor | |
JPH08153310A (en) | Magnetoresistance effect type thin film magnetic head | |
JP3294742B2 (en) | Magnetoresistive head | |
JPH0419809A (en) | Magnetoresistive head | |
JPH05205223A (en) | Thin-film magnetic head | |
JP2878738B2 (en) | Recording / reproducing thin film magnetic head | |
JPH0426907A (en) | Magnetoresistive head | |
JP3280057B2 (en) | Thin film magnetic head | |
JPH0498608A (en) | Magnetic head | |
JPH02130711A (en) | Magneto-resistance effect element and magnetic head using thereof | |
JP3082003B2 (en) | Method of manufacturing magnetoresistive head | |
JPH05266439A (en) | Thin film magnetic head | |
JPH0426908A (en) | Magneto-resistance effect type head | |
JPH0419810A (en) | Magneto-resistance effect type head | |
JPS6154012A (en) | Magneto-resistance effect head | |
JPH0495205A (en) | Magnetoresistive head | |
JPS581748B2 (en) | Jikikenshiyutsuki | |
JPH0426909A (en) | Magneto-resistance effect type head | |
JPS58222422A (en) | Filmy magnetic head | |
JPS58179928A (en) | Thin film magnetic head | |
JPS58179927A (en) | Thin film magnetic head | |
JPH07282423A (en) | Magneto-resistance effect type magnetic head | |
JPH07235020A (en) | Magnetic head and magnetic recording and reproducing device using this head | |
JP2000285423A (en) | Thin film magnetic head | |
JPH0330109A (en) | Magnetoresistive playback head |