JPH04180633A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH04180633A JPH04180633A JP2309500A JP30950090A JPH04180633A JP H04180633 A JPH04180633 A JP H04180633A JP 2309500 A JP2309500 A JP 2309500A JP 30950090 A JP30950090 A JP 30950090A JP H04180633 A JPH04180633 A JP H04180633A
- Authority
- JP
- Japan
- Prior art keywords
- polysilicon
- semiconductor substrate
- gate electrode
- diffusion layer
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/517—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers
- H10D64/518—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers characterised by their lengths or sectional shapes
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、半導体装置の製造方法に関し、特に、LD
D (Ligytly Doped Drain)構造
のMOS(Metal 0xide Sem1cond
uctor) )ランジスタであって、ゲート電極と拡
散層とかオーバラップした所謂ゲートオーバラップLD
D)ランジスタの製造方法、及び、ゲートオーバラップ
LDD)ランジスタの製造方法に適したT字型金属層の
形成方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and in particular, to a method for manufacturing a semiconductor device.
MOS (Metal Oxide Sem1cond) with D (Lightly Doped Drain) structure
) A so-called gate overlap LD, which is a transistor in which the gate electrode and the diffusion layer overlap.
D) A method of manufacturing a transistor, and a method of forming a T-shaped metal layer suitable for the method of manufacturing a gate-overlap LDD transistor.
ゲートオーバラップLDD)ランジスタの従来の製造方
法としては、例えば、1990年7月発行「第34回半
導体専門講習会予稿集jの第12頁に記載されたものか
ある。A conventional method for manufacturing gate-overlap LDD (LDD) transistors is described, for example, on page 12 of ``34th Semiconductor Technical Seminar Proceedings J,'' published in July 1990.
これは、斜め回転イオン注入を用いたゲートオーバラッ
プLDD )ランジスタの製造方法であって、低濃度拡
散層を形成する際にイオンを斜めから打ち込むことによ
り、既に形成されたゲート電極の下側にも拡散層を入り
込ませて、ゲート電極と拡散層とをオーバラップさせる
ものである。This is a method for manufacturing gate-overlap LDD (LDD) transistors using oblique rotational ion implantation, in which ions are implanted obliquely when forming a low-concentration diffusion layer, thereby implanting ions into the lower side of an already formed gate electrode. In this method, a diffusion layer is also inserted to overlap the gate electrode and the diffusion layer.
また、半導体基板上に逆T字型のゲート電極を形成し、
これをマスクとしてイオン注入を行ってゲートオーバラ
ップLDDトランジスタを製造する方法もある。In addition, an inverted T-shaped gate electrode is formed on the semiconductor substrate,
There is also a method of manufacturing a gate overlap LDD transistor by performing ion implantation using this as a mask.
しかしなから、斜め回転イオン注入を用いた従来の製造
方法では、拡散層の不純物濃度や、深さ方向及び幅方向
の寸法を任意にコントロールすることができず、また、
ゲート電極の膜厚や材質による制限が大きく、トランジ
スタの設計の自由度か小さいという欠点かある。特に、
ゲート電極の膜厚が薄いと、チャネルとなる部分にもイ
オンか注入されてしまうという不具合か生じるため、ゲ
ート電極の膜厚か一定値以上なければならず、トランジ
スタの微細化の妨げとなっていた。However, with the conventional manufacturing method using oblique rotational ion implantation, it is not possible to arbitrarily control the impurity concentration of the diffusion layer and the dimensions in the depth and width directions.
The drawback is that there are significant restrictions depending on the film thickness and material of the gate electrode, and there is little freedom in designing the transistor. especially,
If the gate electrode is thin, ions may be implanted into the part that will become the channel, which can cause problems, so the gate electrode must be thicker than a certain value, which hinders the miniaturization of transistors. Ta.
また、逆T字型のゲート電極を利用した製造方法では、
特に、ケート長を正確に制御することが困難であり、微
細化に対しても限界かあった。In addition, in the manufacturing method using an inverted T-shaped gate electrode,
In particular, it is difficult to accurately control the cell length, and there are limits to miniaturization.
この発明は、このような従来の技術か有する未解決の課
題に着目してなされたものであり、コストの大幅な上昇
を招くことなく、且つ、装置の微細化も容易なゲートオ
ーバラップLDD)ランジスタの製造方法、及び、ゲー
トオーバラップLDDトランジスタの製造に適したT字
型金属層の形成方法を提供することを目的とする。This invention was made by paying attention to the unresolved problems of the conventional technology, and has developed a gate-overlap LDD that does not cause a significant increase in cost and can easily be miniaturized. It is an object of the present invention to provide a method for manufacturing a transistor and a method for forming a T-shaped metal layer suitable for manufacturing a gate-overlap LDD transistor.
上記目的を達成するために、請求項(1)記載の半導体
装置の製造方法は、薄い絶縁膜が積層された半導体基板
上に下層側かポリシリコンからなり且つ上層側が高融点
金属又はそのシリサイドからなるゲート電極を形成する
工程と、前記ゲート電極が形成された前記半導体基板を
アルカリ性の有機溶液でエツチングする工程と、前記エ
ッチングが行われた半導体基板に斜め方向からイオン注
入を行って低濃度拡散層を形成する工程と、前記低濃度
拡散層か形成された前記半導体基板の上面にポリシリコ
ンを積層してこれをエッチバックする工程と、前記エッ
チバックが行われた前記半導体基板にイオン注入を行っ
て高濃度拡散層を形成する工程と、を具備している。In order to achieve the above object, a method for manufacturing a semiconductor device according to claim (1) is provided, in which the lower layer is made of polysilicon and the upper layer is made of a high melting point metal or its silicide on a semiconductor substrate on which a thin insulating film is laminated. a step of etching the semiconductor substrate on which the gate electrode is formed with an alkaline organic solution; and a step of performing low concentration diffusion by implanting ions into the etched semiconductor substrate from an oblique direction. a step of stacking polysilicon on the upper surface of the semiconductor substrate on which the low concentration diffusion layer has been formed and etching it back; and implanting ions into the semiconductor substrate after the etching back. and forming a high concentration diffusion layer.
また、請求項(2)記載の発明は、上記請求項(1)記
載の半導体装置の製造方法において、臭素系ガスでエッ
チバックを行うものである。Moreover, the invention described in claim (2) is the method for manufacturing a semiconductor device according to claim (1), in which etchback is performed with a bromine-based gas.
さらに、請求項(3)記載の発明は、薄い絶縁膜が積層
された半導体基板上に下層側かポリシリコンからなり且
つ上層側が高融点金属又はそのシリサイドからなる金属
層を形成する工程と、前記金属層か形成された前記半導
体基板をアルカリ性の有機溶液でエツチングする工程と
、を具備している。Furthermore, the invention according to claim (3) provides a step of forming a metal layer on the semiconductor substrate on which the thin insulating film is laminated, the lower layer side being made of polysilicon and the upper layer side being made of a high melting point metal or its silicide; The method further comprises a step of etching the semiconductor substrate on which the metal layer is formed using an alkaline organic solution.
ポリシリコンと高融点金属又はそのシリサイドとを積層
したゲート電極か、現像液に用いるようなアルカリ性の
有機溶液(例えば、TMAH:テトラメチルアンモニウ
ムハイドロオキシジエン)でエツチングされると、ポリ
シリコン単独のものをエツチングした場合に比べて、ポ
リシリコンのエツチング速度は非常に大きく、且つ、高
融点金属又はそのシリサイドや半導体基板上の酸化膜は
損傷されないので、ケート電極下層側のポリシリコンの
みか選択的にエツチングされることになり、断面がT字
型のゲート電極が形成される。A gate electrode consisting of a stack of polysilicon and a high-melting point metal or its silicide, or a gate electrode made of polysilicon alone when etched with an alkaline organic solution such as that used in a developer (for example, TMAH: tetramethylammonium hydroxydiene) The etching speed of polysilicon is much higher than that of etching the polysilicon layer, and the high melting point metal or its silicide or the oxide film on the semiconductor substrate are not damaged. This will be etched to form a gate electrode with a T-shaped cross section.
そして、この状態の半導体基板に斜め方向から回転しな
がらイオン注入を行って低濃度拡散層を形成すると、ゲ
ート電極に遮られることなく、ゲート電極の下側にもイ
オンか注入される。Then, when ions are implanted into the semiconductor substrate in this state while rotating from an oblique direction to form a low concentration diffusion layer, the ions are also implanted under the gate electrode without being blocked by the gate electrode.
さらに、半導体基板上にポリシリコンを積層してこれを
エッチバックすると、上記エツチングされたゲート電極
下層側のポリシリコンの側部に新たなポリシリコンか付
着し、ゲート電極は、当初の形状に戻ることになる。Furthermore, when polysilicon is laminated on the semiconductor substrate and etched back, new polysilicon adheres to the sides of the polysilicon layer below the etched gate electrode, and the gate electrode returns to its original shape. It turns out.
なお、このエッチバックは、請求項(2)記載の発明の
ように、臭素系ガス(臭素ガスBr2や臭化水素HBr
等)で行うと、高融点金属又はそのシリサイドとポリシ
リコンとの選択比か1.10以上になるから、ゲート電
極の上層部分の減少は極少量で済む。Note that this etchback is performed using a bromine-based gas (bromine gas Br2 or hydrogen bromide HBr), as described in claim (2).
etc.), the selectivity ratio between the high melting point metal or its silicide and polysilicon will be 1.10 or more, so the reduction in the upper layer of the gate electrode will be minimal.
そして、この状態の半導体基板にイオン注入を行って高
濃度拡散層を形成すると、イオンは、ケート電極に妨げ
られてその下側部分には入り込まないから、高濃度拡散
層は、既に形成された低濃度拡散層よりも外側の領域に
形成される。When ions are implanted into the semiconductor substrate in this state to form a highly concentrated diffusion layer, the ions are blocked by the gate electrode and do not enter the lower part of the semiconductor substrate. It is formed in a region outside the low concentration diffusion layer.
以下、この発明の実施例を図面に基ついて説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図(a)乃至(e)は、本発明の一実施例における
ゲートオーバラップしDDトランジスタの製造工程を示
す断面図である。FIGS. 1(a) to 1(e) are cross-sectional views showing the manufacturing process of a gate-overlapping DD transistor in an embodiment of the present invention.
先ず、薄い絶縁膜としての酸化膜2か積層された半導体
基板1上に、下層側か不純物(n+若しくはp+)を添
付したポリシリコン4からなり、上層側か高融点金属の
シリサイド(例えば、タングステンシリサイドW S
12やモリブデンシリサイドMoS L等)5からなる
ゲート電極3を、公知のフォト工程等を経て形成する(
第1図fat参照)。First, on a semiconductor substrate 1 on which an oxide film 2 as a thin insulating film is laminated, the lower layer is made of polysilicon 4 with impurities (n+ or p+) added, and the upper layer is made of silicide of a refractory metal (for example, tungsten). Silicide W S
12, molybdenum silicide MoS L, etc.) 5 is formed through a known photo process or the like (
(See Figure 1 fat).
次いて、ゲート電極3か形成された半導体基板lを、ア
ルカリ性の有機溶液としての現像液、例えばTMAH(
テトラメチルアンモニウムハイドロオキシジエン)でエ
ツチングする。Next, the semiconductor substrate l on which the gate electrode 3 has been formed is processed using a developer solution such as TMAH (TMAH) as an alkaline organic solution.
Etching with tetramethylammonium hydroxydiene).
すると、ポリシリコン単体をTMAHでエツチングした
場合には、ポリシリコンはほとんどエツチングされない
か、ポリシリコン4及びシリサイド5を重ね併せた所謂
ポリサイド構造をしているものをアルカリ性の有機溶液
でエツチングした場合には、ポリシリコン4のエツチン
グ速度は、酸化膜2及びシリサイド5のエツチング速度
に比へて非常に大きいので、ポリシリコン4を選択的に
エツチングすることかでき、そのエツチングの結果、断
面かT字型のゲート電極3か形成される(第1図(b)
参照)。Then, when polysilicon alone is etched with TMAH, almost no polysilicon is etched, or when a so-called polycide structure in which polysilicon 4 and silicide 5 are stacked is etched with an alkaline organic solution. Since the etching rate of polysilicon 4 is much higher than that of oxide film 2 and silicide 5, it is possible to selectively etch polysilicon 4, and as a result of this etching, a T-shaped cross section is formed. A gate electrode 3 of the mold type is formed (FIG. 1(b)).
reference).
次いて、半導体基板lに対して斜め方向からリンイオン
を注入して、低濃度拡散層6を形成する(第1図(C)
参照)。Next, phosphorus ions are implanted obliquely into the semiconductor substrate l to form a low concentration diffusion layer 6 (FIG. 1(C)).
reference).
二の場合、ゲート電極3かT字型をしているため、ゲー
ト電極3の内部を通過させなくても、ゲート電極3の下
側に低濃度拡散層6を入り込ませることかできる。In case 2, since the gate electrode 3 is T-shaped, the low concentration diffusion layer 6 can be inserted under the gate electrode 3 without passing through the inside of the gate electrode 3.
このため、低濃度拡散層6の濃度や深さ方向の寸法を任
意にコントロールすることは容易であり、また、ゲート
電極3と低濃度拡散層6とのオーバラップ量も、ポリシ
リコン4及びシリサイド5の膜厚や、ポリシリコン4の
エツチング時間を適宜選定することにより、任意にコン
トロールすることかできる。Therefore, it is easy to arbitrarily control the concentration and depth dimension of the low concentration diffusion layer 6, and the amount of overlap between the gate electrode 3 and the low concentration diffusion layer 6 can also be adjusted using polysilicon 4 and silicide. By appropriately selecting the film thickness of polysilicon 5 and the etching time of polysilicon 4, it can be controlled as desired.
そして、所望の低濃度拡散層6か形成されたら、半導体
基板I上に、ポリシリコン4と同形の不純物か添付され
たポリシリコン7を積層しく第1図(d)参照)、次い
で、ポリシリコン7をエッチバックしてゲート電極3の
断面形状を方形(第1図(a)に示した当初の形状)に
し、さらに、ゲート電極3をマスクとしてヒ素イオンを
注入して高濃度拡散層8を形成する(第1図(e)参照
)。After the desired low concentration diffusion layer 6 is formed, polysilicon 7 having the same shape as the polysilicon 4 and the impurities attached thereto is laminated on the semiconductor substrate I (see FIG. 1(d)). 7 is etched back to make the cross-sectional shape of the gate electrode 3 square (the original shape shown in FIG. 1(a)), and then arsenic ions are implanted using the gate electrode 3 as a mask to form a highly concentrated diffusion layer 8. (see FIG. 1(e)).
なお、上記エッチバックは、臭素系ガス、例えば、臭素
ガスBr2や臭化水素HBr等で行うことが望ましい。Note that the above etchback is desirably performed using a bromine gas, for example, bromine gas Br2, hydrogen bromide HBr, or the like.
これは、臭素系ガスを用いた場合には、ソリサイド5と
ポリシリコン7との選択比か110以上になり、シリサ
イド5の膜減り等が極少量で済むからである。This is because when a bromine-based gas is used, the selectivity between silicide 5 and polysilicon 7 becomes 110 or more, and the loss of the silicide 5 film can be minimized.
そして、高濃度拡散層8は、ケート電極3の下側にはほ
とんど入り込まないから、第1図(elに示すように、
高濃度拡散層8の内側に低濃度拡散層6が形成され、且
つ、ゲート電極3と拡散層とかオーバラップしたゲート
オーバラップLDDhランジスタか構成される。Since the high concentration diffusion layer 8 hardly penetrates under the gate electrode 3, as shown in FIG. 1 (el),
A low concentration diffusion layer 6 is formed inside the high concentration diffusion layer 8, and the gate electrode 3 and the diffusion layer overlap to form a gate overlap LDDH transistor.
しかも、本実施例にあっては、ゲート電極3とオーバラ
ップする部分の拡散層の濃度や寸法を任意にコントロー
ルすることか可能であるから、設計の自由度か大きくな
る。Moreover, in this embodiment, it is possible to arbitrarily control the concentration and dimensions of the diffusion layer in the portion overlapping with the gate electrode 3, so the degree of freedom in design is increased.
また、T字型のゲート電極3(第1図(bl参照)を形
成する際及びポリシリコン7をエッチバックする際には
、シリサイド5の縮小はほとんと生じないので、最終的
に形成されるゲート電極3(第1図(el参照)は当初
のマスク通りの寸法となるから、ゲート長も精度良くコ
ントロールされ、微細化も容易である。Furthermore, when forming the T-shaped gate electrode 3 (see FIG. 1 (bl)) and when etching back the polysilicon 7, the silicide 5 is hardly reduced, so that the silicide 5 is Since the gate electrode 3 (see FIG. 1 (el)) has the same dimensions as the original mask, the gate length can be precisely controlled and miniaturization is easy.
そして、サイドウオールを利用した従来のLDD構造の
トランジスタの製造方法と比べても、特に工程が複雑に
なっていないから、大幅なコストアップを招かなくて済
む。Furthermore, compared to the conventional method of manufacturing a transistor with an LDD structure using sidewalls, the process is not particularly complicated, so there is no need for a significant increase in cost.
以上説明したように、請求項(1)記載の発明によれば
、従来のLDD トランジスタの製造方法と比べて、大
幅なコストアップを招くことなく、ゲートオーバラップ
しDDトランジスタを製造することかでき、しかも、設
計の自由度か高く、微細化も容易であるという効果があ
る。As explained above, according to the invention described in claim (1), it is possible to manufacture a DD transistor with gate overlap without causing a significant increase in cost compared to the conventional manufacturing method of an LDD transistor. Moreover, there are advantages in that the degree of freedom in design is high and miniaturization is easy.
特に、請求項(2)記載の発明のように、エッチバック
に臭素系ガスを用いれば、高融点金属又はそのシリサイ
ドの縮小を招かないので、ゲート長を精度良くコントロ
ールすることかできる。In particular, if a bromine-based gas is used for etch-back as in the invention described in claim (2), the gate length can be controlled with high precision because the refractory metal or its silicide is not reduced.
また、請求項(3)記載の発明にあっては、上層側の高
融点金属又はそのシリサイドの縮小を招くことなく、断
面T字型の金属層を形成できるという効果かある。Furthermore, the invention as set forth in claim (3) has the effect that a metal layer having a T-shaped cross section can be formed without causing reduction of the high melting point metal or its silicide on the upper layer side.
【図面の簡単な説明】
第1図(a)乃至(e)は、本発明の一実施例における
ゲートオーバラップしDDトランジスタの製造工程を示
T断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A to 1E are T cross-sectional views showing the manufacturing process of a gate-overlapping DD transistor in an embodiment of the present invention.
Claims (3)
ポリシリコンからなり且つ上層側が高融点金属又はその
シリサイドからなるゲート電極を形成する工程と、前記
ゲート電極が形成された前記半導体基板をアルカリ性の
有機溶液でエッチングする工程と、前記エッチングが行
われた半導体基板に斜め方向からイオン注入を行って低
濃度拡散層を形成する工程と、前記低濃度拡散層が形成
された前記半導体基板の上面にポリシリコンを積層して
これをエッチバックする工程と、前記エッチバックが行
われた前記半導体基板にイオン注入を行って高濃度拡散
層を形成する工程と、を具備したことを特徴とする半導
体装置の製造方法。(1) A step of forming a gate electrode on a semiconductor substrate on which a thin insulating film is laminated, the lower layer of which is made of polysilicon and the upper layer of which is made of a high melting point metal or its silicide; a step of etching with an alkaline organic solution; a step of performing ion implantation from an oblique direction into the etched semiconductor substrate to form a low concentration diffusion layer; and a step of forming a low concentration diffusion layer on the semiconductor substrate on which the low concentration diffusion layer is formed. The method is characterized by comprising the steps of stacking polysilicon on the upper surface and etching it back, and implanting ions into the etched back semiconductor substrate to form a high concentration diffusion layer. A method for manufacturing a semiconductor device.
載の半導体装置の製造方法。(2) The method for manufacturing a semiconductor device according to claim (1), wherein the etch-back is performed using a bromine gas.
ポリシリコンからなり且つ上層側が高融点金属又はその
シリサイドからなる金属層を形成する工程と、前記金属
層が形成された前記半導体基板をアルカリ性の有機溶液
でエッチングする工程と、を具備したことを特徴とする
半導体装置の製造方法。(3) forming a metal layer on a semiconductor substrate on which a thin insulating film is laminated, the lower layer side of which is made of polysilicon and the upper layer side of which is made of a high melting point metal or its silicide; A method for manufacturing a semiconductor device, comprising the step of etching with an alkaline organic solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2309500A JPH04180633A (en) | 1990-11-15 | 1990-11-15 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2309500A JPH04180633A (en) | 1990-11-15 | 1990-11-15 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04180633A true JPH04180633A (en) | 1992-06-26 |
Family
ID=17993743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2309500A Pending JPH04180633A (en) | 1990-11-15 | 1990-11-15 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04180633A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5741736A (en) * | 1995-05-04 | 1998-04-21 | Motorola Inc. | Process for forming a transistor with a nonuniformly doped channel |
NL1004810C2 (en) * | 1996-12-04 | 1998-06-19 | United Microelectronics Corp | Improved salicide process technology. |
FR2758210A1 (en) * | 1996-10-16 | 1998-07-10 | United Microelectronics Corp | IMPROVED SALICIDE MANUFACTURING TECHNOLOGY |
US5955759A (en) * | 1997-12-11 | 1999-09-21 | International Business Machines Corporation | Reduced parasitic resistance and capacitance field effect transistor |
US6096590A (en) * | 1996-07-18 | 2000-08-01 | International Business Machines Corporation | Scalable MOS field effect transistor |
FR2791177A1 (en) * | 1999-03-19 | 2000-09-22 | France Telecom | PROCESS FOR PRODUCING A MUSHROOM GRILLE OR "T" GRILLE |
KR100265825B1 (en) * | 1993-07-14 | 2000-10-02 | 김영환 | Over-deposited polysilicon film etching method |
US6870232B1 (en) | 1996-07-18 | 2005-03-22 | International Business Machines Corporation | Scalable MOS field effect transistor |
US7989299B2 (en) | 2004-06-24 | 2011-08-02 | Fujitsu Semiconductor Limited | Semiconductor device, method of manufacturing the same, and method of evaluating semiconductor device |
-
1990
- 1990-11-15 JP JP2309500A patent/JPH04180633A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100265825B1 (en) * | 1993-07-14 | 2000-10-02 | 김영환 | Over-deposited polysilicon film etching method |
US5741736A (en) * | 1995-05-04 | 1998-04-21 | Motorola Inc. | Process for forming a transistor with a nonuniformly doped channel |
US6096590A (en) * | 1996-07-18 | 2000-08-01 | International Business Machines Corporation | Scalable MOS field effect transistor |
US6870232B1 (en) | 1996-07-18 | 2005-03-22 | International Business Machines Corporation | Scalable MOS field effect transistor |
FR2758210A1 (en) * | 1996-10-16 | 1998-07-10 | United Microelectronics Corp | IMPROVED SALICIDE MANUFACTURING TECHNOLOGY |
NL1004810C2 (en) * | 1996-12-04 | 1998-06-19 | United Microelectronics Corp | Improved salicide process technology. |
US5955759A (en) * | 1997-12-11 | 1999-09-21 | International Business Machines Corporation | Reduced parasitic resistance and capacitance field effect transistor |
WO2000057461A1 (en) * | 1999-03-19 | 2000-09-28 | France Telecom | Method for producing a mushroom-shaped or t-shaped gate |
FR2791177A1 (en) * | 1999-03-19 | 2000-09-22 | France Telecom | PROCESS FOR PRODUCING A MUSHROOM GRILLE OR "T" GRILLE |
US7989299B2 (en) | 2004-06-24 | 2011-08-02 | Fujitsu Semiconductor Limited | Semiconductor device, method of manufacturing the same, and method of evaluating semiconductor device |
US9093529B2 (en) | 2004-06-24 | 2015-07-28 | Fujitsu Semiconductor Limited | Semiconductor device, method of manufacturing the same, and method of evaluating semiconductor device |
US9437737B2 (en) | 2004-06-24 | 2016-09-06 | Fujitsu Semiconductor Limited | Semiconductor device, method of manufacturing the same, and method of evaluating semiconductor device |
US9825171B2 (en) | 2004-06-24 | 2017-11-21 | Fujitsu Semiconductor Limited | Semiconductor device, method of manufacturing the same, and method of evaluating semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3490746B2 (en) | Semiconductor memory device and method of manufacturing the same | |
JP3902831B2 (en) | Semiconductor memory device and manufacturing method thereof | |
JPH1187707A (en) | Semiconductor device and manufacturing method thereof | |
JPH04180633A (en) | Manufacture of semiconductor device | |
US7888198B1 (en) | Method of fabricating a MOS transistor with double sidewall spacers in a peripheral region and single sidewall spacers in a cell region | |
JPH06163572A (en) | Manufacture of mos field effect transistor | |
JPH01259560A (en) | Semiconductor integrated circuit device | |
JP3129867B2 (en) | Method for manufacturing semiconductor device | |
US6271092B1 (en) | Method for fabricating a semiconductor device | |
JPS60193371A (en) | Manufacture of semiconductor device | |
US5688661A (en) | Fabrication method for mask ROM | |
JPH08306888A (en) | Semiconductor device and its fabrication method | |
KR0151066B1 (en) | Method of fabricating semiconductor device using titanium nitride at gate electrode | |
JPH07283329A (en) | Semiconductor storage device and its manufacture | |
JPH05347410A (en) | Semiconductor device and its manufacture | |
JPH02122522A (en) | Semiconductor device and manufacture thereof | |
KR100468704B1 (en) | DRAM device and manufacturing method thereof | |
KR100480586B1 (en) | Manufacturing Method of Semiconductor Device Having Local Silicide Film | |
JPH07221298A (en) | Field-effect transistor and its manufacture | |
JP2961799B2 (en) | Method of manufacturing MOS field effect transistor | |
JP3328662B2 (en) | Method for manufacturing semiconductor device | |
JP2658163B2 (en) | Method of manufacturing MIS type semiconductor device | |
JPS6213076A (en) | Manufacture of semiconductor device | |
JPH06244415A (en) | Semiconductor device and manufacture thereof | |
JPH0231466A (en) | Manufacture of non-volatile memory device |