JPH04155928A - Production of semiconductor device - Google Patents
Production of semiconductor deviceInfo
- Publication number
- JPH04155928A JPH04155928A JP28250490A JP28250490A JPH04155928A JP H04155928 A JPH04155928 A JP H04155928A JP 28250490 A JP28250490 A JP 28250490A JP 28250490 A JP28250490 A JP 28250490A JP H04155928 A JPH04155928 A JP H04155928A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- film
- metal wiring
- metal
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000002184 metal Substances 0.000 claims abstract description 74
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 238000005530 etching Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 16
- 238000000151 deposition Methods 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052710 silicon Inorganic materials 0.000 abstract description 12
- 239000010703 silicon Substances 0.000 abstract description 12
- 239000010410 layer Substances 0.000 abstract 9
- 239000011229 interlayer Substances 0.000 abstract 2
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 7
- 210000004709 eyebrow Anatomy 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体装置の製造方法に関し、特に多層金属配
線を有する半導体装置における下層の金属配線の形成方
法に間する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming lower layer metal wiring in a semiconductor device having multilayer metal wiring.
第2図(a)〜(e)に示す工程順の縦断面図を用いて
、多層金属配線を有する半導体装置における従来の下層
の金属配線の形成方法の一例を説明する。この従来の半
導体装置の製造方法は、シリコンゲート電極、ソース・
ドレイン拡散層からなる下層配線層に対して第1層目の
金属配線を形成する方法の例である。An example of a conventional method for forming lower layer metal wiring in a semiconductor device having multilayer metal wiring will be described using vertical cross-sectional views in the order of steps shown in FIGS. 2(a) to 2(e). This conventional semiconductor device manufacturing method consists of a silicon gate electrode, a source and
This is an example of a method for forming a first layer of metal wiring in a lower wiring layer made of a drain diffusion layer.
まず、第2図(a)に示すように、シリコン基板1表面
にゲート酸化膜、フィールド酸化膜からなる酸化g!2
を形成し、シリコンゲート電極3を形成し、ソース・ド
レイン拡散層4を形成する。First, as shown in FIG. 2(a), the surface of the silicon substrate 1 is oxidized by a gate oxide film and a field oxide film. 2
are formed, a silicon gate electrode 3 is formed, and a source/drain diffusion layer 4 is formed.
その後、全面に眉間絶縁膜となる絶縁膜5を堆積する。Thereafter, an insulating film 5 that will become a glabellar insulating film is deposited on the entire surface.
次に、第21g(b)に示すように、シリコンゲ−ト電
極3.およびソース・ドレイン拡散層4の所定位置上の
絶縁膜5並びに酸化膜2に、等方性エツチング、および
異方性エツチングを用いて、開口部7を形成する。Next, as shown in No. 21g(b), the silicon gate electrode 3. Openings 7 are then formed in the insulating film 5 and oxide film 2 on predetermined positions of the source/drain diffusion layer 4 using isotropic etching and anisotropic etching.
次に、第2図(c)に示すように、金属膜8を全面に堆
積する。Next, as shown in FIG. 2(c), a metal film 8 is deposited over the entire surface.
続いて、第2図(d)に示すように、金属配線のパター
ンに対応する感光性樹脂膜6を金属膜8の表面に形成す
る。Subsequently, as shown in FIG. 2(d), a photosensitive resin film 6 corresponding to the pattern of the metal wiring is formed on the surface of the metal film 8.
最後に、第2図(e)に示すように、感光性樹脂膜6を
マスクにして金属膜8をエツチングし、感光性樹脂膜6
を除去し、金属膜8からなる金属配線9を形成する。Finally, as shown in FIG. 2(e), the metal film 8 is etched using the photosensitive resin film 6 as a mask.
is removed, and a metal wiring 9 made of the metal film 8 is formed.
上述した従来の半導体装置の製造方法では、第1層目の
金属配線を形成した段階で、金属配線の膜厚がそのまま
半導体基板の表面の段差となり、更に上層に金属配線を
形成して多層金属配線構造にする場合、この段差の存在
が上層の金属配線の断線の原因となっていた。In the conventional semiconductor device manufacturing method described above, at the stage when the first layer of metal wiring is formed, the film thickness of the metal wiring becomes a step on the surface of the semiconductor substrate, and further metal wiring is formed in the upper layer to form a multilayer metal wiring. When creating a wiring structure, the presence of this step causes disconnection of the upper layer metal wiring.
また、フォトリソグラフィ工程の観点から述べると、年
々パターンの微細化が進み、金属配線の幅2間隔も縮小
化が行なわれており、多層金属配線構造における上層の
金属配線の形成の際のフォトリソグラフィ工程において
、前述の段差の存在が感光性樹脂膜の解像度を低下させ
、微細化の抑制の一因となっていた。In addition, from the perspective of the photolithography process, patterns are becoming finer every year, and the two-width spacing between metal interconnects is also becoming smaller. In the process, the presence of the above-mentioned steps lowers the resolution of the photosensitive resin film, contributing to the suppression of miniaturization.
また、多層金属配線間の眉間絶縁膜にSOG膜を用いる
方法もあるが、この場合、SOG膜により発生するごみ
、SOG膜のクラック、SOG膜を熱処理する際の下層
の金属配線に与える熱ストレス等の問題があった。There is also a method of using an SOG film as an insulating film between the eyebrows between multilayer metal wiring, but in this case, dust generated by the SOG film, cracks in the SOG film, and thermal stress applied to the underlying metal wiring during heat treatment of the SOG film are also available. There were other problems.
本発明の半導体装置の製造方法は、
所定の下層配線層、絶縁膜を有する半導体基板上に金属
配線を形成する工程において、金属配線の形成領域の前
記絶縁膜に、溝を形成する工程と、
溝の所定位置に、下層配線層に到る開口部を設ける工程
と、
全面に金属膜を堆積する工程と、
全面に有機膜を塗布する工程と、
エッチバックにより、渭、および開口部を前記金属膜で
埋め込み金属配線を形成する工程と、を有している。The method for manufacturing a semiconductor device of the present invention includes the step of forming a metal wiring on a semiconductor substrate having a predetermined lower wiring layer and an insulating film, the step of forming a groove in the insulating film in a region where the metal wiring is to be formed; A process of providing an opening reaching the lower wiring layer at a predetermined position of the trench, a process of depositing a metal film on the entire surface, a process of coating an organic film on the entire surface, and etching back to form the edge and the opening as described above. The method includes a step of forming an embedded metal wiring using a metal film.
次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.
第1図(a)〜(i)は本発明の一実施例を説明するた
めの工程順の縦断面図である。本実施例は、シリコンゲ
ート電極、ソース・ドレイン拡散層からなる下層配線層
に対して、多層金属配線の第1層目の金属配線を形成す
る半導体装置の製造方法である。FIGS. 1(a) to 1(i) are longitudinal cross-sectional views showing steps in order to explain an embodiment of the present invention. This embodiment is a method of manufacturing a semiconductor device in which a first layer of metal wiring of a multilayer metal wiring is formed on a lower wiring layer consisting of a silicon gate electrode and source/drain diffusion layers.
まず、シリコン基板1表面にゲート酸化膜、フィールド
酸化膜からなる酸化膜2を形成し、シリコンゲート電極
3を形成し、ソース・ドレイン拡散層4を形成する。そ
の後、全面に眉間絶縁膜となる絶縁膜5aを堆積する〔
第1図(a))、この絶縁膜5aの膜厚は、第1層目の
金属配線の膜厚に相当する分だけ従来の絶縁膜の膜厚よ
り厚くしである。First, an oxide film 2 consisting of a gate oxide film and a field oxide film is formed on the surface of a silicon substrate 1, a silicon gate electrode 3 is formed, and a source/drain diffusion layer 4 is formed. After that, an insulating film 5a that will become a glabellar insulating film is deposited on the entire surface [
As shown in FIG. 1(a), the thickness of this insulating film 5a is greater than that of the conventional insulating film by an amount corresponding to the thickness of the first layer of metal wiring.
次に、絶縁膜5aの表面の金属配線形成領域以外の領域
に、感光性樹脂膜6aからなるパターンを形成する〔第
1図(b)〕。このパターンは、金属配線のパターンの
反転パターンとなっている。続いて、感光性樹脂膜6a
をマスクに用い、例えばRIE等の異方性エツチングに
より溝を形成する。この溝の深さは、金属配線の膜厚と
等しい〔第1図(C))、その後、感光性樹脂膜6aを
除去する〔第1図(d))。Next, a pattern made of a photosensitive resin film 6a is formed on the surface of the insulating film 5a in a region other than the metal wiring forming region [FIG. 1(b)]. This pattern is an inverted pattern of the metal wiring pattern. Subsequently, the photosensitive resin film 6a
is used as a mask, and grooves are formed by anisotropic etching such as RIE. The depth of this groove is equal to the film thickness of the metal wiring [FIG. 1(C)], and then the photosensitive resin film 6a is removed [FIG. 1(d)].
次に、シリコンゲート電極3.およびソース・ドレイン
拡散層4の所定位置上の溝の部分の絶縁膜5a並びに酸
化膜2に、等方性エツチング、および異方性エツチング
を用いて、開口部7aを形成する〔第1図(e))。Next, silicon gate electrode 3. Then, an opening 7a is formed in the insulating film 5a and the oxide film 2 in the groove portion above the predetermined position of the source/drain diffusion layer 4 using isotropic etching and anisotropic etching [Fig. e)).
続いて、全面に金属膜8aを堆積する〔第1図(f)〕
。ここで、金属膜8aの膜厚は、溝の部分において、金
属膜8aの表面が溝の上端より高くなるように設定する
。Subsequently, a metal film 8a is deposited on the entire surface [FIG. 1(f)]
. Here, the thickness of the metal film 8a is set so that the surface of the metal film 8a is higher than the upper end of the groove in the groove portion.
引き続いて、全面に平坦化用の有機膜10を塗布する〔
第1図(g)〕。有機膜10は、例えば感光性樹脂膜、
スチレン系樹脂膜等からなる。Subsequently, an organic film 10 for planarization is applied to the entire surface [
Figure 1 (g)]. The organic film 10 is, for example, a photosensitive resin film,
It consists of a styrene resin film, etc.
最後に、異方性エツチングにより、エッチバックを行な
う〔第1図(h)〕。このエエッチバラは、溝の部分以
外の絶縁膜5aの表面が露出するまで行なう。これによ
り、溝、および開口部7aが金属膜8aにより埋め込ま
れ、金属配線9aが形成される〔第1図(i)〕。この
段階で、半導体基板の表面は平坦化される。Finally, etchback is performed by anisotropic etching [FIG. 1(h)]. This etch process is continued until the surface of the insulating film 5a other than the groove portion is exposed. As a result, the groove and the opening 7a are filled with the metal film 8a, and a metal wiring 9a is formed [FIG. 1(i)]. At this stage, the surface of the semiconductor substrate is planarized.
なお、本実施例は多層金属配線の第1層目の金属配線の
形成方法について述べたが、本発明を多層金属配線の上
層の金属配線に適用することも可能である。Although this embodiment describes the method for forming the first layer of metal wiring in a multilayer metal wiring, it is also possible to apply the present invention to the metal wiring in the upper layer of the multilayer metal wiring.
また、本実施例は多層金属配線構造を有するMO8半導
体装置の製造方法について述べたが、他のデバイス例え
ばバイポーラ半導体装置の製造方法の製造方法について
も、適用できる。Furthermore, although this embodiment has been described with respect to a method of manufacturing an MO8 semiconductor device having a multilayer metal wiring structure, the present invention can also be applied to a method of manufacturing other devices, such as a method of manufacturing a bipolar semiconductor device.
以上説明したように本発明は、多層金属配線構造を有す
る半導体装置の第1層目の金属配線の形成方法において
、半導体基板表面に形成された下層配線層と第1層目の
金属配線との間の眉間絶縁膜に、第1層目の金属配線の
パターンに対応した溝、および溝の所定箇所に下層配線
層と第1層目の金属配線との間の開口部を形成し、全面
に金属膜、および有機膜を形成し、エッチバックを行な
うことにより第1層目の金属配線を形成している。As explained above, the present invention provides a method for forming a first layer of metal wiring in a semiconductor device having a multilayer metal wiring structure, in which a lower wiring layer formed on a surface of a semiconductor substrate and a first layer of metal wiring are formed. A groove corresponding to the pattern of the first layer metal wiring is formed in the insulating film between the eyebrows, and an opening between the lower wiring layer and the first layer metal wiring is formed at a predetermined location in the groove, and the entire surface is A first layer of metal wiring is formed by forming a metal film and an organic film and performing etchback.
その結果、半導体基板表面に形成された下層配線層と第
1層目の金属配線との間の眉間絶縁膜。As a result, an insulating film between the eyebrows is formed between the lower wiring layer and the first layer of metal wiring formed on the surface of the semiconductor substrate.
および第1層目の金属配線とによなるる表面は、平坦化
される。The surface formed by the first layer of metal wiring and the first layer of metal wiring is flattened.
これにより、第1層目の金属配線の上に形成する金属配
線において、第1層目の金属配線の段差により発生して
た断線は発生しなくなる。As a result, in the metal wiring formed on the first layer metal wiring, the disconnection that occurs due to the step difference in the first layer metal wiring no longer occurs.
また、第1層目の金属配線の上に形成する金属配線にお
いて、これを形成するためのフォトリソグラフィ工程で
は、下地が平坦なため、感光性樹脂の解像度の阻害要因
が除去され、微細化が可能になる。In addition, in the photolithography process for forming the metal wiring formed on the first layer metal wiring, since the base is flat, factors that inhibit the resolution of the photosensitive resin are removed, and miniaturization is facilitated. It becomes possible.
更に、本発明のよれば、あえて眉間絶縁膜にSOG膜を
用いる必要が無くなり、SOG膜により発生するごみ、
SOG膜のクラック、SOG膜を熱処理する際の下層の
金属配線に与える熱ストレス等の問題が回避できる。Furthermore, according to the present invention, there is no need to intentionally use an SOG film as an insulating film between the eyebrows, and dust generated by the SOG film can be removed.
Problems such as cracks in the SOG film and thermal stress imparted to the underlying metal wiring when heat-treating the SOG film can be avoided.
第1図(a)〜(i)は本発明の一実施例を説明するた
めの工程順の縦断面図、第2図(a)〜(e)は従来の
半導体装置の製造方法を説明するための縦断面図である
。
1・・・シリコン基板、2・・・酸化膜、3・・シリコ
ンゲート電極、4・・・ソース・ドレイン拡散層、5゜
5a・・・絶縁膜、6.6a・・・感光性樹脂膜、7゜
7a・・・開口部、8,8a・・・金属膜、9,9a・
・・金属配線、10・・・有機膜。FIGS. 1(a) to (i) are vertical cross-sectional views in order of steps for explaining an embodiment of the present invention, and FIGS. 2(a) to (e) are for explaining a conventional method of manufacturing a semiconductor device. FIG. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Oxide film, 3... Silicon gate electrode, 4... Source/drain diffusion layer, 5°5a... Insulating film, 6.6a... Photosensitive resin film , 7°7a...opening, 8,8a...metal film, 9,9a...
...Metal wiring, 10...Organic film.
Claims (1)
配線を形成する工程において、 前記金属配線の形成領域の前記絶縁膜に、溝を形成する
工程と、 前記溝の所定位置に、前記下層配線層に到る開口部を設
ける工程と、 全面に金属膜を堆積する工程と、 全面に有機膜を塗布する工程と、 エッチバックにより、前記溝、および前記開口部を前記
金属膜で埋め込み前記金属配線を形成する工程と、 を有することを特徴とする半導体装置の製造方法。[Scope of Claims] A step of forming a metal wiring on a semiconductor substrate having a predetermined lower wiring layer and an insulating film, a step of forming a groove in the insulating film in a region where the metal wiring is to be formed; A step of providing an opening that reaches the lower wiring layer at a predetermined position, a step of depositing a metal film on the entire surface, a step of applying an organic film on the entire surface, and a step of etching back to form the trench and the opening. A method for manufacturing a semiconductor device, comprising the steps of: forming the metal wiring by embedding the metal film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28250490A JPH04155928A (en) | 1990-10-19 | 1990-10-19 | Production of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28250490A JPH04155928A (en) | 1990-10-19 | 1990-10-19 | Production of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04155928A true JPH04155928A (en) | 1992-05-28 |
Family
ID=17653307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28250490A Pending JPH04155928A (en) | 1990-10-19 | 1990-10-19 | Production of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04155928A (en) |
-
1990
- 1990-10-19 JP JP28250490A patent/JPH04155928A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0669351A (en) | Manufacture of contact of multilayer metal interconnection structure | |
JPH04155928A (en) | Production of semiconductor device | |
JPH0226024A (en) | Manufacture of semiconductor device | |
JPH05110099A (en) | Method of manufacturing thin film transistor | |
JPH0766178A (en) | Method for manufacturing semiconductor device | |
JPH02172215A (en) | Manufacture of semiconductor device | |
JPH02262338A (en) | Manufacture of semiconductor device | |
JP2555958B2 (en) | Method for manufacturing semiconductor device | |
JP2001023981A (en) | Manufacture of semiconductor device | |
JPH05109719A (en) | Manufacture of semiconductor device | |
KR960008559B1 (en) | Method of forming fine contact hole in semiconductor device | |
KR19990060819A (en) | Metal wiring formation method of semiconductor device | |
JPH07161715A (en) | Manufacture of semiconductor device | |
KR100193889B1 (en) | Via hole formation method of semiconductor device | |
CN118610160A (en) | Method for making contact hole in semiconductor process | |
JPS6134956A (en) | Method for forming wiring layer | |
JPS6322067B2 (en) | ||
JPH04255227A (en) | Manufacture of semiconductor device | |
JPH03149826A (en) | Manufacture of semiconductor device | |
JPH10270443A (en) | Manufacture of semiconductor and semiconductor device | |
JPH0337857B2 (en) | ||
JPH01251641A (en) | Manufacture of semiconductor device | |
KR20040060555A (en) | pattern structure of semiconductor without being resudual and its forming method | |
JPH11162870A (en) | Manufacture of semiconductor device | |
JPS6326544B2 (en) |