[go: up one dir, main page]

JPH04131602A - Controller of temperature of boiler furnace outlet - Google Patents

Controller of temperature of boiler furnace outlet

Info

Publication number
JPH04131602A
JPH04131602A JP25458890A JP25458890A JPH04131602A JP H04131602 A JPH04131602 A JP H04131602A JP 25458890 A JP25458890 A JP 25458890A JP 25458890 A JP25458890 A JP 25458890A JP H04131602 A JPH04131602 A JP H04131602A
Authority
JP
Japan
Prior art keywords
furnace
flow rate
spray flow
outlet temperature
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25458890A
Other languages
Japanese (ja)
Other versions
JP2872378B2 (en
Inventor
Haruo Sato
晴夫 佐藤
Shinya Nakayama
信弥 中山
Shinya Oishi
大石 伸也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
IHI Corp
Original Assignee
Hokkaido Electric Power Co Inc
Ishikawajima Harima Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc, Ishikawajima Harima Heavy Industries Co Ltd filed Critical Hokkaido Electric Power Co Inc
Priority to JP25458890A priority Critical patent/JP2872378B2/en
Publication of JPH04131602A publication Critical patent/JPH04131602A/en
Application granted granted Critical
Publication of JP2872378B2 publication Critical patent/JP2872378B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To hold the outlet temperature of the furnace at a set temperature by seeking the ratio of the sum of the quantities of heat received by the coal economizer and furnace of a boiler to the quantity of heat received by the boiler as a whole and seeking a set temperature at the furnace outlet based on the ratio of the received quantities of heat to correct the set value for the flow rate of a spray to control a spray flow rate regulating valve. CONSTITUTION:Based on detection signals 40-43 from heat sensors 36-39 that are provided at respective sections of a boiler 1 the ratio of the sum of the quantities of heat received by the coal economizer 7 and furnace 2 of the boiler 1 to the quantity of heat received by the boiler 1 as a whole is sought by a calculator 44. Based on this ratio a set value of the temperature 49 of the furnace outlet is sought by a calculation control device 68. The deviation between the set value of the furnace outlet temperature and temperature signal 42' of the furnace outlet is taken by a subtractor 24 to seek the furnace outlet temperature deviation value 27 and a spray flow rate correction value 29 is sought by a proportional integration controller 28 base on the furnace outlet temperature deviation value 27. A correction spray flow rate set value 31 is sought by multiplying the spray flow rate set value 47 for controlling the spray flow rate regulating valve 18 by the spray flow rate correction value 29 by a multiplier 30. With this arrangement the outlet temperature of the furnace 2 is kept at the furnace outlet temperature set value 49.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はボイラの火炉出口温度制御装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a boiler furnace outlet temperature control device.

[従来の技術] 変圧運転用貫流ボイラでは、火炉の出口温度は重要な制
御対象の1つとなっている。
[Prior Art] In a once-through boiler for variable pressure operation, the outlet temperature of the furnace is one of the important control targets.

以下、従来のボイラの火炉出口温度制御装置を第4図・
第5図を用いて説明する。
Below, the furnace outlet temperature control device of a conventional boiler is shown in Figure 4.
This will be explained using FIG.

第4図中、1はボイラ、2はボイラ1の火炉、3は火炉
2に設けられたバーナ、4は火炉2に接続された副側壁
、5は副側壁4に接続された後部伝熱部、6は後部伝熱
部5に接続された排ガスダクト、7は後部伝熱部5に設
けられた節炭器、8は副側壁4及び後部伝熱部5に設け
られた過熱器である。
In Fig. 4, 1 is a boiler, 2 is a furnace of boiler 1, 3 is a burner provided in furnace 2, 4 is a sub-side wall connected to furnace 2, and 5 is a rear heat transfer section connected to sub-side wall 4. , 6 is an exhaust gas duct connected to the rear heat transfer section 5, 7 is an economizer provided in the rear heat transfer section 5, and 8 is a superheater provided on the sub side wall 4 and the rear heat transfer section 5.

第5図中、9はボイラ1の水・蒸気流路、1゜はボイラ
水、11は給水ポンプ、12は蒸気流量調整弁、13は
タービン、14はタービン13に接続された発電機、1
5は水・蒸気流路9から分岐されたスプレー流路、16
は過熱器8内部に水スプレーを行うスプレー装置、17
はスプレー流路15の途中に設けられたスプレー流量計
、18はスプレー流路15の途中に設けられたスプレー
流量調整弁である。
In Fig. 5, 9 is the water/steam flow path of the boiler 1, 1° is the boiler water, 11 is the feed water pump, 12 is the steam flow rate regulating valve, 13 is the turbine, 14 is the generator connected to the turbine 13, 1
5 is a spray channel branched from the water/steam channel 9; 16;
17 is a spray device that sprays water inside the superheater 8;
18 is a spray flow rate meter provided in the middle of the spray channel 15, and 18 is a spray flow rate adjustment valve provided in the middle of the spray channel 15.

19は発電機出力指令、20は発電機出力指令19をス
プレー流量調整弁18制御用のスプレー流量設定値21
に変換する関数発生器である。
19 is a generator output command, 20 is a spray flow rate setting value 21 for controlling the spray flow rate adjustment valve 18, and 20 is a generator output command 19.
It is a function generator that converts .

22は発電機出力指令19を火炉出口温度設定値23に
変換する関数発生器である。
22 is a function generator that converts the generator output command 19 into a furnace outlet temperature set value 23.

24は火炉出口温度設定値23と火炉2出口に設けられ
た温度検出器25からの火炉出口温度検出値26との偏
差を取り火炉出口温度偏差値27を求める減算器である
24 is a subtracter that takes the difference between the furnace outlet temperature setting value 23 and the furnace outlet temperature detection value 26 from the temperature detector 25 provided at the outlet of the furnace 2 to obtain the furnace outlet temperature deviation value 27.

28は火炉出口温度偏差値27を基に、火炉出口温度設
定値23より火炉出口温度検出値26が大きい場合には
スプレー流量を絞り、火炉出口温度検出値26より火炉
出口温度設定値23か大きい場合にはスプレー流量を増
やすようにするためのスプレー流量補正値29を求める
比例積分制置器である。
28 is based on the furnace outlet temperature deviation value 27, and when the furnace outlet temperature detected value 26 is larger than the furnace outlet temperature set value 23, the spray flow rate is reduced, and the furnace outlet temperature set value 23 is larger than the furnace outlet temperature detected value 26. In this case, it is a proportional-integral control device that determines a spray flow rate correction value 29 to increase the spray flow rate.

30は前記スプレー流量設定値21にスプレー流量補正
値29を掛けて補正スプレー流量設定値31とする掛け
算器である。
A multiplier 30 multiplies the spray flow rate set value 21 by a spray flow rate correction value 29 to obtain a corrected spray flow rate set value 31.

32は補正スプレー流量設定値31とスプレー流量計1
7からのスプレー流量33との偏差を取りスプレー流量
偏差値34を求める減算器である。
32 is the corrected spray flow rate setting value 31 and spray flow meter 1
This is a subtracter that takes the deviation from the spray flow rate 33 from 7 to obtain a spray flow rate deviation value 34.

35゛はスプレー流量偏差値34をスプレー流量補正値
35とするための比例積分制御器である。
35 is a proportional-integral controller for setting the spray flow rate deviation value 34 to the spray flow rate correction value 35.

第4図においてバーナ3による燃料の燃焼によって発生
した燃焼ガスは、ボイラ1の火炉2、副側壁4、後部伝
熱部5を通って排ガスダクト6から排出され、途中、火
炉2の周壁、過熱器8、節炭器7の内部を流れる水や蒸
気を加熱する。
In FIG. 4, the combustion gas generated by the combustion of fuel by the burner 3 passes through the furnace 2, sub-side wall 4, and rear heat transfer section 5 of the boiler 1, and is discharged from the exhaust gas duct 6. The water and steam flowing inside the container 8 and the economizer 7 are heated.

上記の水や蒸気の加熱の経過を第5図により詳しく説明
すると、給水ポンプl工によりボイラ1の水・蒸気流路
9に供給されたボイラ水10は、節炭器7、火炉2の周
壁、過熱器8の順に通りて燃焼ガスにより順次加熱され
る。
To explain in detail the process of heating the water and steam described above with reference to FIG. , and superheater 8, and are sequentially heated by combustion gas.

一方、水・蒸気流路9からスプレー流路15に分岐した
ボイラ水10は、スプレー装置16から過熱器8内部に
噴射されて、過熱器8出口の蒸気の温度を制御するのに
用いられる。
On the other hand, the boiler water 10 branched from the water/steam flow path 9 to the spray flow path 15 is injected from the spray device 16 into the superheater 8 and is used to control the temperature of the steam at the outlet of the superheater 8.

過熱器8内部の蒸気は最終的に蒸気流量調整弁12によ
り所要量がタービン13に導入され、タービン13を駆
動して、タービン13と同軸の発電機14に発電を行わ
せる。
A required amount of the steam inside the superheater 8 is finally introduced into the turbine 13 by the steam flow rate regulating valve 12 to drive the turbine 13 and cause the generator 14 coaxial with the turbine 13 to generate electricity.

スプレー装置16の制御は以下のようにして行なわれる
Control of the spray device 16 is performed as follows.

発電機出力指令19は関数発生器20により発電機出力
指令19に見合ったスプレー流量設定値21に変換され
る。
The generator output command 19 is converted by a function generator 20 into a spray flow rate set value 21 commensurate with the generator output command 19.

又、発電機出力指令19は関数発生器22により発電機
出力指令19に見合った火炉出口温度設定値23に変換
される。火炉出口温度設定値23は減算器24により火
炉2出口に設けられた温度検出器25からの火炉出口温
度検出値26との偏差を取られて火炉2の出口温度を一
定とするためのフィードバック制御に必要な火炉出口温
度偏差値27とされ、火炉出口温度偏差値27は比例積
分制御器28により、火炉出口温度設定値23より火炉
出口温度検出値26が大きい場合にはスプレー流量を絞
り、火炉出口温度検出値26より火炉出口温度設定値2
3が大きい場合にはスプレー流量を増やすようにするた
めのスプレー流量補正値29とされ、掛け算器30によ
り前記スプレー流量設定値2ヱにスプレー流量補正値2
9を掛けてスプレー流量設定値21をスプレー流量補正
値29で補正した補正スプレー流量設定値31を求める
のに用いられる。
Further, the generator output command 19 is converted by a function generator 22 into a furnace outlet temperature set value 23 corresponding to the generator output command 19. The furnace outlet temperature setting value 23 is determined by a subtractor 24 to take the deviation from the furnace outlet temperature detection value 26 from the temperature detector 25 provided at the furnace 2 outlet, and is subjected to feedback control to keep the furnace 2 outlet temperature constant. The furnace outlet temperature deviation value 27 is set as the furnace outlet temperature deviation value 27 necessary for Furnace outlet temperature set value 2 from outlet temperature detection value 26
3 is large, the spray flow rate correction value 29 is set to increase the spray flow rate, and a multiplier 30 adds the spray flow rate correction value 2 to the spray flow rate setting value 2E.
This is used to obtain a corrected spray flow rate set value 31 which is obtained by multiplying the spray flow rate set value 21 by 9 and corrected by the spray flow rate correction value 29.

そして、補正スプレー流量設定値31は減算器32によ
りスプレー流量計17からのスプレー流量33との偏差
を取られてスプレー流量をフィードバック制御するため
のスプレー流量偏差値34とされ、スプレー流量偏差値
34は比例積分制御器35′により制御に適した信号と
なるよう信号処理されてスプレー流量補正値35とされ
スプレー流量調整弁18の開度を調整してスプレー流量
を制御するのに用いられる。
Then, the correction spray flow rate set value 31 is subtracted by a subtractor 32 from the spray flow rate 33 from the spray flow meter 17, and is set as a spray flow rate deviation value 34 for feedback controlling the spray flow rate. is processed by the proportional-integral controller 35' to become a signal suitable for control, and is used as a spray flow rate correction value 35, which is used to adjust the opening degree of the spray flow rate regulating valve 18 and control the spray flow rate.

このようにして、火炉2の出口温度が一定となるようス
プレー流量設定値21を補正した補正スプレー流量設定
値31に基づき、スプレー流量が制御される。
In this way, the spray flow rate is controlled based on the corrected spray flow rate set value 31 that is obtained by correcting the spray flow rate set value 21 so that the outlet temperature of the furnace 2 is constant.

[発明が解決しようとする課題] しかしながら、上記従来のボイラの火炉出口温度制御装
置には、以下のような問題があった。
[Problems to be Solved by the Invention] However, the conventional boiler furnace outlet temperature control device described above has the following problems.

即ち、上記したように発電機出力指令19に基づいて求
めた火炉出口温度設定値23によりスプレー流量設定値
21を補正していく方法では燃料の性状が一定の場合に
は支障なく制御を行なうことができるが、性状の異なる
燃料を各種使用する場合、例えば炭種の異なる石炭を各
種使用する場合には、炭種によって火炉2の周壁に付着
する灰分の量が変化したり、石炭中の揮発分と固定炭素
との割合が変って発熱量が変化したりして、ボイラ1全
体の収熱量に対する、節炭器7と火炉2とを合計した収
熱量の割合が変化することから、収熱量の割合が低い場
合には火炉2の出口温度が火炉出口温度設定値23より
低くなって火炉2の周壁における水や蒸気の加熱度が不
足したり、反対に収熱量の割合が高い場合には火炉2の
出口温度が火炉出口温度設定値23より高くなって火炉
2の周壁における水や蒸気の加熱度が過剰となったり、
火炉2の周壁のメタル温度が上昇したりするという問題
が起っていた。
That is, in the method described above, in which the spray flow rate set value 21 is corrected by the furnace outlet temperature set value 23 determined based on the generator output command 19, control can be performed without any problem when the properties of the fuel are constant. However, when using various types of fuel with different properties, for example, when using different types of coal, the amount of ash adhering to the peripheral wall of the furnace 2 may change depending on the type of coal, and the volatilization in the coal may change depending on the type of coal. As the ratio of carbon and fixed carbon changes, the calorific value changes, and the ratio of the sum of the heat collected from the economizer 7 and the furnace 2 to the total heat collected by the boiler 1 changes. If the ratio of If the outlet temperature of the furnace 2 becomes higher than the furnace outlet temperature setting value 23 and the degree of heating of water or steam on the peripheral wall of the furnace 2 becomes excessive,
There has been a problem in that the temperature of the metal on the peripheral wall of the furnace 2 increases.

本発明は上述の実情に鑑み、燃料の性状の変化による火
炉部分の収熱割合の変化に拘らず、火炉の出口温度を火
炉出口温度設定値どうりの温度に保ち得るようにした、
ボイラの火炉出口温度制御装置を提供することを目的と
するものである。
In view of the above-mentioned circumstances, the present invention makes it possible to maintain the furnace outlet temperature at a temperature equal to the furnace outlet temperature setting value, regardless of changes in the heat absorption rate of the furnace section due to changes in the properties of the fuel.
The object of the present invention is to provide a boiler furnace outlet temperature control device.

[課題を解決するための手段] 本発明は、ボイラ1の各部に設けた熱センサ36〜39
と、各熱センサ36〜39からの検出信号40〜43に
基づいて、ボイラ1全体の収熱量に対する、ボイラ1の
節炭器7の収熱量と火炉2の収熱量とを合計した収熱量
の割合を求める演算装置44と、演算装置44からの収
熱量の割合を示す信号46に基づいて火炉出口温度設定
値49を求める演算制御装置48と、火炉出口温度設定
値49と火炉出口温度信号42゛との偏差を取り火炉出
口温度偏差値27を求める減算器24と、火炉出口温度
偏差値27を基にスプレー流量補正値29を求める比例
積分制御器28と、スプレー流量調整弁18を制御する
ためのスプレー流量設定値47にスプレー流量補正値2
9を掛けて補正スプレー流量設定値31を求める掛け算
器30とを備えたことを特徴とするボイラの火炉出口温
度制御装置にかかるものである。
[Means for Solving the Problems] The present invention provides thermal sensors 36 to 39 provided in each part of the boiler 1.
Based on the detection signals 40 to 43 from the respective heat sensors 36 to 39, the total heat absorption amount of the heat absorption amount of the boiler 1's economizer 7 and the heat absorption amount of the furnace 2 with respect to the heat absorption amount of the entire boiler 1 is determined. A calculation device 44 that calculates the ratio, a calculation control device 48 that calculates the furnace outlet temperature setting value 49 based on the signal 46 indicating the rate of heat absorption from the calculation device 44, and the furnace exit temperature setting value 49 and the furnace exit temperature signal 42. A subtractor 24 that calculates the furnace outlet temperature deviation value 27 by calculating the deviation from the furnace outlet temperature deviation value 27, a proportional integral controller 28 that calculates the spray flow rate correction value 29 based on the furnace outlet temperature deviation value 27, and a spray flow rate adjustment valve 18 are controlled. Spray flow rate correction value 2 to spray flow rate setting value 47 for
This invention relates to a boiler furnace outlet temperature control device characterized in that it is equipped with a multiplier 30 for calculating a corrected spray flow rate set value 31 by multiplying by 9.

[作   用] 本発明によれば、ボイラ1の各部に設けた熱センサ36
〜39からの検出信号40〜43に基づいて、演算装置
44により、ボイラ1全体の収熱量に対する、ボイラ1
の節炭器7と火炉2とを合計した収熱量の割合が求めら
れ、演算装置44からの収熱量の割合を示す信号46に
基づいて演算制御装置48により火炉出口温度設定値4
9が求められ、減算器24により火炉出口温度設定値4
9と火炉出口温度信号42゛との偏差が取られて火炉出
口温度偏差値27が求められ、比例積分制御器28によ
り火炉出口温度偏差値27を基にスプレー流量補正値2
9が求められ、掛け算器30によりスプレー流量調整弁
18を制御するためのスプレー流量設定値47にスプレ
ー流量補正値29が掛けられて補正スプレー流量設定値
31が求められる。
[Function] According to the present invention, the thermal sensor 36 provided in each part of the boiler 1
Based on the detection signals 40 to 43 from the boiler 1 to 39, the arithmetic unit 44 calculates the
The ratio of the total amount of heat absorbed by the economizer 7 and the furnace 2 is calculated, and the furnace outlet temperature set value 4 is determined by the arithmetic controller 48 based on the signal 46 indicating the ratio of the heat absorbed from the arithmetic device 44.
9 is obtained, and the furnace outlet temperature setting value 4 is determined by the subtractor 24.
9 and the furnace outlet temperature signal 42' is taken to obtain the furnace outlet temperature deviation value 27, and the spray flow rate correction value 2 is determined by the proportional integral controller 28 based on the furnace outlet temperature deviation value 27.
9 is determined, and the spray flow rate setting value 47 for controlling the spray flow rate regulating valve 18 is multiplied by the spray flow rate correction value 29 by the multiplier 30 to obtain a corrected spray flow rate setting value 31.

これにより、燃料の性状により節炭器7及び火炉2の収
熱量の割合が変化しても、火炉2の出口温度が火炉出口
温度設定値49どうりの温度に保たれる。
Thereby, even if the ratio of the heat absorption amount of the economizer 7 and the furnace 2 changes depending on the properties of the fuel, the outlet temperature of the furnace 2 is maintained at a temperature corresponding to the furnace outlet temperature setting value 49.

[実 施 例コ 以下、本発明の実施例を図面を参照しつつ説明する。[Implementation example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例であり、図中第5図と同一の
部分は同一の符号を付しであるため説明を省略する。
FIG. 1 shows one embodiment of the present invention, and the same parts in the figure as in FIG. 5 are given the same reference numerals, so a description thereof will be omitted.

36は水・蒸気流路9の節炭器7人口に設けられた、温
度検出器と圧力検出器を備えて成る熱センサ(以後、温
度検出器と圧力検出器を組合せたものを総称して熱セン
サと呼ぶ)、37は水・蒸気流路9の節炭器7出口と火
炉2人口の間に設けられた熱センサ、38は水・蒸気流
路9の火炉2出口に設けられた熱センサ、39は過熱器
8の出口に設けられた熱センサ、40.41.42.4
3は熱センサ36 、37 、38 、39からの温度
と圧力を示す検出信号であり、42′は熱センサ38の
検出信号42の一部を構成する火炉出口温度信号である
36 is a thermal sensor equipped with a temperature detector and a pressure detector (hereinafter, a combination of a temperature detector and a pressure detector is collectively referred to as 37 is a heat sensor installed between the exit of the economizer 7 in the water/steam flow path 9 and the furnace 2, and 38 is a heat sensor installed at the exit of the furnace 2 in the water/steam flow path 9. Sensor, 39 is a thermal sensor provided at the outlet of superheater 8, 40.41.42.4
3 is a detection signal indicating the temperature and pressure from the thermal sensors 36, 37, 38, and 39, and 42' is a furnace outlet temperature signal forming a part of the detection signal 42 of the thermal sensor 38.

44は検出信号40,41,42.43を入力して、ボ
イラ1全体の収熱量に対する、節炭器7と火炉2とを合
計した収熱量の割合を算出する演算装置である。45は
収熱量の割合を示す信号46を入力して発電機出力指令
19に応じたスプレー流量調整弁18制御用のスプレー
流量設定値47を導き出す演算制御装置である。48は
収熱量の割合を示す信号46を入力して発電機出力指令
19に応じた火炉出口温度設定値49を導き出す演算制
御装置である。
44 is an arithmetic device which inputs the detection signals 40, 41, 42, and 43 and calculates the ratio of the total heat absorption amount of the economizer 7 and the furnace 2 to the heat absorption amount of the boiler 1 as a whole. 45 is an arithmetic and control device that inputs a signal 46 indicating the rate of heat absorption and derives a spray flow rate set value 47 for controlling the spray flow rate regulating valve 18 in accordance with the generator output command 19. 48 is an arithmetic and control device that inputs a signal 46 indicating the rate of heat absorption and derives a furnace outlet temperature setting value 49 according to the generator output command 19.

次に、作動について説明する。Next, the operation will be explained.

水・蒸気流路9に供給されたボイラ水10が加熱され、
発電が行われる過程については第5図に示すものと同様
である。
The boiler water 10 supplied to the water/steam flow path 9 is heated,
The process of generating electricity is similar to that shown in FIG.

バーナ3で燃焼される燃料として性状の異なる燃料を使
用する場合、例えば炭種の異なる石炭を各種使用する場
合には、炭種によって火炉2の周壁に付着する灰分の量
が変化したり、石炭中の揮発分と固定炭素との割合が変
って発熱量が変化したりするので、ボイラ1全体の収熱
量に対する、節炭器7と火炉2とを合計した収熱量の割
合が変化する。
When using fuels with different properties as the fuel to be burned in the burner 3, for example when using various types of coal, the amount of ash adhering to the peripheral wall of the furnace 2 may change depending on the type of coal, Since the ratio of volatile matter and fixed carbon in the boiler changes, and the amount of heat generated changes, the ratio of the total amount of heat received by the economizer 7 and the furnace 2 to the amount of heat received by the boiler 1 as a whole changes.

そこで、熱センサ36,37.38.39により、夫々
節炭器7人口、節炭器7出口と火炉2人口の間、火炉2
出口、水・蒸気流路9出口の温度と圧力を検出して、検
出信号40,41,42.43を演算装置44に入力し
、演算装置44により、各位置に於ける熱量を演算する
。そして次に、検出信号43によって得られた熱量から
検出信号40によって得られた熱量を減算してボイラ1
全体の収熱量を求めると共に、検出信号41によって得
られた熱量から検出信号40によって得られた熱量を減
算して節炭器7の収熱量を求め、1つ検出信号42から
41を減算して火炉2の収熱量を求める。更に節炭器7
の収熱量と火炉2の収熱量を足した合計の収熱量をボイ
ラ1全体の収熱量で割って、ボイラ1全体の収熱量に対
する、節炭器7の収熱量と火炉2の収熱量とを合計した
収熱量の割合を計算する。
Therefore, the thermal sensors 36, 37, 38, and 39 detect the temperature between the 7th population of the economizer, the 7th exit of the economizer and the 2nd population of the furnace 2, and the 2nd population of the furnace 2, respectively.
The temperature and pressure at the outlet and the outlet of the water/steam flow path 9 are detected, and the detection signals 40, 41, 42, 43 are input to the calculation device 44, which calculates the amount of heat at each position. Then, the amount of heat obtained by the detection signal 40 is subtracted from the amount of heat obtained by the detection signal 43, and the boiler 1
In addition to finding the overall heat absorption amount, the heat amount obtained by the detection signal 40 is subtracted from the heat amount obtained by the detection signal 41 to find the heat absorption amount of the economizer 7, and 41 is subtracted from one detection signal 42. Calculate the heat absorption amount of furnace 2. Furthermore, economizer 7
The total heat loss obtained by adding the heat loss of the furnace 2 and the heat loss of the furnace 2 is divided by the heat loss of the entire boiler 1 to calculate the heat loss of the economizer 7 and the heat loss of the furnace 2 relative to the heat loss of the entire boiler 1. Calculate the percentage of total heat loss.

演算装置44で収熱量の割合が計算されたら、収熱量の
割合を示す信号46を演算制御装置45に入力する。そ
して、演算制御装置45は発電機出力指令19の大きさ
に応じて第2図に示すような収熱量の割合とスプレー流
量の関係を表わす関数を複数備えているので、演算制御
装置45は現在の発電機出力指令19の大きさに応じた
関数に基づいて、収熱量の割合に対応するスプレー流量
を導き出す。
Once the heat absorption rate is calculated by the arithmetic unit 44, a signal 46 indicating the heat absorption rate is input to the arithmetic control unit 45. The arithmetic and control unit 45 is equipped with a plurality of functions that express the relationship between the rate of heat absorption and the spray flow rate as shown in FIG. 2 according to the magnitude of the generator output command 19. A spray flow rate corresponding to the rate of heat absorption is derived based on a function corresponding to the magnitude of the generator output command 19.

第2図の関数は、節炭器7と火炉2とを合計した収熱量
の割合が小さい場合には、スプレー流路15側に流す水
の量を多くしてその分だけ節炭器7及び火炉2側に流す
水の量を減らすことにより、節炭器7及び火炉2におけ
る水や蒸気の加熱度を所定の値まで上げるように制御し
、反対に節炭器7と火炉2とを合計した収熱量の割合が
大きい場合には、スプレー流路15側に流す水の量を少
くしてその分だけ節炭器7及び火炉2側に流す水の量を
増やすことにより、節炭器7及び火炉2における水や蒸
気の加熱度を所定の値まで下げるように制御する必要が
あることから、収熱量の割合が上がるに従いスプレー流
量が下がる右下りの曲線となり、具体的な関数は発電機
出力指令190大きさごとに予め計算或いは実験により
求められて演算装置44に入力されている。
The function shown in FIG. 2 indicates that when the ratio of the total heat absorption amount of the energy saver 7 and the furnace 2 is small, the amount of water flowing to the spray channel 15 side is increased and the amount of water that is absorbed by the energy saver 7 and the furnace 2 is increased by that amount. By reducing the amount of water flowing to the furnace 2 side, the heating degree of water and steam in the economizer 7 and the furnace 2 is controlled to increase to a predetermined value, and conversely, the heating degree of the water and steam in the economizer 7 and the furnace 2 is increased to a predetermined value. When the proportion of the heat absorption amount is large, the amount of water flowing to the spray channel 15 side is reduced and the amount of water flowing to the economizer 7 and furnace 2 side is increased by that amount. Since it is necessary to control the heating degree of water and steam in the furnace 2 to lower it to a predetermined value, the spray flow rate decreases as the rate of heat absorption increases, and the specific function is determined by the generator. The output command 190 is determined in advance by calculation or experiment for each magnitude and is input to the arithmetic unit 44.

演算制御装置45で、収熱量の割合に対応するスプレー
流量を導き出したら、該スプレー流量をスプレー流量設
定値47として第5図と同様にスプレー流量調整弁18
の制御に用いるようにする。
Once the spray flow rate corresponding to the rate of heat absorption is derived by the arithmetic and control unit 45, the spray flow rate is set as the spray flow rate set value 47 and the spray flow rate adjustment valve 18 is operated in the same manner as in FIG.
It should be used for control.

これにより、スプレー流量調整弁18は、スブし−流量
設定値47に基づいて、節炭器7と火炉2を合計した収
熱量の割合が低い場合には、スプレー流量が多くなり、
反対に節炭器7と火炉2を合計した収熱量の割合が高い
場合にはスプレー流量が少くなるよう制御される。
As a result, the spray flow rate adjustment valve 18 increases the spray flow rate when the ratio of the total heat absorption amount of the economizer 7 and the furnace 2 is low, based on the spray flow rate set value 47.
On the contrary, when the ratio of the total amount of heat absorbed by the economizer 7 and the furnace 2 is high, the spray flow rate is controlled to be small.

同時に、収熱量の割合を示す信号46を演算制御装置4
8に入力する。演算制御装置48は発電機出力指令19
の大きさに応じて第3図に示すような収熱量の割合と火
炉出口温度の関係を表わす関数を複数備えているので、
演算制御装置48は現在の発電機出力指令19の大きさ
に応じた関数に基づいて、収熱量の割合に対応する火炉
出口温度を導き出す。
At the same time, a signal 46 indicating the rate of heat absorption is sent to the arithmetic and control unit 4.
Enter 8. The arithmetic and control unit 48 outputs a generator output command 19
As shown in Figure 3, there are multiple functions that express the relationship between the rate of heat absorption and the furnace outlet temperature, depending on the size of the furnace.
The arithmetic and control device 48 derives the furnace outlet temperature corresponding to the rate of heat absorption based on a function corresponding to the current magnitude of the generator output command 19.

第3図の関数は、収熱量の割合が上がるに従い火炉出口
温度が上がるので右上がりの曲線となり、具体的な関数
は発電機出力指令19の大きさごとに予め計算或いは実
験により求められて演算制御装置48に入力されている
The function in Figure 3 is a curve that slopes upward to the right because the furnace outlet temperature increases as the rate of heat absorption increases, and the specific function is calculated in advance or experimentally determined for each magnitude of the generator output command 19. It is input to the control device 48.

演算制御装置48では、収熱量の割合に対応する火炉出
口温度を導き出したら、該火炉出口温度を火炉出口温度
設定値49として第5図と同様にスプレー流量設定値4
7の補正に用いるようにする。
Once the arithmetic and control unit 48 derives the furnace outlet temperature corresponding to the rate of heat absorption, the furnace outlet temperature is set as the furnace outlet temperature set value 49 and the spray flow rate set value 4 is set as in FIG.
It should be used for the correction of 7.

このように収熱量の割合に基づいて、火炉出口温度設定
値49を求めスプレー流量調整弁18を制御するための
スプレー流量設定値47を補正するようにしたことによ
り、異なる性状の燃料、特に炭種の異なる石炭を燃料と
して使用した場合にも、火炉2の出口温度を常に火炉出
口温度設定値49どうりの温度に保つことができる。
By determining the furnace outlet temperature setting value 49 and correcting the spray flow rate setting value 47 for controlling the spray flow rate adjustment valve 18 based on the heat absorption rate, it is possible to adjust the spray flow rate setting value 47 for controlling the spray flow rate adjustment valve 18. Even when different types of coal are used as fuel, the outlet temperature of the furnace 2 can always be maintained at a temperature corresponding to the furnace outlet temperature setting value 49.

尚、本発明のボイラの火炉出口温度制御装置は、上述の
実施例にのみ限定されるものではなく、燃料は石炭に限
らないこと、その他、本発明の要旨を逸脱しない範囲内
において種々変更を加え得ることは勿論である。
It should be noted that the boiler furnace outlet temperature control device of the present invention is not limited to the above-described embodiments, the fuel is not limited to coal, and various other changes may be made without departing from the gist of the present invention. Of course, you can add more.

[発明の効果] 以上説明したように、本発明のボイラの火炉出口温度制
御装置によれば、ボイラ1全体の収熱量に対する節炭器
7と火炉2との合計の収熱量の割合を求め、該収熱量の
割合を基に火炉出口温度設定値49を求めて、火炉出口
温度設定値49を基にスプレー流量調整弁18を制御す
るためのスプレー流量設定値47を補正するようにした
ので、性状の異なる燃料を使用した場合でも火炉2の出
口温度を常に火炉出口温度設定値49どうりの温度に保
つことができるという優れた効果を奏し得る。
[Effects of the Invention] As explained above, according to the boiler furnace outlet temperature control device of the present invention, the ratio of the total heat absorption amount of the economizer 7 and the furnace 2 to the heat absorption amount of the entire boiler 1 is determined, Since the furnace outlet temperature set value 49 is determined based on the ratio of the heat absorption amount, and the spray flow rate set value 47 for controlling the spray flow rate adjustment valve 18 is corrected based on the furnace outlet temperature set value 49, Even when fuels with different properties are used, an excellent effect can be achieved in that the outlet temperature of the furnace 2 can always be maintained at a temperature corresponding to the furnace outlet temperature set value 49.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す水・蒸気系統図、第2
図は発電機出力指令が一定の場合における収熱量の割合
とスプレー流量の関係を示す線図、第3図は発電機出力
指令が一定の場合における収熱量の割合と火炉出口温度
の関係を示す線図、第4図は従来例を説明するための一
般的なボイラの概略全体側面図、第5図は従来例の水・
蒸気系統図である。 図中、1はボイラ、2は火炉、7は節炭器、18はスプ
レー流量調整弁、24は減算器、27は火炉出口温度偏
差値、28は比例積分制御器、29はスプレー流量補正
値、30は掛け算器、31は補正スプレー流量設定値、
36〜39は熱センサ、40〜43は各熱センサ36〜
39からの検出信号、42°は火炉出口温度信号、44
は収熱量の割合を求める演算装置、46は演算装置44
からの収熱量の割合を示す信号、47はスプレー流量設
定値、48は演算制御装置、49は火炉出口温度設定値
を示す。
Fig. 1 is a water/steam system diagram showing one embodiment of the present invention;
The figure is a diagram showing the relationship between the heat absorption rate and the spray flow rate when the generator output command is constant, and Figure 3 shows the relationship between the heat absorption rate and the furnace outlet temperature when the generator output command is constant. Figure 4 is a schematic overall side view of a general boiler to explain the conventional example, and Figure 5 is a diagram of the conventional boiler.
It is a steam system diagram. In the figure, 1 is the boiler, 2 is the furnace, 7 is the economizer, 18 is the spray flow rate adjustment valve, 24 is the subtractor, 27 is the furnace outlet temperature deviation value, 28 is the proportional integral controller, and 29 is the spray flow rate correction value , 30 is a multiplier, 31 is a correction spray flow rate setting value,
36-39 are thermal sensors, 40-43 are each thermal sensors 36-
Detection signal from 39, 42° is furnace outlet temperature signal, 44
46 is a calculation device for calculating the rate of heat absorption, and 44 is a calculation device.
47 is a spray flow rate set value, 48 is an arithmetic and control device, and 49 is a furnace outlet temperature set value.

Claims (1)

【特許請求の範囲】[Claims] 1)ボイラ1の各部に設けた熱センサ36〜39と、各
熱センサ36〜39からの検出信号40〜43に基づい
て、ボイラ1全体の収熱量に対する、ボイラ1の節炭器
7の収熱量と火炉2の収熱量とを合計した収熱量の割合
を求める演算装置44と、演算装置44からの収熱量の
割合を示す信号46に基づいて火炉出口温度設定値49
を求める演算制御装置48と、火炉出口温度設定値49
と火炉出口温度信号42’との偏差を取り火炉出口温度
偏差値27を求める減算器24と、火炉出口温度偏差値
27を基にスプレー流量補正値29を求める比例積分制
御器28と、スプレー流量調整弁18を制御するための
スプレー流量設定値47にスプレー流量補正値29を掛
けて補正スプレー流量設定値31を求める掛け算器30
とを備えたことを特徴とするボイラの火炉出口温度制御
装置。
1) Based on the thermal sensors 36 to 39 provided in each part of the boiler 1 and the detection signals 40 to 43 from each of the thermal sensors 36 to 39, the energy consumption of the energy saver 7 of the boiler 1 is determined relative to the total heat absorption amount of the boiler 1. An arithmetic device 44 calculates the ratio of the total amount of heat and the amount of heat absorbed by the furnace 2, and a furnace outlet temperature set value 49 is calculated based on a signal 46 indicating the ratio of the amount of heat received from the arithmetic device 44.
an arithmetic and control unit 48 for determining the furnace outlet temperature set value 49;
a subtractor 24 that calculates the furnace exit temperature deviation value 27 by taking the deviation between the furnace exit temperature signal 42' and the furnace exit temperature signal 42'; a proportional integral controller 28 that calculates the spray flow rate correction value 29 based on the furnace exit temperature deviation value 27; A multiplier 30 that calculates a corrected spray flow rate set value 31 by multiplying a spray flow rate set value 47 for controlling the regulating valve 18 by a spray flow rate correction value 29.
A boiler furnace outlet temperature control device comprising:
JP25458890A 1990-09-25 1990-09-25 Boiler furnace outlet temperature control device Expired - Lifetime JP2872378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25458890A JP2872378B2 (en) 1990-09-25 1990-09-25 Boiler furnace outlet temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25458890A JP2872378B2 (en) 1990-09-25 1990-09-25 Boiler furnace outlet temperature control device

Publications (2)

Publication Number Publication Date
JPH04131602A true JPH04131602A (en) 1992-05-06
JP2872378B2 JP2872378B2 (en) 1999-03-17

Family

ID=17267129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25458890A Expired - Lifetime JP2872378B2 (en) 1990-09-25 1990-09-25 Boiler furnace outlet temperature control device

Country Status (1)

Country Link
JP (1) JP2872378B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257301A (en) * 2001-03-02 2002-09-11 Ishikawajima Harima Heavy Ind Co Ltd Furnace path outlet temperature control method and apparatus using change in opening of reheater gas damper
WO2021039311A1 (en) * 2019-08-30 2021-03-04 住友重機械工業株式会社 Boiler system, control method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257301A (en) * 2001-03-02 2002-09-11 Ishikawajima Harima Heavy Ind Co Ltd Furnace path outlet temperature control method and apparatus using change in opening of reheater gas damper
WO2021039311A1 (en) * 2019-08-30 2021-03-04 住友重機械工業株式会社 Boiler system, control method, and program

Also Published As

Publication number Publication date
JP2872378B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
CN108679592B (en) A kind of the boiler load control system and control method of biomass boiler
JP5292014B2 (en) Cross-flow type exhaust heat recovery boiler and control method thereof
JPH04131602A (en) Controller of temperature of boiler furnace outlet
JP7114808B2 (en) Water supply control of forced once-through heat recovery boiler
JP2004190913A (en) Automatic correction device of calorific value in coal-fired boiler
JP2521670B2 (en) Boiler steam temperature controller
JP2922602B2 (en) Boiler spray flow control method
JP2887999B2 (en) Fuel control device for auxiliary boiler in multiple boiler facilities
JP3285238B2 (en) Boiler water supply control device
JPH1054508A (en) Main steam temperature control method and device
JPH0238161Y2 (en)
JP3946170B2 (en) Combustion control device and combustion control method for sludge incinerator
JP3235643B2 (en) Combustion control method and apparatus for sludge incinerator
JP2002122317A (en) Combustion control system of refuse incinerator
JPH028905A (en) Combustion controller
JP2002323203A (en) Vapor temperature control method and device for once- through boiler
JP4605656B2 (en) Thermal power generation boiler and combustion air supply control method
JPH05149108A (en) Drum level control device for compound cycle power generation plant
JP2002147711A (en) Boiler reheat steam temperature controller
JP2642414B2 (en) Process control equipment
JPH0820072B2 (en) Combustion control device
JP2002286202A (en) Boiler vapor temperature control device
JP2725143B2 (en) Combustion superheater
JP3756997B2 (en) Hot water heater and combustion control method during re-watering
JPH0461241B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12