[go: up one dir, main page]

JPH04130911A - Voltage monitor - Google Patents

Voltage monitor

Info

Publication number
JPH04130911A
JPH04130911A JP2252486A JP25248690A JPH04130911A JP H04130911 A JPH04130911 A JP H04130911A JP 2252486 A JP2252486 A JP 2252486A JP 25248690 A JP25248690 A JP 25248690A JP H04130911 A JPH04130911 A JP H04130911A
Authority
JP
Japan
Prior art keywords
power supply
voltage
time
degree
abnormal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2252486A
Other languages
Japanese (ja)
Inventor
Yuichi Hamaguchi
濱口 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2252486A priority Critical patent/JPH04130911A/en
Publication of JPH04130911A publication Critical patent/JPH04130911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Sources (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To inform a signal for determining the operation of whole system to the system by forecasting a change in the characteristics of a power supply to be used when abnormality occurs in the power supply, and forecasting a period in which the system can be normally driven. CONSTITUTION:The power supply 1 supplies voltage to a digital circuit system including a microcomputer. A voltage measuring instrument 3 detects the power supply voltage and a time forecasting means 4 for forecasting a time to be consumed up to the power supply comes to abnormal by inputting the detection signal forecases the time to be consumed up to the power supply comes to abnormal based upon a current power supply voltage. A degree deciding means 5 for deciding the degree of the power supply up to the power supply comes to abnormal decides the generation speed of abnormality in the power supply based upon the forecasted value and sorts the degree up to the abnormality into several levels and the degree up to the power supply comes to abnormal is informed to the system 2 by a means 6. Thereby, the system 2 can protect the system itself in accordance with several grades corresponding to the sorts of information signals.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、監視対象の電圧異常を予測する機能を有し
た電圧監視装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a voltage monitoring device having a function of predicting voltage abnormalities of a monitored object.

[従来の技術] 第5図は、例えば89°三菱半導体データブックアナロ
グASSP・汎用リニアIC編7−32〜7−38頁に
示されている従来の電圧監視装置のブロック図である。
[Prior Art] FIG. 5 is a block diagram of a conventional voltage monitoring device shown in, for example, 89° Mitsubishi Semiconductor Data Book Analog ASSP/General Purpose Linear IC Edition, pages 7-32 to 7-38.

交流電源を接続して直流電圧を得る監視対象たる電源(
1)のVccと250間の電圧は、レベル変換器(12
)、電源電圧監視装置(15)及びマイコンをもつデジ
タル回路システム(2)に与えられている。電源電圧監
視装置(15)は、レベル変換器(12)と、入力端子
比較回路(40)と、遅延生成回路(50)とを備えて
おり、入力電圧比較回路(40)のコンパレータ(42
)の負入力端子−には前記レベル変換器(12)の出力
電圧が与えられる。コンパレータ(42)の正入力端子
子には、基準電源(41)の電圧が与えられる。この基
準電源(41)の電圧は、マイコンをもつデジタル回路
システム(2)が正常動作する電圧に関連した電圧値に
設定されている。このコンパレータ(42)の出力は、
前記遅延生成回路(50)のエミッタ接地をしているス
イッチング用トランジスタ(52)のベースに与えられ
、そのコレクタには、入力側を前記電源(1)の正電極
と接続している定電流源(51)の出力側が接続される
A power source to be monitored to obtain a DC voltage by connecting an AC power source (
1) The voltage between Vcc and 250
), a power supply voltage monitoring device (15) and a digital circuit system (2) having a microcomputer. The power supply voltage monitoring device (15) includes a level converter (12), an input terminal comparison circuit (40), and a delay generation circuit (50).
) is supplied with the output voltage of the level converter (12). The voltage of the reference power supply (41) is applied to the positive input terminal of the comparator (42). The voltage of this reference power supply (41) is set to a voltage value related to the voltage at which the digital circuit system (2) having a microcomputer operates normally. The output of this comparator (42) is
A constant current source is provided to the base of the switching transistor (52) whose emitter is grounded in the delay generation circuit (50), and whose collector is connected to the positive electrode of the power source (1) on the input side. The output side of (51) is connected.

またスイッチング用トランジスタ(52)のコレクタは
コンパレータ(53)の正入力端子子と接続されるとと
もに、時定数用コンデンサ(60)を介して接地される
。コンパレータ(53)の負入力端子−には第二の基準
電源(54)の電圧か与えられる。コンパレータ(53
)の出力はマイコンをもつデジタル回路システム(2)
へ与えられる。
The collector of the switching transistor (52) is connected to the positive input terminal of the comparator (53) and grounded via a time constant capacitor (60). The voltage of the second reference power supply (54) is applied to the negative input terminal of the comparator (53). Comparator (53
) output is a digital circuit system with a microcontroller (2)
given to.

次に電圧監視装置の動作を説明する。電源(1)の電圧
が低下して、マイコンをもつデジタル回路システム(2
)が誤動作する恐れが生じる状態になった場合は、レベ
ル変換回路(12)の出力電圧が電源(1)の電圧に比
例して低下する。そのためコンパレータ(42)の出力
は“H″レベルなり、スイッチング用トランジスタ(5
2)がオン動作する。そうすると時定数用コンデンサ(
60)がスイッチング用トランジスタ(52)を介して
放電し、コンパレータ(53)の出力が、“L”レベル
になり、その出力がマイコンをもつデジチル回路システ
ム(2ンに通知される。それによりマイコンをもつデジ
タル回路システム(2)は電源(1)の電圧が異常であ
る事を知り、システム動作を停止し、自分自身の電圧低
下による誤動作を未然に防止できる。
Next, the operation of the voltage monitoring device will be explained. When the voltage of the power supply (1) drops, the digital circuit system with a microcontroller (2)
) is in a state where there is a risk of malfunction, the output voltage of the level conversion circuit (12) decreases in proportion to the voltage of the power supply (1). Therefore, the output of the comparator (42) becomes "H" level, and the switching transistor (5
2) turns on. Then, the time constant capacitor (
60) is discharged through the switching transistor (52), the output of the comparator (53) becomes "L" level, and the output is notified to the digital chill circuit system (2) that includes the microcomputer. The digital circuit system (2) that has the power supply (1) can know that the voltage of the power supply (1) is abnormal and stop the system operation to prevent malfunctions caused by its own voltage drop.

[発明が解決しようとする課題] 従来の電源監視装置は、ある時刻の1つの電圧レベルを
基準として電源の異常、正常を判定しているので、IC
の最低動作電圧より少し高い電圧で電源の異常を検出し
ており、重要な情報を退避するように設計されているシ
ステムの電源監視装置として用いる場合、使用する電源
の特性に大きく依存してしまうという問題があった。つ
まりシステム設計に際し、電源出力が低下しはじめてか
ら最低動作電圧に至るまでの時間的見積りをする必要が
あり、測定データの最悪値を用いて検出電圧値や退避す
べき情報量を決めねばならず、また、電源の特性自体に
依存するので、電源の経年変化等による特性変化に対応
することも出来ないという課題があった。
[Problems to be Solved by the Invention] Conventional power supply monitoring devices determine whether the power supply is abnormal or normal based on one voltage level at a certain time.
It detects abnormalities in the power supply at a voltage slightly higher than the minimum operating voltage of the system, and when used as a power supply monitoring device for a system designed to save important information, it is highly dependent on the characteristics of the power supply used. There was a problem. In other words, when designing a system, it is necessary to estimate the time from when the power supply output begins to decrease until it reaches the minimum operating voltage, and the worst value of the measured data must be used to determine the detected voltage value and the amount of information to be saved. In addition, since it depends on the characteristics of the power source itself, there is a problem that it is not possible to cope with changes in characteristics due to changes in the power source over time.

本発明は、この様な課題を解決するためになされたもの
で、電源異常が起こった場合、使用する電源の特性の変
化を予測し、つまり電源電圧の変化より、システムが後
どのくらい正常に働き得るかを予測することにより、シ
ステム全体の動作を決めるための信号をシステムへ通知
することが出来る電源監視装置を得ることを目的とする
The present invention was made to solve these problems, and when a power supply abnormality occurs, it is possible to predict changes in the characteristics of the power supply being used. It is an object of the present invention to provide a power supply monitoring device that can notify a system of a signal for determining the operation of the entire system by predicting whether the system will operate or not.

[8題を解決するための手段] この発明に係わる電源監視装置は、監視すべき電源電圧
を測定する電圧測定器と、測定されたデータより電源電
圧の降下率を算出し、この値を用いて電源電圧異常まで
の時間を予測する手段と、予測された時間より電源異常
になるまでの程度を判定し、システムへ通知する手段を
備えたものである。
[Means for Solving Eight Problems] The power supply monitoring device according to the present invention includes a voltage measuring device that measures the power supply voltage to be monitored, a voltage measuring device that calculates the drop rate of the power supply voltage from the measured data, and uses this value. The system is equipped with means for predicting the time until the power supply voltage becomes abnormal based on the predicted time, and means for determining the extent to which the power supply becomes abnormal based on the predicted time and notifying the system.

[作用コ この発明においては、監視すべき電源電圧をある時間間
隔ごとに取り込み、この値をもとに電源電圧の変化を算
出し、電源異常になるまでの時間を予測し、予測された
時間をもとに電源異常になるまでの程度をシステムへ通
知する。
[Operations] In this invention, the power supply voltage to be monitored is acquired at certain time intervals, the change in the power supply voltage is calculated based on this value, the time until a power supply abnormality is predicted, and the predicted time is calculated. Based on this, the system is notified of the degree of power failure.

このようにして、電源側の特性をリアルタイムに監視し
ているので、設計時に電源装置の最悪特性を見積る必要
がなく、経年変化にも対応できる。
In this way, the characteristics of the power supply are monitored in real time, so there is no need to estimate the worst characteristics of the power supply at the time of design, and changes over time can be accommodated.

[実施例コ 第1図は、この発明に係わる電圧監視装置の実施例の全
体構成図である。この実施例は第1図より明らかなよう
に、電源(1)は、マイコンをもつデジタル回路システ
ム(2)へ電圧を供給している。この電源電圧を電圧測
定器(3)により検出し、この検出信号を入力とする電
源異常までの時間予測手段(4)にて現時点の電源電圧
より電源異常になるまでの時間が予測される。この予測
値にもとすいて電源異常に至るまでの程度判定手段(5
)にてどのくらい早く電源が異常になるかを判定しその
レベルをいくつかに分類しておき、電源異常に至るまで
の程度を通知する手段(6)にて、マイコンをもつデジ
タル回路システム(2)へ通知する。これにより、マイ
コンを持つデジタル回路システム(2)では、この通知
信号の種類にていくつかのグレードに分かれた自分自身
の保護を行う事が出来る。
Embodiment FIG. 1 is an overall configuration diagram of an embodiment of a voltage monitoring device according to the present invention. In this embodiment, as is clear from FIG. 1, a power supply (1) supplies voltage to a digital circuit system (2) having a microcomputer. This power supply voltage is detected by a voltage measuring device (3), and the time until power supply abnormality prediction means (4) which receives this detection signal as input predicts the time until power supply abnormality occurs from the current power supply voltage. Based on this predicted value, the degree judgment method (5
) to determine how quickly the power supply will become abnormal, classify the level into several levels, and notify the degree to which the power supply malfunctions (6), using a digital circuit system with a microcomputer (2) ). As a result, the digital circuit system (2) having a microcomputer can protect itself in several grades depending on the type of notification signal.

第2図は、第一図の実施例の電気接続を示す回路図であ
る。図中(14)は、電源電圧監視装置(15)内のマ
イクロコンピュータであり、入力回路(7)、メモリ(
8) 、 (:Pl] (9) 、出力回路(10)を
有している。また、(3)は、電圧測定器であり、電f
i (1)の電圧を適当なレンジに変換するレベル変換
器(12)とその出力をデジタルに変換するA/D変換
器(11)で構成されている。
FIG. 2 is a circuit diagram showing the electrical connections of the embodiment of FIG. 1. In the figure (14) is a microcomputer in the power supply voltage monitoring device (15), which includes an input circuit (7) and a memory (
8) , (:Pl] (9) , has an output circuit (10). Also, (3) is a voltage measuring device, which measures the voltage f.
It consists of a level converter (12) that converts the voltage of i (1) to an appropriate range and an A/D converter (11) that converts the output into digital.

次に上記の実施例の動作を第3図、第4図を参照しなが
ら説明する。第3図は、マイクロコンピュータ(14)
のメモリ(8)に記憶された電源電圧異常検出プログラ
ムを示すフローチャート、第4図は、電源(1)の電圧
異常を予測検出動作の説明図である。
Next, the operation of the above embodiment will be explained with reference to FIGS. 3 and 4. Figure 3 shows a microcomputer (14)
FIG. 4 is a flowchart showing the power supply voltage abnormality detection program stored in the memory (8) of the power supply (1), and is an explanatory diagram of the operation of predicting and detecting the voltage abnormality of the power supply (1).

マイコンをもつデジタル回路システム(2)が、正常動
作を開始すると電源電圧監視装置(15)の動作がはじ
まり、電源電圧V。をサンプリングしメモリ(8)に格
納する(第3図ステップ2【)。次にある一定時間 (
δt)何もしないで待ち(ステップ22)つぎの電源電
圧v1をサンプリングしメモリ(8)に格納する(ステ
ップ23)  ここで、メモリ(8)に格納されている
サンプルした時刻の異なる電源電圧値v0、Vlを用い
てvlが予測開始電圧Vstartより小さくなり、か
つ■1が、voより小さくなったかどうか判定する(ス
タッブ24)。ふたつの条件のいずれかを満たさない場
合は、電源は低下方向へは動いていないと判断でき、電
源異常に至るまでの時間を予測する必要がないので、メ
モリ(8)にある電源電圧値v1を新たにvoと考え、
メモリ(8)内のvoの格納されていた位置に■、を格
納しくステップ25)、新たにvlをサンプルして電源
を監視を続けるため再びステップ(22)から順に実行
していく。二つの条件をともに満たした場合は、電圧異
常に至るまでの時間を予想しなければならず、ステップ
(26)にて電源異常に至るまでの時間Tを予測する。
When the digital circuit system (2) with a microcomputer starts normal operation, the power supply voltage monitoring device (15) starts operating and the power supply voltage V is started. is sampled and stored in the memory (8) (step 2 [) in Fig. 3]. Next, for a certain period of time (
δt) Wait without doing anything (Step 22) Sample the next power supply voltage v1 and store it in the memory (8) (Step 23) Here, the power supply voltage values at different sampled times stored in the memory (8) Using v0 and Vl, it is determined whether vl has become smaller than the predicted start voltage Vstart, and (1) has become smaller than vo (stub 24). If either of the two conditions is not met, it can be determined that the power supply is not moving in the downward direction, and there is no need to predict the time until the power supply malfunctions, so the power supply voltage value v1 in the memory (8) is newly considered as vo,
(2) is stored in the location where vo was stored in the memory (8). Step 25) is performed again in order from step (22) to sample vl anew and continue monitoring the power supply. If both conditions are satisfied, it is necessary to predict the time until the voltage abnormality occurs, and in step (26), the time T until the power supply abnormality occurs is predicted.

ステップ(26)での予測の方法は、第4図で示すよう
に、横軸に時間、縦軸に電源電圧を取ると現在の時刻で
の電源電圧v1の地点Bと現在よりδを時間前の電源電
圧値v0の地点Aを用いABを点線で示すように延長し
、マイコンをもつデジタル回路システム(2)の最低動
作電圧VEMGとの交点Cを求めると、現在の電圧降下
が続くとあと1時間後に最低動作電圧VEMGとなるこ
とが第4図よりわかる。また、最低動作電圧VEMGま
での時間Tは、現在の電源電圧値v1、時間間隔δt、
現在よりδ七時間前の電源電圧V。、最低動作電圧値V
EMGより下式の様に求められる。
The prediction method in step (26) is as shown in Fig. 4, where the horizontal axis is time and the vertical axis is power supply voltage. Using the point A of the power supply voltage value v0 of It can be seen from FIG. 4 that the lowest operating voltage VEMG is reached after one hour. Further, the time T until the lowest operating voltage VEMG is the current power supply voltage value v1, the time interval δt,
Power supply voltage V δ7 hours before the present. , minimum operating voltage value V
It can be obtained from EMG as shown below.

T=v、二り駐−δ1 −−−−−−−−−−−−  
 ■VO−V。
T=v, bi-parked −δ1 −−−−−−−−−−−
■VO-V.

次に、ここで算出された最低動作電圧までの時間Tと電
圧低下の度合が早いか遅いかを判定するための定数値T
αと比較しく第3図ステップ27) 、TαよりTが小
さい場合、最低動作電圧に至るまでの時間Tが、短いと
判断しくステップ28)、マイコンをもつデジタル回路
システム(2)へ異常に至るまでの時間が短いことを通
知する(ステップ29)。また、TαよりTが大きい場
合、最低動作電圧に至るまでの時間Tが、長いと判断し
くステップ30)、マイコンをもつデジタル回路システ
ム(2)へ異常に至るまでの時間が長いことを通知する
(ステップ31)。マイコンをもつデジチル回路システ
ム(2)では、この通知を見ることで、電源異常となる
までの度合を知り、システム保護のためにたくさんの仕
事ができるかどうかを判断しその動作を取ることか出来
る。この後、更に電源を監視を続けるため、メモリ(8
)にある電源電圧値V、を新たに■。と考え、メモリ(
8)内のV。の格納されていた位置にvlと格納しくス
テップ32)、再びステップ(22)から順に実行して
いく。以降上記が縁り返される。
Next, the time T to the lowest operating voltage calculated here and the constant value T used to determine whether the degree of voltage drop is fast or slow.
If T is smaller than Tα (Step 27) in Figure 3 compared to α, it is assumed that the time T required to reach the minimum operating voltage is short (Step 28), leading to an abnormality in the digital circuit system (2) with a microcomputer. It is notified that the time until the end is short (step 29). Furthermore, if T is larger than Tα, it is determined that the time T required to reach the minimum operating voltage is long (step 30), and the digital circuit system (2) including the microcomputer is notified that it takes a long time to reach the abnormality. (Step 31). In a digital chill circuit system (2) that has a microcomputer, by looking at this notification, you can know the degree to which the power supply will fail, and you can decide whether more work can be done to protect the system and take appropriate action. . After this, in order to continue monitoring the power supply, the memory (8
) New power supply voltage value V, ■. Thinking about this, the memory (
8) V in. In step 32), vl is stored in the location where it was stored, and steps are executed again in order from step (22). From then on, the above is repeated.

なお、上記実施例は、最低動作電圧に至るまでの時間T
をある定数値Tαと比較することで、マイコンをもつデ
ジタル回路システム(2)へ異常までの時間を長、短の
二つの状態に分けて通知しているが、定数値を複数種類
使用し、ステップ(27)〜(31)の様な比較とその
判断による通知処理を複数持つことにより、電源異常に
至るまでの度合を複数状態マイコンをもつデジタル回路
システム(2)に通知することができ、より細かいシス
テム保護が可能になる。また、最低動作電圧に至るまで
の時間Tの算出にて■式を用いているが、時間Tの算出
には、■式の様な線形近似による方法たけでなく、過去
数点の電源電圧値を加重平均する方法や、曲線近似する
方法があることは、言うまでもない。また、この実施例
では、マイコンをもつデジタル回路システムについて記
述しているが、電源電圧として直流電源を用いるシステ
ム全般にも同様の効果があることも明かである。さらに
、上の実施例では電源(1)の二次側の直流電圧の監視
を行っているが、電源(1)の−次側の交流電圧の監視
を考えてみると、第3図ステップ(21)〜(23)に
て電源電圧をサンプルする際、δtを交流電源の周期と
し、−回目のサンプルをピーク電圧値とすることで■。
In addition, in the above embodiment, the time T until the lowest operating voltage is reached
By comparing Tα with a constant value Tα, the digital circuit system (2) with a microcomputer is notified of the time to abnormality in two states: long and short. However, by using multiple types of constant values, By having multiple notification processes based on comparisons and judgments such as those in steps (27) to (31), it is possible to notify the digital circuit system (2) having a multi-state microcomputer of the degree of power failure. Allows for more detailed system protection. In addition, the formula (■) is used to calculate the time T until the minimum operating voltage is reached, but the calculation of the time T can be done not only by a linear approximation method such as the formula (■), but also by using the power supply voltage values at several points in the past. Needless to say, there are methods of weighted averaging and curve approximation. Further, although this embodiment describes a digital circuit system having a microcomputer, it is clear that similar effects can be obtained in general systems using a DC power supply as the power supply voltage. Furthermore, in the above embodiment, the DC voltage on the secondary side of the power supply (1) is monitored, but if we consider the monitoring of the AC voltage on the - secondary side of the power supply (1), step (3) in FIG. When sampling the power supply voltage in steps 21) to (23), δt is the cycle of the AC power supply, and the −th sample is the peak voltage value.

、vlには、各周期でのピーク電圧値が入ることになり
、実施例での最低動作電圧を電源の一次側の最低動作電
圧(電源として正常にの二次側の最低動作電圧を供給で
き得るための一次側の電圧値)として考えることにより
実施例と全く同様の効果が得られる事もわかる。
, vl contains the peak voltage value in each cycle, and the minimum operating voltage in this example is the minimum operating voltage on the primary side of the power supply (the minimum operating voltage on the secondary side cannot be normally supplied as a power supply). It can also be seen that the same effect as in the embodiment can be obtained by considering the voltage value on the primary side to be obtained.

[発明の効果] 以上のようにこの発明によれば、監視すべき電源電圧を
ある時間間隔ごとに取り込み、この値をもとに電源電圧
の変化を算出し、電源異常になるまでの時間を予測し、
予測された時間をもとに電源異常になるまでの程度をシ
ステムへ通知するよう構成したので、電源側の特性をリ
アルタイムに監視し、異常に至る度合を電源側の変化に
応じて適切に通知できる。
[Effects of the Invention] As described above, according to the present invention, the power supply voltage to be monitored is acquired at certain time intervals, the change in the power supply voltage is calculated based on this value, and the time until a power supply abnormality occurs is calculated. predict,
Since the system is configured to notify the extent to which the power supply will become abnormal based on the predicted time, the characteristics of the power supply side can be monitored in real time, and the degree to which the power supply will become abnormal can be appropriately notified according to changes in the power supply side. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例による電圧監視装置の全
体構成図、第2図は、第一図の実施例の電気接続を示す
回路図、第3図はその動作を示すフローチャート、第4
図はその動作説明用線図、第5図は従来の電源監視装置
のブロック図である。 図において、(1)は電源、(2)はマイコンをもつデ
ジタル回路システム、(3)は電圧測定器、(4)は電
圧異常までの時間予測手段、(5)は電圧異常に至るま
での程度判定手段、(6)は電圧異常に至るまでの程度
の通知手段、(14)はマイクロコンピュータ、(15
)は、電源電圧監視装置である。 なお、図中、同一符号は同一 または相当部分を示す。
FIG. 1 is an overall configuration diagram of a voltage monitoring device according to an embodiment of the present invention, FIG. 2 is a circuit diagram showing electrical connections of the embodiment of FIG. 1, and FIG. 3 is a flowchart showing its operation. 4
The figure is a diagram for explaining its operation, and FIG. 5 is a block diagram of a conventional power supply monitoring device. In the figure, (1) is a power supply, (2) is a digital circuit system with a microcomputer, (3) is a voltage measuring device, (4) is a means for predicting the time until voltage abnormality, and (5) is the time taken until voltage abnormality occurs. degree determination means, (6) means for notifying the degree to which voltage abnormality occurs, (14) a microcomputer, (15)
) is a power supply voltage monitoring device. In addition, the same symbols in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 監視対象の電圧異常を検出してマイコンを有するディジ
タル回路システムの誤動作を防止する電圧監視装置にお
いて、周期的に検出した監視対象電圧の変化により上記
システムが異常に至るまでの時間を予測し、この予測値
に従って該システム全体の動作を決定出来るような信号
を該システムに通知することを特徴とする電圧監視装置
In a voltage monitoring device that detects voltage abnormalities in the monitored target and prevents malfunctions in digital circuit systems that include microcontrollers, it is possible to predict the time it will take for the system to malfunction based on periodically detected changes in the monitored voltage. A voltage monitoring device characterized in that it notifies the system of a signal that allows the operation of the entire system to be determined according to a predicted value.
JP2252486A 1990-09-21 1990-09-21 Voltage monitor Pending JPH04130911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2252486A JPH04130911A (en) 1990-09-21 1990-09-21 Voltage monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2252486A JPH04130911A (en) 1990-09-21 1990-09-21 Voltage monitor

Publications (1)

Publication Number Publication Date
JPH04130911A true JPH04130911A (en) 1992-05-01

Family

ID=17238045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2252486A Pending JPH04130911A (en) 1990-09-21 1990-09-21 Voltage monitor

Country Status (1)

Country Link
JP (1) JPH04130911A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189471A (en) * 1992-08-05 1994-07-08 Merlin Gerin Method for determining backup period of battery
JP2007124834A (en) * 2005-10-28 2007-05-17 Kenwood Corp Device for monitoring external power supply

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251913A (en) * 1986-04-25 1987-11-02 Canon Inc Battery driven computer
JPS6367617A (en) * 1986-09-09 1988-03-26 Fujitsu Ltd Battery support system during power outage
JPH0367180A (en) * 1989-08-07 1991-03-22 Nec Eng Ltd Battery-down detecting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251913A (en) * 1986-04-25 1987-11-02 Canon Inc Battery driven computer
JPS6367617A (en) * 1986-09-09 1988-03-26 Fujitsu Ltd Battery support system during power outage
JPH0367180A (en) * 1989-08-07 1991-03-22 Nec Eng Ltd Battery-down detecting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189471A (en) * 1992-08-05 1994-07-08 Merlin Gerin Method for determining backup period of battery
JP2007124834A (en) * 2005-10-28 2007-05-17 Kenwood Corp Device for monitoring external power supply

Similar Documents

Publication Publication Date Title
KR101013696B1 (en) Insulation Resistance Detection Device
US5027294A (en) Method and apparatus for battery-power management using load-compensation monitoring of battery discharge
EP2290383A1 (en) Capacitor's remaining lifetime diagnosing device, and electric power compensating device having the remaining lifetime diagnosing device
US5457377A (en) Method of monitoring the internal impedance of an accumulator battery in an uninterruptible power supply, and an uninterruptible power supply
US8618813B2 (en) Circuit fault detecting device and method
US20090179631A1 (en) Device for detecting voltage disturbance
CN1171092C (en) IC testing device
JP4845613B2 (en) Battery charger with power capacitor life diagnosis function
US9716461B2 (en) Motor drive having function of detecting circuit abnormality owing to entering foreign matter before significant abnormality occurs
US6724175B1 (en) Power supply control device, power supply circuit, power supply control method, and electronic apparatus controlling output voltage thereof in accordance with a voltage detected across an on switching element
CN109459633B (en) Method, device and system for fault diagnosis of thyristor-level loop of HVDC converter valve
CN114527321B (en) Anti-transient interference voltage sag detection method and device suitable for SSTS
JPH04130911A (en) Voltage monitor
US20050057199A1 (en) Control device
JPH06233475A (en) Power supply
JP2001086764A (en) Inverter
CN114080080A (en) LED drive power-off detection circuit, LED lighting equipment and control method
JP2001041982A (en) Measuring device
JP4851183B2 (en) Capacitor input type rectifier circuit having overcurrent detection function and inverter device using the same
CN116915072B (en) On-off control method of synchronous rectification chip
JP5862815B1 (en) Battery life detection device, power storage device, battery life detection method and program
EP4386407B1 (en) Power supply, calculation circuit and capacitor aging detection method thereof
CN114204522B (en) Protection method and protection system for inverter direct current bus and air conditioner
CN114006353B (en) IGBT junction temperature identification method and air conditioning unit
JP7191227B2 (en) Power converter and degradation diagnosis system