JPH06233475A - Power supply - Google Patents
Power supplyInfo
- Publication number
- JPH06233475A JPH06233475A JP5015579A JP1557993A JPH06233475A JP H06233475 A JPH06233475 A JP H06233475A JP 5015579 A JP5015579 A JP 5015579A JP 1557993 A JP1557993 A JP 1557993A JP H06233475 A JPH06233475 A JP H06233475A
- Authority
- JP
- Japan
- Prior art keywords
- storage battery
- power
- converter
- power supply
- abnormality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Stand-By Power Supply Arrangements (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、蓄電池等のエネルギ蓄
積手段とインバータ等の電力変換手段とを有する電源装
置に関し、特にそのエネルギ蓄積手段を点検することが
できるシステムに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device having an energy storage means such as a storage battery and a power conversion means such as an inverter, and more particularly to a system capable of inspecting the energy storage means.
【0002】[0002]
【従来の技術】従来より、蓄電池等のエネルギ蓄積手段
とインバータ等の電力変換手段とを組み合わせて、他か
らのエネルギ供給が絶たれても負荷に電力を供給するこ
とができる無停電電源装置はよく知られている。このよ
うな無停電電源装置は、例えばコンピュータのような連
続運転を要求される負荷に対して、電力系統に停電が発
生したときにも電源を供給するような電源システムを構
成するために利用される。2. Description of the Related Art Conventionally, an uninterruptible power supply system capable of supplying electric power to a load by combining energy storage means such as a storage battery and electric power conversion means such as an inverter even when energy supply from another is cut off has been known. well known. Such an uninterruptible power supply is used to configure a power supply system that supplies power to a load such as a computer that requires continuous operation even when a power failure occurs in the power system. It
【0003】図12は、例えば「無停電電源装置(UP
S)導入実戦ガイド」(1989年2月25日株式会社
電気書院発行)58ページ第2・8図に示された従来の
無停電電源装置を示す構成図である。図において、1は
無停電電源に交流電力を供給する交流電源、2は交流電
源1の電力を直流電力に変換する交流−直流変換器、3
は変換された直流電力を安定した交流電力に逆変換する
直流−交流変換器、4は2つの変換器2と3との間の直
流回路に接続された蓄電池、5は直流−交流変換器3の
出力側に接続された出力スイッチ、6は直送(バイパ
ス)回路、7は直送回路6に接続された交流(AC)ス
イッチ、8は出力スイッチ5および交流スイッチ7の共
通接続点に接続される無停電電源装置の交流負荷であ
る。FIG. 12 shows, for example, "an uninterruptible power supply (UP).
S) Introduction battle guide "(published on February 25, 1989 by Denki Shoin Co., Ltd.) Page 58 is a configuration diagram showing the conventional uninterruptible power supply device shown in FIG. In the figure, 1 is an AC power supply that supplies AC power to an uninterruptible power supply, 2 is an AC-DC converter that converts the power of the AC power supply 1 into DC power, 3
Is a DC-AC converter that reversely converts the converted DC power into stable AC power, 4 is a storage battery connected to a DC circuit between the two converters 2 and 3, and 5 is a DC-AC converter 3. An output switch connected to the output side of, a 6 is a direct feed (bypass) circuit, 7 is an alternating current (AC) switch connected to the direct feed circuit 6, and 8 is connected to a common connection point of the output switch 5 and the AC switch 7. It is an AC load on the uninterruptible power supply.
【0004】次に動作について説明する。交流電源1が
正常なときは、交流電源1の交流電力が交流−直流変換
器2により直流電力に変換され、蓄電池4を浮動(フロ
ート)充電すると共に直流−交流変換器3により安定し
た交流に逆変換され、出力スイッチ5を介して交流負荷
8に給電される。交流電源1が停電した場合には、蓄電
池4が直流電力を放電し、その直流電力を直流−交流変
換器3に供給することにより、交流負荷8への電力供給
を継続する。交流負荷8に直流−交流変換器3の定格を
越える過電流が流れたり、直流−交流変換器3が故障し
た場合には、直送回路6、交流スイッチ7を介して、交
流電源1の交流電力が交流負荷8に直接供給される。Next, the operation will be described. When the AC power supply 1 is normal, the AC power of the AC power supply 1 is converted into DC power by the AC-DC converter 2, and the storage battery 4 is charged by floating (float), and at the same time the DC-AC converter 3 becomes stable AC. The voltage is inversely converted and is supplied to the AC load 8 via the output switch 5. When the AC power supply 1 fails, the storage battery 4 discharges the DC power and supplies the DC power to the DC-AC converter 3, thereby continuing the power supply to the AC load 8. When an overcurrent that exceeds the rating of the DC-AC converter 3 flows in the AC load 8 or the DC-AC converter 3 fails, the AC power of the AC power supply 1 is passed through the direct feed circuit 6 and the AC switch 7. Are directly supplied to the AC load 8.
【0005】[0005]
【発明が解決しようとする課題】従来の無停電電源装置
は以上のように構成されているので、運転(浮動充電)
中に蓄電池4に異常(故障)が発生してもそれを検出す
ることができず、無停電電源装置が必要な入力停電の状
態になって初めて故障が顕在化して交流負荷8を連続給
電することができなくなるという、無停電電源としては
致命的な不具合があった。Since the conventional uninterruptible power supply is configured as described above, the operation (floating charging) is performed.
Even if an abnormality (failure) occurs in the storage battery 4 inside, it cannot be detected, and the failure becomes apparent only when the uninterruptible power supply device is in the state of input power failure, and the AC load 8 is continuously fed. There was a fatal defect as an uninterruptible power supply that could not be done.
【0006】この発明は上記のような問題点を解消する
ためになされたもので、装置の運転中に蓄電池等のエネ
ルギ蓄電手段を点検可能として、その異常を事前に検知
することにより信頼性の高い電源装置を提供することを
目的とする。The present invention has been made to solve the above-mentioned problems, and enables energy storage means such as a storage battery to be inspected during the operation of the apparatus, and the abnormality can be detected in advance to improve reliability. It is an object to provide a high power supply device.
【0007】[0007]
【課題を解決するための手段】この発明の請求項1に係
る電源装置は、電力変換手段を所定の動作状態に制御し
てエネルギ蓄積手段をエネルギ放出動作にすることによ
り、その異常検出を可能とするものである。In the power supply device according to the first aspect of the present invention, the abnormality can be detected by controlling the power conversion means to a predetermined operating state and causing the energy storage means to perform the energy discharge operation. It is what
【0008】この発明の請求項2に係る電源装置は、蓄
電池の電流および電圧を検出する手段、および直流−交
流変換器の運転中に、交流−直流変換器を所定の動作状
態に制御して上記蓄電池を放電させ、この放電時におけ
る上記検出手段からの出力をもとに上記蓄電池の異常を
検出する蓄電池異常検出手段を備えたものである。According to a second aspect of the present invention, the power supply device detects the current and voltage of the storage battery, and controls the AC-DC converter to a predetermined operating state during operation of the DC-AC converter. A storage battery abnormality detecting means is provided for discharging the storage battery and detecting an abnormality of the storage battery based on an output from the detecting means at the time of discharging.
【0009】この発明の請求項3に係る電源装置は、蓄
電池の電流および電圧を検出する手段、および直流−交
流変換器の運転中に、直送回路を閉路構成し、上記直送
回路を介して上記蓄電池の電力を交流電源に回生するよ
う上記直流−交流変換器を制御して上記蓄電池を放電さ
せ、この放電時における上記検出手段からの出力をもと
に上記蓄電池の異常を検出する蓄電池異常検出手段を備
えたものである。According to a third aspect of the present invention, in the power supply device according to the present invention, the means for detecting the current and voltage of the storage battery and the DC-AC converter are in operation, the direct feed circuit is closed, and the direct feed circuit is used to connect the direct feed circuit. Storage battery abnormality detection for controlling the DC-AC converter to regenerate the power of the storage battery to an AC power source to discharge the storage battery, and detecting an abnormality of the storage battery based on the output from the detection means at the time of discharging. It is equipped with means.
【0010】この発明の請求項4に係る電源装置は、蓄
電池の電流および電圧を検出する手段、および直流−交
流変換器の運転中に、交流−直流変換器を交流電源への
回生モードに制御して上記蓄電池を放電させ、この放電
時における上記検出手段からの出力をもとに上記蓄電池
の異常を検出する蓄電池異常検出手段を備えたものであ
る。A power supply device according to a fourth aspect of the present invention controls the AC-DC converter in a regeneration mode to an AC power supply while the means for detecting the current and voltage of the storage battery and the DC-AC converter are in operation. Then, the storage battery is discharged, and the storage battery abnormality detection means for detecting abnormality of the storage battery is provided based on the output from the detection means at the time of this discharge.
【0011】この発明の請求項5に係る電源装置は、検
出した蓄電池電圧が蓄電池電流に対して予め設定した範
囲を越えたとき蓄電池異常と判定するようにしたもので
ある。According to a fifth aspect of the present invention, the storage battery is judged to be abnormal when the detected storage battery voltage exceeds a preset range with respect to the storage battery current.
【0012】この発明の請求項6に係る電源装置は、蓄
電池の放電電流または放電電力を所定の値に制御し、放
電開始から所定時間経過後に検出した蓄電池電圧が放電
中の蓄電池電流または蓄電池電力に対して予め設定した
範囲を越えたとき蓄電池異常と判定するようにしたもの
である。According to a sixth aspect of the present invention, the power supply device controls the discharge current or the discharge power of the storage battery to a predetermined value, and the storage battery voltage detected after a predetermined time elapses from the start of the discharge is the storage battery current or the storage battery power. On the other hand, when it exceeds the preset range, it is determined that the storage battery is abnormal.
【0013】この発明の請求項7に係る電源装置は、蓄
電池の放電が予め設定した時間経過したとき、または検
出した蓄電池電圧が予め設定した値以下に低下したと
き、異常検出動作を解除して上記蓄電池を充電動作に復
帰させるようにしたものである。A power supply device according to a seventh aspect of the present invention cancels the abnormality detecting operation when the storage battery is discharged for a preset time or when the detected storage battery voltage drops below a preset value. The storage battery is returned to the charging operation.
【0014】[0014]
【作用】この発明の請求項1に係る電源装置において
は、その電力変換手段を所定の動作状態に制御、例え
ば、その第1の電力回路からの変換部分を停止させる
と、エネルギ蓄積手段はその蓄積エネルギを第2の電力
回路へ放出する動作となり、その時の放出特性からエネ
ルギ蓄積手段の異常有無を判別することができる。In the power supply device according to claim 1 of the present invention, when the power conversion means is controlled to a predetermined operating state, for example, when the conversion part from the first power circuit is stopped, the energy storage means operates. The stored energy is discharged to the second power circuit, and the presence or absence of abnormality of the energy storage means can be determined from the discharge characteristic at that time.
【0015】この発明の請求項2に係る電源装置におい
ては、その交流−直流変換器を所定の動作状態に制御、
例えば停止させると、蓄電池は直流−交流変換器を介し
て交流負荷へ放電する動作となり、その時の電流、電圧
特性から蓄電池の異常有無を判別することができる。In the power supply device according to the second aspect of the present invention, the AC-DC converter is controlled to a predetermined operating state,
For example, when the storage battery is stopped, the storage battery operates to discharge to an AC load via the DC-AC converter, and the presence or absence of abnormality of the storage battery can be determined from the current and voltage characteristics at that time.
【0016】この発明の請求項3に係る電源装置におい
ては、その直流−交流変換器を制御して蓄電池の電力を
直送回路を介して交流電源に回生させ、その時の電流、
電圧特性から蓄電池の異常有無を判別することができ
る。In the power supply device according to claim 3 of the present invention, the DC-AC converter is controlled to regenerate the electric power of the storage battery to the AC power supply through the direct transfer circuit, and the current at that time,
Whether or not there is an abnormality in the storage battery can be determined from the voltage characteristics.
【0017】この発明の請求項4に係る電源装置におい
ては、その交流−直流変換器を回生モードに制御して蓄
電池を交流電源へ放電させ、その時の電流、電圧特性か
ら蓄電池の異常有無を判別することができる。In the power supply device according to the fourth aspect of the present invention, the AC-DC converter is controlled in the regenerative mode to discharge the storage battery to the AC power supply, and whether the storage battery is abnormal or not is determined from the current and voltage characteristics at that time. can do.
【0018】また、蓄電池の異常の検出方式として、請
求項5に係る場合は検出した蓄電池電圧が電流に対して
設定範囲を越えたか否かで判別し、請求項6に係る場合
は放電開始から所定時間経過後の蓄電池電圧が電流また
は電力に対して設定範囲を越えたか否かで判別する。Further, as a method of detecting an abnormality of the storage battery, in the case of claim 5, it is determined whether or not the detected storage battery voltage exceeds a set range with respect to the current, and in the case of claim 6, from the start of discharging. It is determined by whether or not the storage battery voltage after a lapse of a predetermined time exceeds a set range with respect to current or power.
【0019】また、この発明の請求項7に係る電源装置
においては、放電が設定時間を経過したとき、または蓄
電池電圧が設定値以下に低下したとき異常検出動作を解
除し、点検による異常放電を防止する。Further, in the power supply device according to claim 7 of the present invention, the abnormality detection operation is canceled when the discharge has exceeded the set time or when the storage battery voltage has dropped to the set value or less, and the abnormal discharge due to the inspection is performed. To prevent.
【0020】[0020]
【実施例】実施例1.図1はこの発明の実施例1による
電源装置を示す構成図であり、1〜4、8は従来と同様
のものである。さらに、10は交流−直流変換器2の制
御装置、11は直流−交流変換器3の制御装置、12は
蓄電池4の放電電流を計測する電流センサ、13は蓄電
池4の電圧を計測する電圧センサ、14は両センサ1
2,13による計測値から蓄電池4の異常を検出し異常
信号を送出する蓄電池異常検出器、15は蓄電池点検時
に制御装置10、11、蓄電池異常検出器14に指令信
号を送る点検制御装置である。EXAMPLES Example 1. 1 is a block diagram showing a power supply device according to a first embodiment of the present invention, in which 1 to 4 and 8 are the same as the conventional one. Further, 10 is a control device for the AC-DC converter 2, 11 is a control device for the DC-AC converter 3, 12 is a current sensor that measures the discharge current of the storage battery 4, and 13 is a voltage sensor that measures the voltage of the storage battery 4. , 14 are both sensors 1
A storage battery abnormality detector that detects an abnormality of the storage battery 4 from the measured values of 2 and 13 and sends an abnormality signal, and 15 is an inspection control device that sends a command signal to the control devices 10 and 11 and the storage battery abnormality detector 14 when checking the storage battery. .
【0021】次に動作について説明する。電源装置の本
来の動作、即ち、交流電源1からの交流電力を交流−直
流変換器2により一旦直流電力に変換し、更に、直流−
交流変換器3により安定した交流電力に逆変換して交流
負荷8に供給する動作は従来と同様である。そして、こ
の時、蓄電池4は浮動充電の状態にある。Next, the operation will be described. The original operation of the power supply device, that is, the AC power from the AC power supply 1 is once converted into DC power by the AC-DC converter 2, and further DC-
The operation of inversely converting into stable AC power by the AC converter 3 and supplying the AC power to the AC load 8 is the same as the conventional one. At this time, the storage battery 4 is in a floating charge state.
【0022】ここで、電源装置の運転中に、点検制御装
置15から点検指令信号を送出すると、交流−直流変換
器の制御装置10は交流−直流変換器2の出力を停止さ
せる。この結果、蓄電池4はそれまでの浮動充電状態か
ら放電状態になり、蓄電池4の電力が直流−交流電力変
換器3を介して交流負荷8に供給される。このとき、蓄
電池4が正常であれば電圧センサ13で計測される蓄電
池電圧は電流センサ12で計測される蓄電池電流に応じ
た値になるはずであるが、蓄電池4が故障していたり充
分に充電されていなかった場合には、蓄電池電圧は正常
な特性よりも低い値となり、蓄電池異常検出器14が異
常を検出し異常信号を発信する。Here, when an inspection command signal is sent from the inspection control device 15 while the power supply device is operating, the control device 10 of the AC-DC converter stops the output of the AC-DC converter 2. As a result, the storage battery 4 changes from the floating charging state up to that time to the discharging state, and the power of the storage battery 4 is supplied to the AC load 8 via the DC-AC power converter 3. At this time, if the storage battery 4 is normal, the storage battery voltage measured by the voltage sensor 13 should be a value according to the storage battery current measured by the current sensor 12, but the storage battery 4 is out of order or is sufficiently charged. If not, the storage battery voltage becomes a value lower than the normal characteristic, and the storage battery abnormality detector 14 detects an abnormality and sends an abnormality signal.
【0023】図2は、このような蓄電池電流と蓄電池電
圧との関係を示した特性図であり、蓄電池が正常範囲に
あれば、その充電状態に応じ、電流に対して電圧が低下
するような特性を持つ。蓄電池異常検出器14は、蓄電
池電流と蓄電池電圧との計測値から、蓄電池の充電状態
を検出したり、蓄電池電流と蓄電池電圧との関係が正常
範囲にあるか否かを判定することにより、蓄電池異常を
検出したりすることができる。この実施例では、上記の
ように入力停電状態を模擬的に作ることにより、蓄電池
4の異常を事前に検知することができる。交流負荷8が
接続されていない場合でも、直流−交流変換器3の無負
荷損失が蓄電池4から供給されるので、蓄電池4の異常
を検出することができる。また、交流負荷8に給電中の
場合でも、蓄電池異常があれば交流−直流変換器2を速
やかに再運転させることにより、交流負荷8に影響を与
えることは避けることができる。FIG. 2 is a characteristic diagram showing the relationship between the storage battery current and the storage battery voltage as described above. If the storage battery is in the normal range, the voltage decreases with respect to the current depending on the charging state. It has characteristics. The storage battery abnormality detector 14 detects the state of charge of the storage battery from the measured values of the storage battery current and the storage battery voltage, and determines whether or not the relationship between the storage battery current and the storage battery voltage is within the normal range. Anomalies can be detected. In this embodiment, the abnormality of the storage battery 4 can be detected in advance by simulating the input power failure state as described above. Even when the AC load 8 is not connected, the no-load loss of the DC-AC converter 3 is supplied from the storage battery 4, so that the abnormality of the storage battery 4 can be detected. Further, even when the AC load 8 is being supplied, if the storage battery is abnormal, the AC-DC converter 2 can be quickly restarted to avoid affecting the AC load 8.
【0024】実施例2.次に、蓄電池4の放電を一定の
条件に制御して、異常検出をより安定確実に行い得るよ
うにした実施例2について説明する。全体構成は先の図
1で示したものと同様であるので説明を省略する。Example 2. Next, a description will be given of a second embodiment in which the discharge of the storage battery 4 is controlled under a constant condition so that the abnormality can be detected more stably and surely. The overall structure is the same as that shown in FIG.
【0025】次に動作について説明する。直流−交流変
換器3の運転中に、点検制御装置15からの点検指令信
号により、交流−直流変換器の制御装置10は交流−直
流変換器2を制御し蓄電池4が所定電流値で放電するよ
うに制御する。このとき、蓄電池4が正常であれば所定
時間後(時刻t1)に電圧センサ13で計測される蓄電
池電圧は電流センサ12で計測される蓄電池電流に応じ
た値になるはずであるが、蓄電池4が故障していたり何
らかの原因で充分に充電されていなかった場合には、蓄
電池電圧は正常な特性よりも低い値となり、蓄電池異常
検出器14が異常を検出し、異常信号を発信する。Next, the operation will be described. During the operation of the DC-AC converter 3, the control device 10 of the AC-DC converter controls the AC-DC converter 2 and the storage battery 4 is discharged at a predetermined current value by the inspection command signal from the inspection control device 15. To control. At this time, if the storage battery 4 is normal, the storage battery voltage measured by the voltage sensor 13 after a predetermined time (time t1) should be a value according to the storage battery current measured by the current sensor 12, but the storage battery 4 If the battery is out of order or is not sufficiently charged for some reason, the storage battery voltage becomes a value lower than the normal characteristic, and the storage battery abnormality detector 14 detects an abnormality and transmits an abnormality signal.
【0026】図3は、このような蓄電池を一定電流で放
電させたときの放電時間と蓄電池電圧との関係を示した
特性図であり、蓄電池の容量が低下してくると放電開始
後の蓄電池電圧の低下が著しく大きくなる。蓄電池異常
検出器14は、放電制御を開始してから所定時間後の蓄
電池電流と蓄電池電圧との計測値から、蓄電池の充電状
態を検出し蓄電池の容量が正常範囲にあるか否かを判定
することにより、蓄電池異常を検出することができる。
このように、所定電流値に制御した放電を行わせること
により、蓄電池異常検出器14での異常有無判別条件が
画一化されその動作もより安定確実なものとなる。な
お、以上では、放電中の電流を一定に制御するようにし
たが、放電電力を一定に制御するようにしてもよい。FIG. 3 is a characteristic diagram showing the relationship between the discharge time and the storage battery voltage when such a storage battery is discharged with a constant current. When the capacity of the storage battery decreases, the storage battery after the start of discharge is shown. The voltage drop is significantly increased. The storage battery abnormality detector 14 detects the state of charge of the storage battery from the measured values of the storage battery current and the storage battery voltage after a predetermined time from the start of discharge control, and determines whether or not the capacity of the storage battery is within the normal range. Thus, the storage battery abnormality can be detected.
As described above, by performing the discharge controlled to the predetermined current value, the abnormality presence / absence determination condition in the storage battery abnormality detector 14 is unified, and the operation becomes more stable and reliable. In the above, the current during discharging is controlled to be constant, but the discharging power may be controlled to be constant.
【0027】実施例3.次に、この発明の実施例3によ
る電源装置について説明する。この実施例は、装置の運
転中に実施される蓄電池4の点検動作が交流負荷8に及
ぼす影響をより確実に防止する手段を追加したもので、
図4にその構成を示す。図1のものと異なるのは蓄電池
異常検出器14aで、新たに電圧低下検出機能を備えて
おり、時刻t1に達する前に蓄電池電圧が異常レベルま
で低下した場合は異常信号を発生すると共に点検制御装
置15に点検中止の信号を送出する。Example 3. Next, a power supply device according to a third embodiment of the present invention will be described. In this embodiment, means for more surely preventing the influence of the inspection operation of the storage battery 4 performed during the operation of the device on the AC load 8 is added,
The structure is shown in FIG. What is different from that of FIG. 1 is a storage battery abnormality detector 14a, which is newly provided with a voltage drop detection function. If the storage battery voltage drops to an abnormal level before the time t1, an abnormal signal is generated and inspection control is performed. A signal to stop inspection is sent to the device 15.
【0028】次に動作について説明する。直流−交流変
換器3の運転中に、点検制御装置15からの点検指令信
号により、交流−直流変換器の制御装置10は交流−直
流変換器2を制御し蓄電池4が所定電流値で放電するよ
うに制御する。このとき、蓄電池4が正常であれば所定
時間後(時刻t1)に電圧センサ13で計測される蓄電
池電圧は電流センサ12で計測される蓄電池電流に応じ
た値になるはずであるが、蓄電池4が故障していたり何
らかの原因で充分に充電されていなかった場合には、蓄
電池電圧が時刻t1に達する前に急激に低下し、図3に
は示していないが蓄電池4の異常電圧レベルよりもさら
に低い電圧値に設定してある装置の直流低電圧保護レベ
ルまで低下する恐れがある。このような場合、蓄電池異
常検出器14aの中に設けた電圧検出器が蓄電池の異常
電圧を検出し、異常信号を発信すると共に点検制御装置
15に点検中止のための信号を送出し点検を中止して通
常の動作に復帰するので装置に異常が発生する恐れはな
く、交流負荷8への給電を安定して継続できる。Next, the operation will be described. During the operation of the DC-AC converter 3, the control device 10 of the AC-DC converter controls the AC-DC converter 2 and the storage battery 4 is discharged at a predetermined current value by the inspection command signal from the inspection control device 15. To control. At this time, if the storage battery 4 is normal, the storage battery voltage measured by the voltage sensor 13 after a predetermined time (time t1) should be a value according to the storage battery current measured by the current sensor 12, but the storage battery 4 If the battery is out of order or is not sufficiently charged for some reason, the storage battery voltage drops sharply before reaching time t1, which is not shown in FIG. There is a risk that the DC low voltage protection level of the device set to a low voltage value may be lowered. In such a case, the voltage detector provided in the storage battery abnormality detector 14a detects the abnormal voltage of the storage battery, transmits an abnormality signal, and sends a signal for stopping the inspection to the inspection control device 15 to stop the inspection. Then, since the normal operation is resumed, there is no possibility that an abnormality will occur in the device, and the power supply to the AC load 8 can be stably continued.
【0029】なお、以上で説明した点検中止を指令する
ときの異常電圧レベルとして、先の図2の蓄電池の充電
量=0%、蓄電池電流最大値に相当する蓄電池電圧より
わずかに低い値に設定するようにしてもよい。また、放
電開始後、所定の設定時間が経過すると、蓄電池電圧の
如何にかかわらず必ず点検を中止して運転に復帰するよ
うにしてもよい。It should be noted that the abnormal voltage level when commanding the above-mentioned inspection cancellation is set to a value slightly lower than the storage battery voltage corresponding to the storage battery charge amount = 0% and the storage battery current maximum value shown in FIG. You may do it. Further, after the start of discharging, when a predetermined set time elapses, the inspection may be always stopped and the operation may be restored regardless of the storage battery voltage.
【0030】実施例4.次に、交流負荷8の状態、負荷
量にかかわらず確実に異常検出することができる実施例
4を、図5について説明する。図5において、11aは
直流−交流変換器3を直送回路6を介して交流電源1と
並列運転させる並列運転制御装置、15aは出力スイッ
チ5および交流スイッチ7にも点検指令信号を送出する
点検制御装置である。Example 4. Next, a fourth embodiment capable of surely detecting an abnormality regardless of the state of the AC load 8 and the load amount will be described with reference to FIG. In FIG. 5, 11a is a parallel operation control device for operating the DC-AC converter 3 in parallel with the AC power supply 1 via the direct feed circuit 6, and 15a is an inspection control for sending an inspection command signal to the output switch 5 and the AC switch 7. It is a device.
【0031】電源装置の運転前の無負荷状態、もしく
は、直流−交流変換器3が交流負荷8に電力を供給して
いる運転中に点検制御装置15aの点検指令信号により
出力スイッチ5および交流スイッチ7を同時に閉路さ
せ、直送回路6を介して直流−交流変換器3と交流電源
1とを並列運転させる。並列運転制御装置11aの制御
については、例えば特願平4−130912号に示され
ているように従来から知られているので詳述は避ける
が、変換器の出力周波数を制御することにより、出力有
効電力を制御することができる。すなわち、変換器の出
力周波数を適切に調整することにより、所定の有効電力
を交流電源1に回生することができる。The output switch 5 and the AC switch are output in response to the inspection command signal from the inspection control device 15a while the power supply device is in a no-load state before operation, or during operation when the DC-AC converter 3 is supplying power to the AC load 8. 7 is closed at the same time, and the DC-AC converter 3 and the AC power supply 1 are operated in parallel via the direct feed circuit 6. Control of the parallel operation control device 11a is conventionally known as shown in, for example, Japanese Patent Application No. 4-130912, and therefore detailed description thereof will be omitted. However, by controlling the output frequency of the converter, The active power can be controlled. That is, by appropriately adjusting the output frequency of the converter, it is possible to regenerate a predetermined active power to the AC power supply 1.
【0032】この場合、交流負荷8の有無、負荷量に関
係なく所定の直流電力を蓄電池4から放電させることが
できるので、蓄電池異常検出器14aの動作が安定し、
蓄電池の異常検出を確実に行うことができる。また、負
荷給電中に点検して蓄電池4に異常があった場合には、
直送回路6を介して交流電源1から交流負荷8への給電
が自動的に継続されるので、負荷への給電が途切れる恐
れはない。In this case, since the predetermined DC power can be discharged from the storage battery 4 regardless of the presence or absence of the AC load 8 and the load amount, the operation of the storage battery abnormality detector 14a becomes stable,
It is possible to reliably detect the abnormality of the storage battery. If the storage battery 4 is inspected during load power supply and there is an abnormality,
Since the power supply from the AC power supply 1 to the AC load 8 is automatically continued via the direct-delivery circuit 6, there is no fear of interruption of the power supply to the load.
【0033】実施例5.この実施例は直送回路6を使わ
ず、しかも実施例4と同じく交流負荷8の状態、負荷量
にかかわらず確実に異常検出をすることができるように
したもので、図6,図7にその構成を示す。図におい
て、2aはいわゆる高力率コンバータ等の双方向に電力
変換可能な変換器、10aはその変換器2aを回生運転
させる制御装置、15aは10a、14aに点検指令信
号を送出する点検制御装置である。図7は変換器2aの
詳細を示す回路図であり、20は交流側端子、21はフ
ィルタコンデンサ、22はフィルタリアクトル、23〜
26はトランジスタ等のスイッチング素子、27〜30
はダイオード、31は直流側端子である。Example 5. This embodiment does not use the direct feed circuit 6 and is capable of surely detecting an abnormality regardless of the state and load amount of the AC load 8 as in the case of the fourth embodiment. The configuration is shown. In the figure, 2a is a converter such as a so-called high power factor converter capable of bidirectional power conversion, 10a is a control device for regenerating the converter 2a, and 15a is an inspection control device for sending an inspection command signal to 10a and 14a. Is. FIG. 7 is a circuit diagram showing details of the converter 2a, where 20 is an AC side terminal, 21 is a filter capacitor, 22 is a filter reactor, and 23-.
26 is a switching element such as a transistor, and 27 to 30.
Is a diode, and 31 is a DC side terminal.
【0034】このような高力率コンバータでは、スイッ
チング素子が通常交流1サイクルの間に数10から10
0回程度のスイッチングを行うPWM(パルス幅変調)
を行うことにより、交流側の電流波形を滑らかに制御す
ると共に、その電流指令に応じて、交流から直流へ(力
行)の、もしくは、直流から交流へ(回生)の双方向に
電力変換を自由に行うことができる。21、22はスイ
ッチング周波数に起因する高周波成分を除去するフィル
タを構成している。In such a high power factor converter, the switching element is usually several tens to ten during one AC cycle.
PWM (pulse width modulation) for switching about 0 times
By controlling the current waveform on the AC side smoothly, you can freely convert power from either AC to DC (power running) or from DC to AC (regeneration) according to the current command. Can be done. Reference numerals 21 and 22 form a filter for removing a high frequency component caused by the switching frequency.
【0035】このため、交流から直流へのエネルギ変換
しかできない変換器の場合は、例えば交流負荷8が軽負
荷の場合に蓄電池4の放電電流として十分な値が選べな
いのに対し、この実施例では、交流負荷8の有無、負荷
量、直流−交流変換器3の動作に関係なく所定の直流電
流を蓄電池4から放電させることができるので、蓄電池
異常検出器14の動作が安定し、蓄電池4の異常検出を
確実に行うことができる。また、蓄電池4の放電電流を
固定できるため蓄電池異常検出器を簡素化できる。Therefore, in the case of a converter capable of only converting energy from AC to DC, for example, when the AC load 8 is a light load, a sufficient value cannot be selected as the discharge current of the storage battery 4, whereas in this embodiment Since a predetermined DC current can be discharged from the storage battery 4 regardless of the presence / absence of the AC load 8, the load amount, and the operation of the DC / AC converter 3, the operation of the storage battery abnormality detector 14 is stabilized, and the storage battery 4 It is possible to reliably detect the abnormality. Further, since the discharge current of the storage battery 4 can be fixed, the storage battery abnormality detector can be simplified.
【0036】実施例5では、点検制御装置15aの点検
指令信号に応じて、双方向電力変換制御回路10aが交
流−直流変換器2aを必要に応じて蓄電池4の所定の電
力を交流電源1に回生させるように動作させ、このとき
の蓄電池4の電圧と電流とから蓄電池異常を検出する。In the fifth embodiment, in response to the inspection command signal from the inspection control device 15a, the bidirectional power conversion control circuit 10a causes the AC-DC converter 2a to supply the AC power source 1 with a predetermined power of the storage battery 4 as required. The storage battery 4 is operated to regenerate, and the storage battery abnormality is detected from the voltage and current of the storage battery 4 at this time.
【0037】実施例6.次に、運転中に所定の間隔で自
動的に点検を実施するようにした場合の例を図8につい
て説明する。図8において、16は点検周期を決定する
タイマー、17は蓄電池4の充電時間が所定値以上継続
した場合に作動するタイマーであり、ここには示してい
ない停電検出器で停電を検出すると0にリセットされ
る、15bはタイマー16と17とからの論理積により
点検指令信号を送出する点検制御装置である。タイマー
16は、電源装置の起動時および蓄電池4の寿命に影響
を及ぼさずしかも故障検出が頻繁に行えるような間隔で
信号を送出するものとする。また、タイマー17は蓄電
池4を実質的に完全充電の状態にできる時限を有するも
のとする。Example 6. Next, an example of a case where the inspection is automatically performed at predetermined intervals during operation will be described with reference to FIG. In FIG. 8, 16 is a timer that determines the inspection cycle, 17 is a timer that operates when the charging time of the storage battery 4 continues for a predetermined value or more, and becomes 0 when a power failure is detected by a power failure detector not shown here. Reference numeral 15b, which is reset, is an inspection control device which sends an inspection command signal by a logical product from the timers 16 and 17. It is assumed that the timer 16 sends a signal at an interval that does not affect the start-up of the power supply device and the life of the storage battery 4 and that frequent failure detection can be performed. In addition, the timer 17 has a time limit that allows the storage battery 4 to be substantially fully charged.
【0038】蓄電池の寿命は、通常放電回数が増えるほ
ど短くなるが、この実施例では、点検を必要最小限にす
るので蓄電池の寿命への影響を最小限とすることができ
る。また、点検を自動的に行うので、操作者が点検を忘
れたりすることがなく、動作が確実である。また充電時
間を監視するタイマーを設けたので点検開始直前に停電
が発生し蓄電池が放電した場合などでも異常を誤検出す
る恐れがない。なお、上記実施例ではタイマー16およ
び17を用いたが、タイマー16のみを用いて構成を簡
便にしてもよい。Although the life of the storage battery generally becomes shorter as the number of discharges increases, in this embodiment, since the inspection is minimized, the influence on the life of the storage battery can be minimized. Moreover, since the inspection is automatically performed, the operator does not forget to perform the inspection, and the operation is reliable. Also, since a timer for monitoring the charging time is provided, there is no risk of erroneous detection of an abnormality even if the storage battery is discharged due to a power failure occurring immediately before the start of inspection. Although the timers 16 and 17 are used in the above embodiment, the configuration may be simplified by using only the timer 16.
【0039】実施例7.次に、点検中の蓄電池放電電流
と蓄電池電圧とから蓄電池の容量を推定できるようにし
た実施例を図9で説明する。図9において、18は所定
の電流で蓄電池4を所定の時間放電したときの蓄電池電
圧から蓄電池の容量を求めるためのテーブルを有する蓄
電池容量算出装置であり、算出した蓄電池容量を表示装
置19に表示する。Example 7. Next, an embodiment in which the capacity of the storage battery can be estimated from the storage battery discharge current and the storage battery voltage under inspection will be described with reference to FIG. In FIG. 9, reference numeral 18 denotes a storage battery capacity calculation device having a table for obtaining the storage battery capacity from the storage battery voltage when the storage battery 4 is discharged at a predetermined current for a predetermined time, and the calculated storage battery capacity is displayed on the display device 19. To do.
【0040】蓄電池容量算出装置18のテーブルには図
10に示すように、所定の放電電流に対して、計測した
蓄電池電圧と推定する蓄電池容量との関係をあらかじめ
入力しておくことによって蓄電池の容量を容易に求める
ことができる。さらに表示装置19に、計測結果から求
めた蓄電池容量と実際に使用している蓄電池4の容量と
を比較して表示することにより、蓄電池4の劣化度合い
が判り装置の予防保全に有効である。As shown in FIG. 10, in the table of the storage battery capacity calculating device 18, the capacity of the storage battery is calculated by previously inputting the relationship between the measured storage battery voltage and the estimated storage battery capacity for a predetermined discharge current. Can be easily obtained. Further, by comparing and displaying the storage battery capacity obtained from the measurement result and the capacity of the storage battery 4 actually used on the display device 19, the deterioration degree of the storage battery 4 can be known and it is effective for preventive maintenance of the device.
【0041】実施例8.次に、実施例7の点検によって
得られた蓄電池の推定容量から蓄電池の余寿命を推定で
きるようにした実施例を図11で説明する。図11にお
いて、18aは所定の電流で蓄電池を放電したときの蓄
電池電圧と蓄電池周囲温度とから温度補正を行って蓄電
池の容量を正確に求めるためのテーブルを有する蓄電池
容量算出装置であり、算出した蓄電池容量を表示装置1
9に表示する。40は蓄電池容量算出装置18aの点検
ごとの出力を記憶する記憶装置であり過去何回かのデー
タを蓄積できる。41は記憶装置40に蓄積された蓄電
池の推定容量から余寿命を推定する余寿命推定装置であ
る。Example 8. Next, an embodiment in which the remaining life of the storage battery can be estimated from the estimated capacity of the storage battery obtained by the inspection of Embodiment 7 will be described with reference to FIG. In FIG. 11, reference numeral 18a denotes a storage battery capacity calculation device having a table for accurately obtaining the capacity of the storage battery by performing temperature correction from the storage battery voltage and the storage battery ambient temperature when the storage battery is discharged at a predetermined current. Battery capacity display device 1
Display on 9. Reference numeral 40 denotes a storage device that stores the output of the storage battery capacity calculation device 18a for each inspection, and can store data for the past several times. Reference numeral 41 is a remaining life estimation device that estimates the remaining life from the estimated capacity of the storage battery stored in the storage device 40.
【0042】余寿命推定装置41は過去数回の計測結果
から得られた蓄電池の推定容量を多次元式で近似し、設
定された蓄電池の容量(寿命と判断するための蓄電池の
容量)まであとどのくらいの使用期間で到達するかを推
定する。これにより蓄電池の交換時期が判別できるた
め、装置の予防保全に一層有効となる。The remaining life estimation device 41 approximates the estimated capacity of the storage battery obtained from the measurement results of the past several times by a multidimensional expression, and the remaining capacity of the storage battery (the capacity of the storage battery for judging the end of life) Estimate how long it will reach. This makes it possible to determine the replacement time of the storage battery, which is more effective for preventive maintenance of the device.
【0043】実施例9.なお、上記各実施例1〜8にお
いては、エネルギ蓄積手段として蓄電池4を用いたが、
コンデンサやフライホイールなどの他のエネルギ蓄積手
段でもよく、また、電力変換手段はそのエネルギ蓄積手
段に応じた交流−交流変換器等の他の変換手段でも同等
の効果を奏することは言うまでもない。Example 9. In each of Examples 1 to 8 described above, the storage battery 4 was used as the energy storage means,
Needless to say, other energy storage means such as a condenser or a flywheel may be used, and the power conversion means may be another conversion means such as an AC-AC converter corresponding to the energy storage means, which has the same effect.
【0044】[0044]
【発明の効果】以上のように、この発明の請求項1で
は、電力変換手段を制御してエネルギ蓄積手段をエネル
ギ放出動作にするようにしたので、装置の運転中にエネ
ルギ蓄積手段の点検が可能となり、電源装置としての信
頼性が向上する。As described above, according to the first aspect of the present invention, the power conversion means is controlled so that the energy storage means operates to release the energy. Therefore, the energy storage means can be inspected during the operation of the apparatus. Therefore, the reliability of the power supply device is improved.
【0045】また、この発明の請求項2では、交流−直
流変換器を制御して蓄電池を放電動作にし、蓄電池電流
および電圧の検出手段の出力から蓄電池の異常有無を検
出するようにしたので、装置の運転中に蓄電池の点検を
正確、確実に行うことができる。Further, according to the second aspect of the present invention, the AC-DC converter is controlled to cause the storage battery to perform the discharging operation, and whether or not the storage battery is abnormal is detected from the output of the storage battery current and voltage detecting means. Accurate and reliable inspection of the storage battery can be performed while the device is operating.
【0046】また、この発明の請求項3では、直流−交
流変換器を制御し直送回路を介して蓄電池を交流電源へ
放電させるようにしたので、交流負荷の状態にかかわら
ず蓄電池の点検が可能となる。According to the third aspect of the present invention, the DC-AC converter is controlled so that the storage battery is discharged to the AC power source via the direct transfer circuit. Therefore, the storage battery can be inspected regardless of the AC load state. Becomes
【0047】また、この発明の請求項4では、双方向に
電力変換可能な交流−直流変換器を制御し蓄電池を回生
モードで交流電源へ放電させるようにしたので、同じく
交流負荷の状態にかかわらず蓄電池の点検が可能とな
る。Further, according to the fourth aspect of the present invention, the AC-DC converter capable of bidirectional power conversion is controlled to discharge the storage battery to the AC power source in the regenerative mode. Instead, the storage battery can be inspected.
【0048】また、この発明の請求項5では、検出した
蓄電池電圧が電流に対して設定範囲を越えたとき蓄電池
異常と判定するようにしたので、蓄電池の異常を確実に
検出することが可能となる。Further, according to the fifth aspect of the present invention, since it is determined that the storage battery is abnormal when the detected storage battery voltage exceeds the set range for the current, it is possible to reliably detect the abnormality of the storage battery. Become.
【0049】また、この発明の請求項6では、放電電流
または電力を所定の値に制御し、放電開始から所定時間
経過後の蓄電池電圧が放電電流または電力に対して設定
範囲を越えたとき蓄電池異常と判定するようにしたの
で、検出の条件が画一化され異常検出の動作がより安定
確実となり検出精度も向上する。In the sixth aspect of the present invention, the discharge current or power is controlled to a predetermined value, and when the storage battery voltage exceeds a set range with respect to the discharge current or power after a predetermined time has elapsed from the start of discharge. Since the abnormality is determined, the detection conditions are standardized, and the abnormality detection operation becomes more stable and reliable, and the detection accuracy is improved.
【0050】また、この発明の請求項7では、放電が設
定時間を経過したとき、または蓄電池電圧が設定値以下
に低下したとき異常検出動作を解除するようにしたの
で、点検実行に基づく交流負荷への影響を確実に防止す
ることが可能となる。Further, according to claim 7 of the present invention, the abnormality detection operation is canceled when the discharge has passed the set time or when the storage battery voltage has dropped below the set value. It is possible to surely prevent the influence on.
【図1】この発明の実施例1による電源装置を示す構成
図である。FIG. 1 is a configuration diagram showing a power supply device according to a first embodiment of the present invention.
【図2】この発明の実施例1による蓄電池異常の検出を
説明するための蓄電池電流−電圧特性を示す図である。FIG. 2 is a diagram showing a storage battery current-voltage characteristic for explaining detection of a storage battery abnormality according to the first embodiment of the present invention.
【図3】この発明の実施例2による蓄電池異常の検出を
説明するための放電時間−電圧特性を示す図である。FIG. 3 is a diagram showing a discharge time-voltage characteristic for explaining detection of a storage battery abnormality according to a second embodiment of the present invention.
【図4】この発明の実施例3による電源装置を示す構成
図である。FIG. 4 is a configuration diagram showing a power supply device according to a third embodiment of the present invention.
【図5】この発明の実施例4による電源装置を示す構成
図である。FIG. 5 is a configuration diagram showing a power supply device according to a fourth embodiment of the present invention.
【図6】この発明の実施例5による電源装置を示す構成
図である。FIG. 6 is a configuration diagram showing a power supply device according to a fifth embodiment of the present invention.
【図7】図6の双方向電力変換器の内部構成を示す回路
図である。7 is a circuit diagram showing an internal configuration of the bidirectional power converter of FIG.
【図8】この発明の実施例6による電源装置を示す構成
図である。FIG. 8 is a configuration diagram showing a power supply device according to a sixth embodiment of the present invention.
【図9】この発明の実施例7による電源装置を示す構成
図である。FIG. 9 is a configuration diagram showing a power supply device according to a seventh embodiment of the present invention.
【図10】この発明の実施例7における蓄電池電圧から
蓄電池容量を求めるためのテーブルの特性を示す図であ
る。FIG. 10 is a diagram showing characteristics of a table for obtaining a storage battery capacity from a storage battery voltage in Embodiment 7 of the present invention.
【図11】この発明の実施例8による電源装置を示す構
成図である。FIG. 11 is a configuration diagram showing a power supply device according to an eighth embodiment of the present invention.
【図12】従来の電源装置を示す構成図である。FIG. 12 is a configuration diagram showing a conventional power supply device.
1 第1の電力回路としての交流電源 2 電力変換手段としての交流−直流変換器 3 電力変換手段としての直流−交流変換器 4 エネルギ蓄積手段としての蓄電池 6 直送回路 8 第2の電力回路としての交流負荷 10,10a 交流−直流変換器制御装置 11,11a 直流−交流変換器制御装置 12 電流電圧検出手段としての電流センサ 13 電流電圧検出手段としての電圧センサ 14,14a 蓄電池異常検出手段としての蓄電池異常
検出器 15,15a,15b 点検制御装置1 AC power supply as a 1st power circuit 2 AC-DC converter as a power conversion means 3 DC-AC converter as a power conversion means 4 Storage battery 6 as an energy storage means 6 Direct transfer circuit 8 As a 2nd power circuit AC load 10,10a AC-DC converter control device 11,11a DC-AC converter control device 12 Current sensor as current / voltage detection means 13 Voltage sensor as current / voltage detection means 14,14a Storage battery as storage battery abnormality detection means Anomaly detector 15,15a, 15b Inspection control device
Claims (7)
2の電力回路へ供給する電力変換手段、および上記第1
の電力回路からの電力でエネルギを蓄積し上記第1の電
力回路の異常時それに替わって上記電力変換手段の入力
源となるエネルギ蓄積手段を備えた電源装置において、 上記電力変換手段を所定の動作状態に制御して上記エネ
ルギ蓄積手段をエネルギ放出動作にすることにより、上
記第2の電力回路への電力供給中に上記エネルギ蓄積手
段の異常検出を可能としたことを特徴とする電源装置。1. A power conversion means for converting power from a first power circuit and supplying it to a second power circuit, and the first power circuit.
In a power supply device having energy storage means for storing energy by the power from the power circuit and replacing the abnormal state of the first power circuit as an input source of the power conversion means, the power conversion means is operated in a predetermined operation. A power supply device capable of detecting an abnormality in the energy storage means during power supply to the second power circuit by controlling the energy storage means to an energy release operation by controlling the state.
換する交流−直流変換器、この交流−直流変換器の直流
側に接続された蓄電池、およびこの蓄電池に接続され直
流電力を交流電力に変換して交流負荷に供給する直流−
交流変換器を備えた電源装置において、 上記蓄電池の電流および電圧を検出する手段、および上
記直流−交流変換器の運転中に、上記交流−直流変換器
を所定の動作状態に制御して上記蓄電池を放電させ、こ
の放電時における上記検出手段からの出力をもとに上記
蓄電池の異常を検出する蓄電池異常検出手段を備えたこ
とを特徴とする電源装置。2. An AC-DC converter for converting AC power from an AC power source into DC power, a storage battery connected to the DC side of the AC-DC converter, and DC power connected to the storage battery to AC power. DC converted and supplied to AC load
In a power supply device equipped with an AC converter, a unit for detecting the current and voltage of the storage battery, and the AC-DC converter is controlled to a predetermined operating state while the DC-AC converter is in operation to control the storage battery. And a storage battery abnormality detecting means for detecting abnormality of the storage battery based on an output from the detecting means at the time of discharging.
換する交流−直流変換器、この交流−直流変換器の直流
側に接続された蓄電池、この蓄電池に接続され直流電力
を交流電力に変換して交流負荷に供給する直流−交流変
換器、および上記交流電源と交流負荷とを直接接続可能
に構成された直送回路を備えた電源装置において、 上記蓄電池の電流および電圧を検出する手段、および上
記直流−交流変換器の運転中に、上記直送回路を閉路構
成し、上記直送回路を介して上記蓄電池の電力を上記交
流電源に回生するよう上記直流−交流変換器を制御して
上記蓄電池を放電させ、この放電時における上記検出手
段からの出力をもとに上記蓄電池の異常を検出する蓄電
池異常検出手段を備えたことを特徴とする電源装置。3. An AC-DC converter for converting AC power from an AC power supply into DC power, a storage battery connected to the DC side of the AC-DC converter, and DC power connected to the storage battery for converting DC power to AC power. A DC-AC converter for supplying to an AC load, and a power supply device having a direct transfer circuit configured so that the AC power source and the AC load can be directly connected, means for detecting the current and voltage of the storage battery, and While the DC-AC converter is operating, the direct transfer circuit is configured to be closed, and the DC-AC converter is controlled to regenerate the electric power of the storage battery to the AC power source via the direct transfer circuit to control the storage battery. A power supply device comprising a storage battery abnormality detecting means for discharging and detecting an abnormality of the storage battery based on an output from the detecting means at the time of discharging.
双方向に電力変換可能な交流−直流変換器、この交流−
直流変換器の直流側に接続された蓄電池、およびこの蓄
電池に接続され直流電力を交流電力に変換して交流負荷
に供給する直流−交流変換器を備えた電源装置におい
て、 上記蓄電池の電流および電圧を検出する手段、および上
記直流−交流変換器の運転中に、上記交流−直流変換器
を上記交流電源への回生モードに制御して上記蓄電池を
放電させ、この放電時における上記検出手段からの出力
をもとに上記蓄電池の異常を検出する蓄電池異常検出手
段を備えたことを特徴とする電源装置。4. An AC-DC converter which is connected to an AC power source and is capable of bidirectionally converting power between AC and DC.
In a power supply device including a storage battery connected to the DC side of the DC converter, and a DC-AC converter connected to the storage battery and converting DC power into AC power and supplying the AC load, current and voltage of the storage battery Means for detecting, and during the operation of the DC-AC converter, the AC-DC converter is controlled in a regenerative mode to the AC power source to discharge the storage battery, from the detecting means at the time of this discharge. A power supply device comprising storage battery abnormality detecting means for detecting an abnormality of the storage battery based on an output.
電圧が蓄電池電流に対して予め設定した範囲を越えたと
き蓄電池異常と判定するようにしたことを特徴とする請
求項2ないし4のいずれかに記載の電源装置。5. The storage battery abnormality detecting means determines that the storage battery is abnormal when the detected storage battery voltage exceeds a preset range for the storage battery current. The power supply device according to.
流または放電電力を所定の値に制御し、放電開始から所
定時間経過後に検出した蓄電池電圧が放電中の蓄電池電
流または蓄電池電力に対して予め設定した範囲を越えた
とき蓄電池異常と判定するようにしたことを特徴とする
請求項2ないし4のいずれかに記載の電源装置。6. The storage battery abnormality detecting means controls the discharge current or the discharge power of the storage battery to a predetermined value, and the storage battery voltage detected after a predetermined time has elapsed from the start of the discharge corresponds to the storage battery current or the storage battery power being discharged in advance. The power supply device according to any one of claims 2 to 4, wherein the storage battery is determined to be abnormal when the set range is exceeded.
予め設定した時間経過したとき、または検出した蓄電池
電圧が予め設定した値以下に低下したとき、異常検出動
作を解除して上記蓄電池を充電動作に復帰させるように
したことを特徴とする請求項2ないし6のいずれかに記
載の電源装置。7. The storage battery abnormality detecting means releases the abnormality detection operation and charges the storage battery when the storage battery discharges for a preset time or when the detected storage battery voltage drops below a preset value. 7. The power supply device according to claim 2, wherein the power supply device is returned to operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05015579A JP3139193B2 (en) | 1993-02-02 | 1993-02-02 | Power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05015579A JP3139193B2 (en) | 1993-02-02 | 1993-02-02 | Power supply |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06233475A true JPH06233475A (en) | 1994-08-19 |
JP3139193B2 JP3139193B2 (en) | 2001-02-26 |
Family
ID=11892646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05015579A Expired - Lifetime JP3139193B2 (en) | 1993-02-02 | 1993-02-02 | Power supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3139193B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002286816A (en) * | 2001-03-23 | 2002-10-03 | Hitachi Kokusai Electric Inc | Battery life detection method |
JP2004312849A (en) * | 2003-04-04 | 2004-11-04 | Sanyo Denki Co Ltd | Uninterruptive power supply system with storage battery deterioration judging circuit |
JP2008295160A (en) * | 2007-05-23 | 2008-12-04 | Toshiba Mitsubishi-Electric Industrial System Corp | Uninterruptible power supply unit |
JP2009044902A (en) * | 2007-08-10 | 2009-02-26 | Origin Electric Co Ltd | Characteristic measuring device for storage battery, dc power supply system, and characteristic measuring method for storage battery |
JP2010098860A (en) * | 2008-10-16 | 2010-04-30 | Kokuyo Co Ltd | Power feeding system and work space |
WO2012050210A1 (en) * | 2010-10-15 | 2012-04-19 | 三洋電機株式会社 | Electricity storage system and control device |
CN102577002A (en) * | 2010-10-15 | 2012-07-11 | 三洋电机株式会社 | Electricity storage system |
JP2012186951A (en) * | 2011-03-07 | 2012-09-27 | Nippon Telegr & Teleph Corp <Ntt> | Power supply system and discharge test method |
-
1993
- 1993-02-02 JP JP05015579A patent/JP3139193B2/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002286816A (en) * | 2001-03-23 | 2002-10-03 | Hitachi Kokusai Electric Inc | Battery life detection method |
JP4637387B2 (en) * | 2001-03-23 | 2011-02-23 | 株式会社日立国際電気 | transceiver |
JP2004312849A (en) * | 2003-04-04 | 2004-11-04 | Sanyo Denki Co Ltd | Uninterruptive power supply system with storage battery deterioration judging circuit |
JP2008295160A (en) * | 2007-05-23 | 2008-12-04 | Toshiba Mitsubishi-Electric Industrial System Corp | Uninterruptible power supply unit |
JP2009044902A (en) * | 2007-08-10 | 2009-02-26 | Origin Electric Co Ltd | Characteristic measuring device for storage battery, dc power supply system, and characteristic measuring method for storage battery |
JP2010098860A (en) * | 2008-10-16 | 2010-04-30 | Kokuyo Co Ltd | Power feeding system and work space |
WO2012050210A1 (en) * | 2010-10-15 | 2012-04-19 | 三洋電機株式会社 | Electricity storage system and control device |
CN102577002A (en) * | 2010-10-15 | 2012-07-11 | 三洋电机株式会社 | Electricity storage system |
US8649138B2 (en) | 2010-10-15 | 2014-02-11 | Sanyo Electric Co., Ltd. | Electricity storage system and control device |
US8958188B2 (en) | 2010-10-15 | 2015-02-17 | Sanyo Electric Co., Ltd. | Electricity storage system and control device |
JP2012186951A (en) * | 2011-03-07 | 2012-09-27 | Nippon Telegr & Teleph Corp <Ntt> | Power supply system and discharge test method |
Also Published As
Publication number | Publication date |
---|---|
JP3139193B2 (en) | 2001-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5457377A (en) | Method of monitoring the internal impedance of an accumulator battery in an uninterruptible power supply, and an uninterruptible power supply | |
EP0410716B1 (en) | Uninterruptible power supply | |
EP2720052B1 (en) | System and method for automated failure detection of hold-up power storage devices | |
CN201069461Y (en) | A life monitoring device for aluminum electrolysis capacitor in the frequency converter | |
EP2936179B1 (en) | Methods, systems and modules for testing uninterruptible power supply (ups) systems with multiple ups modules | |
EP2605362B1 (en) | Power supply device | |
EP2290383A1 (en) | Capacitor's remaining lifetime diagnosing device, and electric power compensating device having the remaining lifetime diagnosing device | |
KR20180101752A (en) | Device detecting fault of inverter power relay | |
JP4845613B2 (en) | Battery charger with power capacitor life diagnosis function | |
KR20180023140A (en) | Power Relay Assembly fault controlling system and the method thereof | |
JP5390981B2 (en) | Power backup device | |
JP2009064682A (en) | Battery deterioration judging device, and lithium ion battery pack equipped with the same | |
US20050156603A1 (en) | Method of testing a battery pack by purposeful charge/discharge operations | |
JPH06233475A (en) | Power supply | |
US11979095B2 (en) | Discharge control circuit and power conversion device | |
JP2002142367A (en) | Power supply | |
KR20210107415A (en) | Apparatus and method for diagnosing initial charging circuit of inverter | |
JPH08154345A (en) | Uninterruptible power supply apparatus | |
JP3322116B2 (en) | Storage battery deterioration state tester for AC uninterruptible power supply | |
JP3977930B2 (en) | Uninterruptible power system | |
JP2533193B2 (en) | Storage battery diagnostic method for uninterruptible power supply | |
JP2006238514A (en) | Uninterruptible power system | |
JPH0698471A (en) | Uninterruptible power system | |
KR20210070111A (en) | System and method for managing life of battery management system | |
JPH07298625A (en) | System interconnection inverter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071215 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081215 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091215 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091215 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101215 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101215 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111215 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111215 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121215 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121215 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131215 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131215 Year of fee payment: 13 |