JPH0412528B2 - - Google Patents
Info
- Publication number
- JPH0412528B2 JPH0412528B2 JP58128652A JP12865283A JPH0412528B2 JP H0412528 B2 JPH0412528 B2 JP H0412528B2 JP 58128652 A JP58128652 A JP 58128652A JP 12865283 A JP12865283 A JP 12865283A JP H0412528 B2 JPH0412528 B2 JP H0412528B2
- Authority
- JP
- Japan
- Prior art keywords
- beam splitter
- light
- magneto
- phase difference
- retarder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000010287 polarization Effects 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 2
- 230000005415 magnetization Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 239000010408 film Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000012788 optical film Substances 0.000 description 2
- 230000005374 Kerr effect Effects 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10532—Heads
Description
【発明の詳細な説明】
(発明の技術分野)
本技術は位相子を設けることにより再生信号強
度の低下を防止した反射型磁気光学再生装置に関
する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present technology relates to a reflection type magneto-optical reproducing device that prevents a reduction in the intensity of a reproduced signal by providing a phase shifter.
(発明の背景)
光磁気記録媒体は例えば、GdCo、GdTbFeの
ような垂直磁化膜を主体とするもので、この垂直
磁化膜の磁化の方向を一旦上向きか下向きのいず
れかに揃えておき、記録したい部分にレーザー光
線を照射して、その部分の温度を例えば磁性材料
のキユリー点以上に加熱することにより、元の磁
化方向を自由に解放し、同時に反対向きの弱い磁
場をその部分に印加することで、その部分の磁化
方向を膜の磁化方向とは反対向きにし、その上で
レーザー光線の照射を止めて、その反対向きの磁
化を固定する。これにより仮の膜の磁化方向を0
とし、反対方向を1とすれば、レーザー光線の照
射は0、1のデジタル信号の1として記録される
ことになる。(Background of the Invention) A magneto-optical recording medium is mainly composed of a perpendicularly magnetized film such as GdCo or GdTbFe.The direction of magnetization of this perpendicularly magnetized film is once aligned either upward or downward, and then recording is performed. By irradiating the desired area with a laser beam and heating the temperature of that area to, for example, above the Curie point of the magnetic material, the original magnetization direction is freely released, and at the same time, a weak magnetic field in the opposite direction is applied to that area. Then, the magnetization direction of that part is set to be opposite to that of the film, and then the laser beam irradiation is stopped to fix the magnetization in the opposite direction. This sets the magnetization direction of the temporary film to 0.
If the opposite direction is 1, then the laser beam irradiation will be recorded as 1 of the 0 and 1 digital signals.
こうして記録された磁化膜の磁化方向の相違つ
まり、上向き、下向きは、直線偏光を照射して、
その反射光の偏光面の回転状況が磁化の向きによ
つて相違する現象(磁気カー効果)を利用して読
み取られる。つまり、入射光に対して磁化の向き
が上向きのとき、反射光の偏光面が入射光の偏光
面に対して反射光に対してθrad.回転したとする
と、磁化の向きが下向きのときは−θrad.回転す
る。従つて、反射光の先に偏光子(アナライザー
とも呼ばれる)の主軸を−θrad.面にほぼ直交す
るように置いておくと、下向きの磁化の部分から
の光はアナライザーをほとんど透過せず、上向き
の磁化の部分からの光はsin2θを乗じた分だけ透
過するので、アナライザーの先にデイテクター
(光電変換素子)を設置しておけば、記録媒体を
高速でスキヤンニングして行くと、記録された磁
化状態に基づいて電流の強弱信号として再生され
る。 The difference in the magnetization direction of the magnetized film recorded in this way, that is, upward and downward, can be determined by irradiating linearly polarized light.
The state of rotation of the polarization plane of the reflected light is read using a phenomenon (magnetic Kerr effect) that differs depending on the direction of magnetization. In other words, when the direction of magnetization is upward with respect to the incident light, the polarization plane of the reflected light is rotated by θrad relative to the polarization plane of the incident light, and when the direction of magnetization is downward, - Rotate θrad. Therefore, if the main axis of a polarizer (also called an analyzer) is placed at the end of the reflected light so that it is almost perpendicular to the -θ rad. plane, the light from the downward magnetized part will hardly pass through the analyzer, and the upward The amount of light transmitted from the magnetized portion of It is reproduced as a current strength signal based on the magnetization state.
以上述べたような原理に基づく再生装置を反射
型磁気光学再生装置と言うが、この装置は例えば
第1図又は第2図に示す如き基本構成を有する。 A reproducing apparatus based on the above-described principle is called a reflection type magneto-optical reproducing apparatus, and this apparatus has a basic configuration as shown in FIG. 1 or 2, for example.
つまり、第1図ではレーザー光源1からの偏光
ビームをビームスプリツター2で進行方向を90度
曲げた後、記録媒体3にほぼ垂直に照射し、その
反射光を再びブームスプリツター2を通してアナ
ライザー4に通し、その透過光を光電変換素子の
ようなデイテクター5で受光させる。 In other words, in FIG. 1, the polarized beam from the laser light source 1 is bent by 90 degrees in the direction of travel by the beam splitter 2, and then irradiated almost perpendicularly onto the recording medium 3, and the reflected light is passed through the boom splitter 2 again to the analyzer 4. The transmitted light is received by a detector 5 such as a photoelectric conversion element.
それらに対して第2図の装置では、レーザー光
源1からの偏光ビームをビームスプリツター2を
透過させて記録媒体3に対し、ほぼ垂直に照射
し、その反射光をビームスプリツター2に入射さ
せ、そこでの反射光をアナライザー4に導き、そ
の透過光をデイテクター5で受光させる。 In contrast, in the apparatus shown in FIG. 2, a polarized beam from a laser light source 1 is transmitted through a beam splitter 2 to irradiate the recording medium 3 almost perpendicularly, and the reflected light is incident on the beam splitter 2. , the reflected light is guided to the analyzer 4, and the transmitted light is received by the detector 5.
第1図、第2図いづれの装置にせよ、ビームス
プリツター2が必要になるが、ビームスプリツタ
ーによつては、s偏光とp偏光の位相差δがゼロ
でないことがある。そして、ビームスプリツター
2に位相差δがある場合には再生信号強度Sは低
下することが判明した。 A beam splitter 2 is required for both the apparatuses shown in FIG. 1 and FIG. 2, but depending on the beam splitter, the phase difference δ between the s-polarized light and the p-polarized light may not be zero. It has also been found that when the beam splitter 2 has a phase difference δ, the reproduced signal strength S decreases.
(発明の目的)
従つて、本発明の目的は、ビームスプリツター
を使用した反射型磁気光学再生装置に於いて、該
ビームスプリツターに位相差がある場合に再生信
号強度Sが低下するのを防止することにある。(Object of the Invention) Therefore, the object of the present invention is to prevent the reproduction signal strength S from decreasing when there is a phase difference in the beam splitter in a reflection type magneto-optical reproducing device using a beam splitter. The purpose is to prevent it.
(発明の概要)
今、(イ)磁性薄膜のカー回転角をθ、振幅反射率
をr、(ロ)ビームスプリツターの位相差をδ、(ハ)位
相子の位相差をΔ、主軸方位角をφ(φは実質的
にゼロとする)、(ニ)アナライザーの方位角をαと
し、(ホ)レーザー光源から発せられる偏光の方位角
がゼロとすると、アナライザーAを通過したた光
の光強度I〓は、複雑な計算になるので途中を省略
すると、
I〓∝|r|2×θsin2αcosδ
+1/2(1+cos2α)+φsin2αsin2Δ|
…(式1)
と導かれる。(Summary of the invention) Now, (a) the Kerr rotation angle of the magnetic thin film is θ, the amplitude reflectance is r, (b) the phase difference of the beam splitter is δ, (c) the phase difference of the retarder is Δ, and the principal axis direction Assuming that the angle is φ (φ is essentially zero), (d) the azimuth of the analyzer is α, and (e) the azimuth of the polarized light emitted from the laser light source is zero, then the light passing through analyzer A is The light intensity I〓 is a complicated calculation, so if you omit the middle part, I〓∝|r| 2 ×θsin2αcosδ + 1/2 (1 + cos2α) + φsin2αsin 2 Δ|
...(Formula 1) is derived.
さて、磁性薄膜の磁化の方向が入射光の入射方
向と同じときの光強度をI↑磁化の方向が入射方
向と反対のときの光強度をIα
↓とすると、光強度
差すなわち再生信号強度Sは、
S=|Iα
↑|Iα
↓|であるから、
S∝|r|2×―θsin2αcosδ| …(式2)
となる。 Now, if the light intensity when the direction of magnetization of the magnetic thin film is the same as the direction of incidence of the incident light is I↑ and the light intensity when the direction of magnetization is opposite to the direction of incidence is Iα↓, then the light intensity difference, that is, the reproduction signal intensity S Since S=|Iα ↑|Iα ↓|, S∝|r| 2 ×−θsin2αcosδ| (Formula 2).
式2に於いてアナライザーの方位角αの最適値
は、使用するデイテクター、光源としてのレーザ
ー、アナライザー等によつて異なるが、いずれに
せよαは入射偏光に対し消光位置(α=1/
2πrad.すなわち90°)近くに設定される。 In Equation 2, the optimal value of the azimuth angle α of the analyzer varies depending on the detector used, the laser as the light source, the analyzer, etc., but in any case, α is the extinction position (α = 1/
2πrad. i.e. 90°).
従つて、α=(1/2π+α′)rad.と表すことが
でき、α′は充分に小さい角度であるので、
sin2α=sin(π+2α′)=−sin2α′
≒−2α′
cos2α=cos(π+2α′)≒cosπ=−1
になる。 Therefore, it can be expressed as α=(1/2π+α′) rad. Since α′ is a sufficiently small angle, sin2α=sin(π+2α′)=−sin2α′ ≒−2α′ cos2α=cos(π+2α ′)≒cosπ=−1.
従つて、反射率rが一定、θが一定とすると、
光強度差すなわち再生信号強度Sは、
S∝―θcosδ―……(式3)
となる。 Therefore, assuming that the reflectance r is constant and θ is constant,
The light intensity difference, that is, the reproduced signal strength S is expressed as follows: S∝−θcosδ− (Formula 3).
なお、これまでカー回転を受けた反射光の回転
状況(θ又は−θ)の検出のためにアナライザー
4を使用する方法を説明して来たが、このような
アナライザーを使用する直接法の他に、第3図に
示すようにウオーラストンプリズム、トムソンプ
リズム、ロシヨンプリズム、薄膜型などの偏光ビ
ームスプリツター4′を使用し、これにより光を
互いに直交した偏光成分を持ち、かつほぼ等しい
光強度に二分して各デイテクター5a,5bに導
き、差動増幅器6により両デイテクターからの出
力差を取る、いわゆる差動法も知られている。差
動法は直接法に比べS/Nの比の点で有利な場合
がある。 Although we have so far explained the method of using the analyzer 4 to detect the rotation status (θ or -θ) of reflected light that has undergone Kerr rotation, there are other methods besides the direct method using such an analyzer. As shown in Fig. 3, a polarizing beam splitter 4' such as a Wallaston prism, a Thomson prism, a Rocillon prism, or a thin film type is used. A so-called differential method is also known in which the light intensity is divided into two and guided to each of the detectors 5a and 5b, and the difference in output from both detectors is obtained by a differential amplifier 6. The differential method may have an advantage over the direct method in terms of S/N ratio.
光強度Iをα=1/4πrad.のときI45、α=3/4
πrad.のときI135とすると、差動法の場合には、再
生信号強度Sは、
S=―(I45↑−I135↑)
−(I45↓−I135↓)―
と表わされるから、右辺に式1を代入すると、
S∝―θcosδ―……(式4)
が導かれる。 When the light intensity I is α=1/4πrad.I 45 , α=3/4
Assuming I 135 when πrad., in the case of the differential method, the reproduced signal strength S is expressed as S = - (I 45 ↑ - I 135 ↑) - (I 45 ↓ - I 135 ↓) - , by substituting Equation 1 into the right-hand side, the following is derived: S∝−θcosδ−……(Equation 4).
従つて、アナライザーを用いる直接法にせよ、
偏光ビームスプリツターを用いる差動法にせよ、
再生信号強度Sは、式3及び式4から、
―θcosδ―
に比例することが判明した。 Therefore, even if it is a direct method using an analyzer,
Whether it is a differential method using a polarizing beam splitter,
It was found from equations 3 and 4 that the reproduced signal strength S is proportional to -θcosδ-.
つまり、位相差δを有するビームスプリツター
を使用すると、再生信号強度Sは、cosδを乗じた
値に低下することが判る。例えばδが1/3πrad.で
あると、Sは半減してしまい、位相差δは無視で
きない存在となる。 In other words, it can be seen that when a beam splitter having a phase difference δ is used, the reproduced signal strength S decreases to a value multiplied by cos δ. For example, when δ is 1/3πrad., S is halved and the phase difference δ becomes a non-negligible entity.
本発明者は、
S∝―θcosδ―
の式から、位相差δを新たに設ける位相子で補正
することを着想した。 The present inventor came up with the idea of correcting the phase difference δ using a newly provided retarder from the equation S∝−θcosδ−.
位相子7を媒体3とビームスプリツター2との
間又はビームスプリツター2とアナライザー4も
しくは偏光ビームスプリツター4′との間に方位
角をほぼ0として設けると、同様な計算の結果、
S∝―θcos(δ+Δ)―……(式5)
が導かれることが判つた。(但し、Δは位相子の
位相差である。)この場合、位相子7を媒体3と
ビームスプリツター2との間に配設したときに
は、偏光ビームは位相子を入射時と反射時の2度
通ることになるが、入射時は偏光ビームの偏光面
が位相子の主軸と一致するように位相子を設ける
ので、位相子の影響はない。 If the retarder 7 is provided between the medium 3 and the beam splitter 2 or between the beam splitter 2 and the analyzer 4 or the polarizing beam splitter 4' with an azimuth angle of approximately 0, as a result of similar calculation, S∝ -θcos(δ+Δ)-...(Formula 5) was found to be derived. (However, Δ is the phase difference of the retarder.) In this case, when the retarder 7 is disposed between the medium 3 and the beam splitter 2, the polarized beam passes through the retarder at two times: when it is incident and when it is reflected. However, since the retarder is provided so that the plane of polarization of the polarized beam coincides with the main axis of the retarder at the time of incidence, there is no effect of the retarder.
式5から、δに応じてΔを適当に選ぶことによ
り、―θcos(δ+Δ)―を1にすることができ、
そうすれば再生信号強度Sを低下させることはな
い。それ故、本発明は、光源1と、該光源1から
の偏光ビームを光磁気記録媒体に向けて反射し、
そして該媒体で反射された光を透過するビームス
プリツター2と、該ビームスプリツター2を透過
した光を透過するアナライザー4と、該アナライ
ザー4を透過した光を受光するデイテクター5か
らなる反射型磁気光学再生装置において、
前記媒体と前記アナライザー4の間に、式:
―θcos(Δ+δ)―=1(但し、δはビームスプリ
ツターが透過光に対し与える位相差)
を満足する位相差Δを有する位相子を、入射偏光
の方位角をゼロとし、それを基準にしたときの位
相子の主軸方位角φが実質的にゼロになるように
設けたことを特徴とする反射型磁気光学再生装置
を提供するものである。 From Equation 5, by appropriately selecting Δ according to δ, −θcos(δ+Δ)− can be set to 1,
In this way, the reproduced signal strength S will not be reduced. Therefore, the present invention includes a light source 1 and a method for reflecting a polarized beam from the light source 1 toward a magneto-optical recording medium.
A reflective magnetic field comprising a beam splitter 2 that transmits the light reflected by the medium, an analyzer 4 that transmits the light that has passed through the beam splitter 2, and a detector 5 that receives the light that has passed through the analyzer 4. In the optical reproducing device, there is a phase difference Δ between the medium and the analyzer 4 that satisfies the following formula: -θcos(Δ+δ)-=1 (where δ is the phase difference given by the beam splitter to the transmitted light) A reflective magneto-optical reproducing device characterized in that the retarder is provided such that the azimuth angle of incident polarized light is zero and the principal axis azimuth φ of the retarder is substantially zero when based on the azimuth angle of the incident polarized light. This is what we provide.
本発明はまた、アナライザー4のかわりに、ビ
ームスプリツター2で透過/反射された光を2つ
の直交する偏光に分割する偏光ビームスプリツタ
ー4′を用いた反射型磁気光学再生装置を提供す
るものである。この場合、位相子は、媒体と偏光
ビームスプリツターの間に設けられる。 The present invention also provides a reflective magneto-optical reproducing device that uses a polarizing beam splitter 4' instead of the analyzer 4, which splits the light transmitted/reflected by the beam splitter 2 into two orthogonal polarized lights. It is. In this case, a retarder is provided between the medium and the polarizing beam splitter.
尚、光磁気記録媒体3において、媒体の基板あ
るいは保護基板が複屈折による位相差δ′を有する
場合、入射偏光方位を複屈折の軸に一致させると
全体の位相差はδ+δ′になり、従つてcos(δ+
δ′+Δ)=1になるようにΔを選ぶことで同様の
効果を得ることも出来る。 In addition, in the magneto-optical recording medium 3, if the substrate or protective substrate of the medium has a phase difference δ' due to birefringence, when the incident polarization direction is made to match the axis of birefringence, the overall phase difference becomes δ + δ', cos(δ+
A similar effect can also be obtained by selecting Δ so that δ′+Δ)=1.
本発明に使用される位相子それ自体は既に広く
知られており、一部市販品として入手することも
可能である。一般に位相子は例えば水晶、雲母な
どの薄膜で作られ、任意の位相差Δを有する位相
子の入手も容易である。 The retarders themselves used in the present invention are already widely known, and some of them are also available as commercial products. Generally, a retarder is made of a thin film of quartz, mica, or the like, and a retarder having an arbitrary phase difference Δ is easily available.
以下、実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.
(実施例 1)
第4図に示すように、レーザー光源3からの波
長λ=830nmのp偏光ビームを、反射光に位相差
−0.66rad.(=−37.8°)を与えるビームスプリツ
ター2を透過させた後、カー回転角θ=
0.007rad.(=0.4°)のGdTbFeを磁性薄膜を有する
光磁気記録媒体3に対し、ほぼ垂直に照射し、そ
の反射光をビームスプリツター2で反射させてア
ナライザー4に導き、デイテクター5で受光させ
る磁気光学再生装置を使用する。(Example 1) As shown in Fig. 4, a beam splitter 2 was used to convert the p-polarized beam of wavelength λ = 830 nm from the laser light source 3 into reflected light with a phase difference of -0.66 rad. (= -37.8°). After passing through, Kerr rotation angle θ=
GdTbFe of 0.007 rad. (=0.4°) is irradiated almost perpendicularly to the magneto-optical recording medium 3 having a magnetic thin film, and the reflected light is reflected by the beam splitter 2 and guided to the analyzer 4, where it is received by the detector 5. A magneto-optical reproducing device is used.
ここに使用するビームスプリツター2は、通常
ハーフミラーと呼ばれるもので、その構造は第5
図に示すように、屈折率n=1.51のBSC−7プリ
ズム51の斜面に、
H層:TiO2(n=2.2)/光学膜厚0.299λ
F層:SiO2(n=1.453)/光学膜厚0.384λ
の2層をH(LH)5の順に交互に11層蒸着して52
を形成した後、その上に同じ材質のプリズム51
の斜面を密着させてなるものである。このビーム
スプリツター2はp偏光に対して反射率透過率共
にほぼ50%で、反射の際s偏光とp偏光との間に
位相差−0.66rad.(=−37.8°)を与える。 The beam splitter 2 used here is usually called a half mirror, and its structure is
As shown in the figure, on the slope of the BSC-7 prism 51 with a refractive index n=1.51, H layer: TiO 2 (n=2.2)/optical film thickness 0.299λ F layer: SiO 2 (n=1.453)/optical film 11 layers of two layers with a thickness of 0.384λ were deposited alternately in the order of H (LH) 5 .
After forming the prism 51 made of the same material,
It is made by closely adhering the slopes of This beam splitter 2 has a reflectance and transmittance of approximately 50% for p-polarized light, and provides a phase difference of -0.66 rad. (=-37.8°) between s-polarized light and p-polarized light upon reflection.
ビームスプリツター2の位相差δが−0.66rad.
(=−37.8°)であるので、式:
―θcos(Δ+δ)―=1を満足する解の1つとし
てΔ=+0.66rad.(=+37.8°)を得る。 The phase difference δ of beam splitter 2 is -0.66 rad.
(=-37.8°), we obtain Δ=+0.66rad.(=+37.8°) as one of the solutions that satisfies the equation: -θcos(Δ+δ)-=1.
そこで位相差+0.66rad.(=+37.8°)の水晶製
位相子を入手し、これを第4図に7として示す
が、記録媒体3とビームスプリツター2との間
に、主軸がp偏光面と一致するように設置した。 Therefore, we obtained a crystal retarder with a phase difference of +0.66 rad. (= +37.8°), which is shown as 7 in Fig. 4. It was installed so that it coincided with the plane of polarization.
これにより再生信号強度Sは、位相子7を設け
ない場合に比べて、27%向上した。 As a result, the reproduced signal strength S was improved by 27% compared to the case where the phase shifter 7 was not provided.
また、上記位相子7を第4図に於いてビームス
プリツター2とアナライザー4との間に設置して
も同じ結果を得た。更に上記位相子に代えて、位
相差Δ=+3.81rad.(=217.8°)を有する位相子を
使用しても同じ結果を得た。 Furthermore, the same results were obtained even when the retarder 7 was placed between the beam splitter 2 and the analyzer 4 as shown in FIG. Furthermore, the same results were obtained when a retarder having a phase difference Δ=+3.81 rad. (=217.8°) was used in place of the above retarder.
第1図に示す如き磁気光学再生装置Iに於いて
も、引用数字7又は7′で示す位置に位相子を配
設すると、同じような再生信号強度Sの向上が認
められる。 In the magneto-optical reproducing apparatus I as shown in FIG. 1, a similar improvement in the reproduced signal strength S is observed when a phase shifter is disposed at the position indicated by reference numeral 7 or 7'.
(発明の効果)
以上の通り、本発明に従い特定の位相子を設け
ることにより、位相差を有するビームスプリツタ
ーを使用した場合の再生信号強度Sの低下が解消
される。(Effects of the Invention) As described above, by providing a specific phase shifter according to the present invention, the decrease in the reproduced signal strength S when a beam splitter having a phase difference is used is eliminated.
第1〜3図は従来の磁気光学再生装置の基本構
成を示す説明図である。第4図は本技術の一実施
例を示す磁気光学再生装置の基本構成を示す説
明図である。第5図は実施例に使用したビームス
プリツターの断面図である。第6図は本発明の他
の実施例を示す装置Iの基本構成を示す説明図で
ある。
主要部分の符号の説明、1……レーザー光源、
2……ビームスプリツター、3……光磁気記録媒
体、4……アナライザー、4′……偏光ビームス
プリツター、5,5a,5b……デイテクター、
6……差動増幅器、7,7′……位相子。
1 to 3 are explanatory diagrams showing the basic configuration of a conventional magneto-optical reproducing device. FIG. 4 is an explanatory diagram showing the basic configuration of a magneto-optical reproducing device showing an embodiment of the present technology. FIG. 5 is a sectional view of the beam splitter used in the example. FIG. 6 is an explanatory diagram showing the basic configuration of an apparatus I showing another embodiment of the present invention. Explanation of symbols of main parts, 1... Laser light source,
2... Beam splitter, 3... Magneto-optical recording medium, 4... Analyzer, 4'... Polarizing beam splitter, 5, 5a, 5b... Detector,
6... Differential amplifier, 7, 7'... Phase shifter.
Claims (1)
気記録媒体に向けて反射し、そして該媒体で反射
された光を透過するビームスプリツター2と、該
ビームスプリツター2を透過した光を透過するア
ナライザー4と、該アナライザー4を透過した光
を受光するデイテクター5からなる反射型磁気光
学再生装置において、 前記媒体と前記アナライザー4の間に、式:|
cos(Δ+δ)|=1(但し、δはビームスプリツタ
ーが透過光に対し与える位相差) を満足する位相差Δを有する位相子を、入射偏光
の方位角をゼロとし、それを基準にしたときの位
相子の主軸方位角φが実質的にゼロになるように
設けたことを特徴とする反射型磁気光学再生装
置。 2 光源1と、該光源1からの偏光ビームを光磁
気記録媒体に向けて反射し、そして該媒体で反射
された光を透過するビームスプリツター2と、該
ビームスプリツター2を透過した光を2つの直交
する偏光に分割する偏光ビームスプリツター4′
と、該偏光ビームスプリツター4′で分割された
光を受光する2つのデイテクター5からなる反射
型磁気光学再生装置において、 前記媒体と前記偏光ビームスプリツター4′と
の間に、式: |cos(Δ+δ)|=1(但し、δはビームスプリ
ツターが透過光に対し与える位相差) を満足する位相差Δを有する位相子を、入射偏光
の方位角をゼロとし、それを基準にしたときの位
相子の主軸方位角φが実質的にゼロになるように
設けたことを特徴とする反射型磁気光学再生装
置。 3 光源1と、該光源1からの偏光ビームを光磁
気記録媒体に向けて透過し、そして該媒体で反射
された光を透過するビームスプリツター2と、該
ビームスプリツター2で反射された光を透過する
アナライザー4と、該アナライザー4を透過した
光を受光するデイテクター5からなる反射型磁気
光学再生装置において、 前記媒体と前記アナライザー4の間に、式: |cos(Δ+δ)|=1(但し、δはビームスプリ
ツターが透過光に対し与える位相差) を満足する位相差Δを有する位相子を、入射偏光
の方位角をゼロとし、それを基準にしたときの位
相子の主軸方位角φが実質的にゼロになるように
設けたことを特徴とする反射型磁気光学再生装
置。 4 光源1と、該光源1からの偏光ビームを光磁
気記録媒体に向けて透過し、該媒体で反射された
光を反射するビームスプリツター2と、該ビーム
スプリツター2で反射された光を2つの直交する
偏光に分割する偏光ビームスプリツター4′と、
該偏光ビームスプリツター4′で分割された光を
受光する2つのデイテクター5からなる反射型磁
気光学再生装置において、 前記媒体と前記偏光ビームスプリツター4′と
の間に、式: |cos(Δ+δ)|=1(但し、δはビームスプリ
ツターが透過光に対し与える位相差) を満足する位相差Δを有する位相子を、入射偏光
の方位角をゼロとし、それを基準にしたときの位
相子の主軸方位角φが実質的にゼロになるように
設けたことを特徴とする反射型磁気光学再生装
置。 5 前記媒体の基板あるいは保護基板の複屈折に
よる位相差をδ′とするとき、前記位相子が、式: |cos(δ+δ′+Δ)|=1 を満足する位相差Δを有する位相子であることを
特徴とする特許請求の範囲第1項から第4項に記
載の反射型磁気光学再生装置。[Claims] 1. A light source 1, a beam splitter 2 that reflects a polarized beam from the light source 1 toward a magneto-optical recording medium, and transmits the light reflected by the medium, and the beam splitter. 2, and a detector 5 that receives the light that has passed through the analyzer 4. In the reflection type magneto-optical reproducing device, the following equation is established between the medium and the analyzer 4:
A retarder with a phase difference Δ that satisfies cos (Δ+δ) | = 1 (where δ is the phase difference given by the beam splitter to the transmitted light) is used as a reference, with the azimuth of the incident polarized light set to zero. 1. A reflection type magneto-optical reproducing device, characterized in that the retarder is provided so that its main axis azimuth angle φ is substantially zero. 2. A light source 1, a beam splitter 2 that reflects a polarized beam from the light source 1 toward a magneto-optical recording medium, and transmits the light reflected by the medium, and a beam splitter 2 that transmits the light that has passed through the beam splitter 2. Polarizing beam splitter 4' that splits the light into two orthogonal polarizations
and two detectors 5 that receive the light split by the polarizing beam splitter 4', between the medium and the polarizing beam splitter 4', the formula: |cos (Δ+δ) | = 1 (where δ is the phase difference given by the beam splitter to the transmitted light) When using a retarder with a phase difference Δ that satisfies the following, the azimuth of the incident polarized light is set to zero, and this is used as a reference. A reflection type magneto-optical reproducing device, characterized in that the main axis azimuth angle φ of the retarder is provided so as to be substantially zero. 3. A light source 1, a beam splitter 2 that transmits a polarized beam from the light source 1 toward a magneto-optical recording medium, and transmits the light reflected by the medium, and a beam splitter 2 that transmits the polarized beam from the light source 1 toward a magneto-optical recording medium, and transmits the light reflected by the beam splitter 2. In a reflective magneto-optical reproducing device comprising an analyzer 4 that transmits light, and a detector 5 that receives light that has passed through the analyzer 4, the following equation is established between the medium and the analyzer 4: |cos(Δ+δ)|=1( However, δ is the phase difference given by the beam splitter to the transmitted light). When using a retarder with a phase difference Δ that satisfies the following, the azimuth angle of the incident polarized light is set to zero, and the azimuth angle of the main axis of the retarder is calculated based on the azimuth angle of the incident polarized light. A reflection type magneto-optical reproducing device characterized in that it is provided so that φ is substantially zero. 4 a light source 1, a beam splitter 2 that transmits a polarized beam from the light source 1 toward a magneto-optical recording medium, and reflects the light reflected by the medium; a polarizing beam splitter 4' that splits the light into two orthogonal polarized lights;
In a reflective magneto-optical reproducing device consisting of two detectors 5 that receive light split by the polarizing beam splitter 4', the following equation exists between the medium and the polarizing beam splitter 4': |cos(Δ+δ ) | = 1 (where δ is the phase difference given by the beam splitter to the transmitted light) A retarder with a phase difference Δ that satisfies 1. A reflection type magneto-optical reproducing device, characterized in that the main axis azimuth angle φ of the child is substantially zero. 5. When the phase difference due to birefringence of the substrate or protective substrate of the medium is δ', the retarder has a phase difference Δ that satisfies the formula: |cos(δ+δ'+Δ)|=1 A reflective magneto-optical reproducing device according to any one of claims 1 to 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12865283A JPS6020341A (en) | 1983-07-14 | 1983-07-14 | Reflective type magneto-optic reproducing device after phase correction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12865283A JPS6020341A (en) | 1983-07-14 | 1983-07-14 | Reflective type magneto-optic reproducing device after phase correction |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4347586A Division JPH0752530B2 (en) | 1992-12-28 | 1992-12-28 | Phase-corrected reflection type magneto-optical reproducing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6020341A JPS6020341A (en) | 1985-02-01 |
JPH0412528B2 true JPH0412528B2 (en) | 1992-03-04 |
Family
ID=14990099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12865283A Granted JPS6020341A (en) | 1983-07-14 | 1983-07-14 | Reflective type magneto-optic reproducing device after phase correction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6020341A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8692563B1 (en) | 2008-02-27 | 2014-04-08 | Cypress Semiconductor Corporation | Methods and circuits for measuring mutual and self capacitance |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0622070B2 (en) * | 1983-12-29 | 1994-03-23 | オリンパス光学工業株式会社 | Magneto-optical pickup device |
JPS60151855A (en) * | 1984-01-20 | 1985-08-09 | Olympus Optical Co Ltd | Photomagnetic pickup device |
JPS61160852A (en) * | 1984-12-30 | 1986-07-21 | Olympus Optical Co Ltd | Photomagnetic pickup device |
WO1995029483A1 (en) * | 1994-04-23 | 1995-11-02 | Sony Corporation | Magnetooptic recording medium and magnetooptic recording head |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5963041A (en) * | 1982-08-24 | 1984-04-10 | エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン | Magnetic optical element |
-
1983
- 1983-07-14 JP JP12865283A patent/JPS6020341A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5963041A (en) * | 1982-08-24 | 1984-04-10 | エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン | Magnetic optical element |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8692563B1 (en) | 2008-02-27 | 2014-04-08 | Cypress Semiconductor Corporation | Methods and circuits for measuring mutual and self capacitance |
Also Published As
Publication number | Publication date |
---|---|
JPS6020341A (en) | 1985-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5033828A (en) | Optical output controlling method and apparatus | |
JPH07101523B2 (en) | Magneto-optical signal reproducing device | |
JP2706128B2 (en) | Magneto-optical reproducing device | |
JP2786484B2 (en) | Magneto-optical reproducing device | |
JPH0412528B2 (en) | ||
JPH0250335A (en) | Magneto-optical memory element | |
JPH0350346B2 (en) | ||
US5759657A (en) | Optical recording medium and device for reproducing the same | |
JPH05258387A (en) | Reflection type magnetic optical reproducing device subjected to phase correction | |
JPH0344388B2 (en) | ||
US5249171A (en) | Opto-magnetic pick-up device including phase difference correcting means | |
JPS6255222B2 (en) | ||
JPS60143461A (en) | Photomagnetic pickup device | |
JPS61237241A (en) | Photomagnetic recording and reproducing device | |
JPS59172176A (en) | Photomagnetic recording and reproducing device | |
JPS59171056A (en) | Magneto-optical reproducing device | |
JP2797618B2 (en) | Recording signal reproducing apparatus for magneto-optical recording medium | |
JPH0756710B2 (en) | Optical device of magneto-optical storage device | |
JPH0685218B2 (en) | Magneto-optical reproducing device | |
JPH053667B2 (en) | ||
JPS60201547A (en) | Magnetooptic reproducing device in common use for recording | |
JPS59101050A (en) | Reproducing device | |
JPS6035353A (en) | Photomagnetic reproducing device | |
JPH043575B2 (en) | ||
JPS60226045A (en) | Reproducing device for optomagnetic disk memory |