[go: up one dir, main page]

JPS6255222B2 - - Google Patents

Info

Publication number
JPS6255222B2
JPS6255222B2 JP12376580A JP12376580A JPS6255222B2 JP S6255222 B2 JPS6255222 B2 JP S6255222B2 JP 12376580 A JP12376580 A JP 12376580A JP 12376580 A JP12376580 A JP 12376580A JP S6255222 B2 JPS6255222 B2 JP S6255222B2
Authority
JP
Japan
Prior art keywords
light
magneto
polarized light
recording medium
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12376580A
Other languages
Japanese (ja)
Other versions
JPS5750329A (en
Inventor
Seiji Nishino
Masahiro Orukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12376580A priority Critical patent/JPS5750329A/en
Publication of JPS5750329A publication Critical patent/JPS5750329A/en
Publication of JPS6255222B2 publication Critical patent/JPS6255222B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads

Landscapes

  • Optical Recording Or Reproduction (AREA)

Description

【発明の詳細な説明】 本発明は、記録・再生・消去が可能な磁気光学
材料を用いた記録媒体の再生方式に係るもので、
従来提案されている再生光学系の簡素化を図らん
とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reproducing a recording medium using a magneto-optical material capable of recording, reproducing, and erasing.
This is an attempt to simplify the reproduction optical system that has been proposed in the past.

最近記録・再生・消去が可能な磁気光学記録材
が注目されてきている。磁気光学信号の再生は、
通常次のような方法で行なわれる。再生光源とし
て直線偏光光源を用い、対物レンズを用いて記録
媒体上に集光させる。この磁記記録媒体で反射さ
れた光はハーフミラーにより往路とは別の光路に
導かれ、グラントムソンプリズムあるいはウオラ
ストンプリズムなどの検光子を通過した後、検出
器に入る。しかしながらこの再生方法は、グラン
ドムソンプリズム,ウオラストンプリズムなどの
使用により光学系が複雑化する。
Recently, magneto-optical recording materials that are capable of recording, reproducing, and erasing have been attracting attention. The reproduction of magneto-optic signals is
This is usually done in the following way. A linearly polarized light source is used as a reproduction light source, and the light is focused onto the recording medium using an objective lens. The light reflected by this magnetic recording medium is guided by a half mirror to an optical path different from the outgoing path, and after passing through an analyzer such as a Glan-Thompson prism or a Wollaston prism, it enters a detector. However, in this reproduction method, the optical system becomes complicated due to the use of Grand-Mausson prisms, Wollaston prisms, etc.

本発明はこれらの問題点を解決し、記録・再
生・消去のできる磁気光学記録媒体をS/Nよく
再生出来る光学系を提供せんとするものである。
以下本発明の実施例を図面を用いて詳述する。
The present invention aims to solve these problems and provide an optical system capable of reproducing a magneto-optical recording medium capable of recording, reproducing, and erasing with a good S/N ratio.
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明による光学系の構成を示す。例
えばP偏光を持つたHe―Neレーザー1から発し
た光束は、P偏光は透過,S偏光は反射という特
性を持つ偏光ビームスプリツター2を通過する。
その後に1/4波長板3を介し、光束は円偏光とな
る。円偏光の光束は集光レンズ4により磁気記録
担体5の上に回折限界まで絞られた微小スポツト
として照射される。記録担体5は一例として第2
図に示されている。ガラス基板Aの上にAl蒸着
により形成させた反射層B,EuSより成る磁気光
学薄膜C,該磁気光学薄膜Cの表面での反射を防
止するための反射防止膜Dより構成されている。
従つて、図上の矢印線で示されているごとく、記
録担体5に入射した光はD層に入射後、D層,C
層間の界面での反射は起きず、C層に入射する。
C層に入射後は反射層Bで反射され、再びC層D
層間の界面に達するまで複屈折による位相遅れが
発生する。このとき、C層出射時における円偏光
の電場Eは磁気光学薄膜Cの磁化の向きにより で表わされる。ここでCは光速,dはC層の薄
厚,nはC層の複素屈折率で、n(+M)は磁化
が+Mのときの複素屈折率を表わす。Cは光速で
ある。従つて磁化の向きが+Mの場合と磁化が−
Mのときとの反射波の位相差Δは、光源波長をλ
として次のようになる。
FIG. 1 shows the configuration of an optical system according to the present invention. For example, a light beam emitted from a He--Ne laser 1 having P polarization passes through a polarizing beam splitter 2 which has a characteristic of transmitting P polarized light and reflecting S polarized light.
Thereafter, the light flux becomes circularly polarized light through the quarter-wave plate 3. The circularly polarized light beam is irradiated onto the magnetic recording carrier 5 by a condensing lens 4 as a minute spot converged to the diffraction limit. The record carrier 5 is, for example, the second
As shown in the figure. It consists of a reflective layer B formed on a glass substrate A by Al vapor deposition, a magneto-optic thin film C made of EuS, and an anti-reflection film D for preventing reflections on the surface of the magneto-optic thin film C.
Therefore, as shown by the arrow line in the figure, the light incident on the record carrier 5 enters the D layer, and then the D layer and the C layer.
No reflection occurs at the interface between the layers, and the light is incident on the C layer.
After entering the C layer, it is reflected by the reflective layer B, and then enters the C layer D again.
A phase delay occurs due to birefringence until the interface between the layers is reached. At this time, the electric field E of the circularly polarized light at the time of emission from the C layer depends on the direction of magnetization of the magneto-optic thin film C. It is expressed as Here, C is the speed of light, d is the thin thickness of the C layer, n is the complex refractive index of the C layer, and n(+M) represents the complex refractive index when the magnetization is +M. C is the speed of light. Therefore, when the direction of magnetization is +M and when the direction of magnetization is -
The phase difference Δ of the reflected wave from the time of M is the light source wavelength λ
It becomes as follows.

すなわち、複素屈折率n(+M)を実数部と虚
数部とに分けて表わすと、 n(+M)=Ren(+M)+jInn(+M) となる。Re,Inは、それぞれ、実数部と虚数部
であることを示す。これを上記の第1の式に代入
すると、 となり、この複素数の位相arg(E+M)は、 arg(E+M)=W/C2dRen(+M) となる。同様にして、複素屈折率n(−M)につ
いては、位相arg(E-M)は、 arg(E-M)=W/C2dRen(−M) となる。
That is, when the complex refractive index n(+M) is expressed by dividing it into a real part and an imaginary part, it becomes n(+M)=R e n (+M)+jI n n (+M). R e and I n indicate the real part and the imaginary part, respectively. Substituting this into the first equation above, we get The phase of this complex number arg(E +M ) is arg(E +M )=W/C2dR e n (+M). Similarly, for a complex refractive index n(-M), the phase arg(E -M ) becomes arg(E -M )=W/C2dR e n(-M).

そこで、両者の位相差Δは、 Δ=arg(E+M)−arg(E-M) =W/C・2d{Ren(+M)−Ren(−M)} となる。ここで、 W/C=2π/λ より、 Δ=4πd/λRe{n(+M)−n(−M)} となる。 Therefore, the phase difference Δ between the two becomes Δ=arg(E +M )−arg(E −M )=W/C·2d{ Ren (+M) −Ren (−M)}. Here, from W/C=2π/λ, Δ=4πd/ λRe {n(+M)−n(−M)}.

ここでΔ=πとなる様dを定めることにより、
複屈折による位相差検出を容易に行なうことがで
きる。上記式において、Δ/2dすなわち 2π/λ・Re〔n(+M)−n(−M)〕の値
は通常磁気材料のフアラデー回転角θFとして知
られており、各種の材料で測定されている。たと
えば、EuSを例とすれば、λ=6328Å近辺におけ
るθFは107degres/cmであるので、 θF=Δ/2d=107degree/cm から、Δ=πとするためにはEuSの厚さdは、 d〓900Åとすればよい。
Here, by determining d so that Δ=π,
Phase difference detection using birefringence can be easily performed. In the above equation, the value of Δ/2d, or 2π/λ・Re[n(+M)-n(-M)], is usually known as the Faraday rotation angle θF of the magnetic material, and has been measured with various materials. There is. For example, taking EuS as an example, θ F near λ = 6328 Å is 10 7 degres/cm, so from θ F = Δ/2d = 10 7 degree/cm, in order to make Δ = π, the EuS The thickness d may be set to d〓900 Å.

さて磁気光学記録体上に信号は前述のように信
号部はn(+M),無信号部はn(−M)の状態
で記録されている。
Now, as mentioned above, signals are recorded on the magneto-optical recording medium in a state where the signal portion is n(+M) and the non-signal portion is n(-M).

今信号として回転駆動される円盤状記録媒体に
ら旋状のトラツクに沿つてドツト状に記録された
信号を再生することを一例として考えることにす
る。記録された信号の拡大図を第3図に示す。
Let us now consider, as an example, the reproduction of a signal recorded in dots along a spiral track on a disc-shaped recording medium that is rotationally driven as a signal. An enlarged view of the recorded signal is shown in FIG.

第3図において、10はn(+M)の屈折率を
持つ信号領域、11は集光スポツトを示し、12
は無信号領域であり、n(−M)の屈折率を持つ
ている。今、11は再生集光スポツトとして示し
ているが、実際同じ集光スポツトで信号を記録し
ても、磁気光学記録材に記録スレツシヨルドレベ
ルがあるので10のように再生光スポツトよりは
小さくなつてしまう。よつて第3図のような寸法
関係は、最近よく研究されている記録・再生を同
一装置で行なうときまつたく自然に発生するもの
である。よつて反射光は領域10からと領域12
からとの反射光の和でありその間には位相差がΔ
だけがある。
In FIG. 3, 10 indicates a signal region having a refractive index of n(+M), 11 indicates a condensing spot, and 12
is a no-signal region and has a refractive index of n(-M). Now, number 11 is shown as the reproduction light spot, but even if a signal is actually recorded at the same light collection spot, the magneto-optical recording material has a recording threshold level, so it will be smaller than the reproduction light spot like 10. I get used to it. Therefore, the dimensional relationship as shown in FIG. 3 naturally occurs when recording and reproducing are performed using the same device, which has been much studied recently. Therefore, the reflected light is from area 10 and area 12.
It is the sum of the reflected light from the
There is only one.

このようにしてΔだけ位相差を有する2つの円
偏光は、再び1/4波長板3を通して直線偏光とし
て現われ、その偏光面はレーザー光源から照射さ
れたP偏光とは直交するS偏光となる。従つてそ
の後偏光ビームスプリツター2により反射され、
光路は分離されて受光器6に達する。
In this way, the two circularly polarized lights having a phase difference of Δ pass through the quarter-wave plate 3 again and appear as linearly polarized light, and the plane of polarization becomes S-polarized light that is orthogonal to the P-polarized light emitted from the laser light source. Therefore, it is then reflected by the polarizing beam splitter 2,
The optical path is separated and reaches the photoreceiver 6.

このように、磁気光学記録媒体に単色偏光を作
用させて位相差を生じさせその干渉を検出する方
式は全く新しい試みであり、従来行なつてきた直
線偏光を作用させてその偏光面回転を検光子によ
つて検出する方法とは大きく異なる。
In this way, the method of applying monochromatic polarized light to a magneto-optical recording medium to generate a phase difference and detecting the interference is a completely new attempt. This is very different from the method of detection using photons.

また、従来法による磁気光学信号の検出には、
記録ピツトよりも小さな光スポツトを用いる必要
があつたが、本発明による方法では、光スポツト
よりも大きな光スポツトを用いるため、同一再生
光エネルギ密度で比べると光量を増すことができ
る。さらに、ハーフミラー,グラントムソンプリ
ズムあるいはウオラストンプリズムなどによる検
光子を用いないために、これらによるパワーロス
がなく、また再生装置の簡素化及び低価格化を実
現するものである。
In addition, for detection of magneto-optical signals using conventional methods,
Although it was necessary to use a light spot smaller than the recording pit, the method according to the present invention uses a larger light spot than the recording pit, so the amount of light can be increased compared to the same reproduction light energy density. Furthermore, since an analyzer such as a half mirror, Glan-Thompson prism, or Wollaston prism is not used, there is no power loss due to such an analyzer, and the reproduction apparatus can be simplified and lowered in price.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の光学系を示す構成
図、第2図は磁気光学記録媒体の1例を示す断面
図、第3図は信号再生時のデイスク上における信
号領域と再生スポツトの関係を示す図である。 1……レーザ光源、2……偏光ビームスプリツ
ター、3……1/4波長板、4……集光レンズ、5
……磁気光学記録媒体、6……受光器。
Fig. 1 is a configuration diagram showing an optical system according to an embodiment of the present invention, Fig. 2 is a sectional view showing an example of a magneto-optical recording medium, and Fig. 3 shows a signal area and a reproduction spot on a disk during signal reproduction. FIG. 1... Laser light source, 2... Polarizing beam splitter, 3... 1/4 wavelength plate, 4... Condensing lens, 5
...Magneto-optical recording medium, 6... Light receiver.

Claims (1)

【特許請求の範囲】 1 磁気光学薄膜に無信号部と信号像部とで磁化
方向が逆方向になるようにして記録されている磁
気光学記録体からその記録信号を再生する再生光
源として直線偏光光源を用い、この光路上に光源
から磁気光学記録体に向つて偏光ビームスプリツ
ター,1/4波長板の順に配して前記1/4波長板によ
り直線偏光を円偏光に変換して前記磁気光学記録
体に照射し、前記磁気光学記録体の磁気薄膜を通
つて反射された反射光を前記1/4波長板により前
記光源から出射される偏光面とは直光する偏光面
を持つた直線偏光に変換して前述偏光ビームスプ
リツターにより往路と分離し、その分離した光路
上に光検出器を配し、この光検出面上に前記磁気
光学薄膜の無信号部と信号像部とからの反射光に
よる回折像を生じさせて信号検出を行うことを特
徴とする光学式再生装置。 2 磁気光学記録体は円盤であり、再生時にこの
円盤は回転をし、記録信号はら旋状に存在し、完
全露光,末露光の2つの状態であり、ら旋状信号
間には末露光の場所が存在することを特徴とする
特許請求の範囲第1項に記載の光学式再生装置。
[Claims] 1. Linearly polarized light as a reproduction light source for reproducing recorded signals from a magneto-optical recording medium in which magnetization is recorded in a magneto-optic thin film such that the magnetization directions are opposite in the non-signal area and the signal image area. Using a light source, a polarizing beam splitter and a quarter-wave plate are arranged in this order from the light source toward the magneto-optical recording medium on this optical path, and the quarter-wave plate converts the linearly polarized light into circularly polarized light, and converts the linearly polarized light into circularly polarized light. The reflected light that is irradiated onto the optical recording medium and reflected through the magnetic thin film of the magneto-optical recording medium is emitted from the light source by the quarter-wave plate.The plane of polarization that is emitted from the light source is a straight line with a plane of polarization that is direct light. The polarized light is converted into polarized light and separated from the outgoing path by the polarizing beam splitter, and a photodetector is arranged on the separated optical path. An optical reproducing device characterized by detecting a signal by generating a diffraction image using reflected light. 2. The magneto-optical recording medium is a disk, and during playback, this disk rotates, and the recorded signals exist in a spiral shape, and are in two states: full exposure and final exposure. Between the spiral signals, there is a final exposure state. The optical reproducing device according to claim 1, characterized in that there is a location.
JP12376580A 1980-09-05 1980-09-05 Optical reproducing device Granted JPS5750329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12376580A JPS5750329A (en) 1980-09-05 1980-09-05 Optical reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12376580A JPS5750329A (en) 1980-09-05 1980-09-05 Optical reproducing device

Publications (2)

Publication Number Publication Date
JPS5750329A JPS5750329A (en) 1982-03-24
JPS6255222B2 true JPS6255222B2 (en) 1987-11-18

Family

ID=14868718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12376580A Granted JPS5750329A (en) 1980-09-05 1980-09-05 Optical reproducing device

Country Status (1)

Country Link
JP (1) JPS5750329A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101050A (en) * 1982-12-02 1984-06-11 Sony Corp Reproducing device
EP0129605A4 (en) * 1982-12-23 1987-01-22 Sony Corp Thermomagnetic optical recording method.
JPH0685218B2 (en) * 1983-08-06 1994-10-26 ブラザー工業株式会社 Magneto-optical reproducing device
EP0156058A3 (en) * 1983-08-06 1986-01-29 Brother Kogyo Kabushiki Kaisha Magneto-optical reading apparatus
JP2641422B2 (en) * 1985-04-09 1997-08-13 松下電器産業株式会社 Optical playback device

Also Published As

Publication number Publication date
JPS5750329A (en) 1982-03-24

Similar Documents

Publication Publication Date Title
CA1223349A (en) Optical system in a magneto-optical memory device
US4571650A (en) Magneto-optic information storage system utilizing a self-coupled laser
US4660187A (en) Light signal reading method and apparatus using interference between two light beams of different frequency and polarization
JPH05298773A (en) Optical information recording and reproducing apparatus
JPS6255222B2 (en)
JPH0581977B2 (en)
JPH0327977B2 (en)
JPH0756709B2 (en) Magneto-optical storage device
JPH0756710B2 (en) Optical device of magneto-optical storage device
JP2624241B2 (en) Magneto-optical disk device
JPH0622070B2 (en) Magneto-optical pickup device
JPH1021596A (en) Magneto-optical recording medium and optical reproducing apparatus
JPS6273445A (en) Optical head
JP2859519B2 (en) Optical information reproducing device
KR100207645B1 (en) Optical control method of optical device and optical device for optical head applying same
JP2578413B2 (en) Magneto-optical information reproducing device
JPH08212615A (en) Optical device of magneto-optical storage device
JP2604381B2 (en) Magneto-optical recording device
JPH043575B2 (en)
JP3083894B2 (en) Optical playback device
JP3211483B2 (en) Optical pickup device
JPS61206951A (en) Pickup of simultaneous erasing and recording type photomagnetic recording and reproducing device
JPH0719402B2 (en) Magneto-optical disk playback device
JPH07101522B2 (en) Magneto-optical information reproducing device
JPH0254451A (en) Magneto-optical recording and reproducing optical head