JPH04115588A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPH04115588A JPH04115588A JP23480390A JP23480390A JPH04115588A JP H04115588 A JPH04115588 A JP H04115588A JP 23480390 A JP23480390 A JP 23480390A JP 23480390 A JP23480390 A JP 23480390A JP H04115588 A JPH04115588 A JP H04115588A
- Authority
- JP
- Japan
- Prior art keywords
- type
- layer
- current blocking
- blocking layer
- semiconductor laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 43
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 238000002347 injection Methods 0.000 claims abstract description 9
- 239000007924 injection Substances 0.000 claims abstract description 9
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims abstract 3
- 230000000903 blocking effect Effects 0.000 claims description 45
- 238000005253 cladding Methods 0.000 claims description 22
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 claims 2
- 239000011717 all-trans-retinol Substances 0.000 claims 1
- 235000019169 all-trans-retinol Nutrition 0.000 claims 1
- 238000010276 construction Methods 0.000 abstract 1
- 230000005855 radiation Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 93
- 239000013078 crystal Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 230000010355 oscillation Effects 0.000 description 5
- 238000005036 potential barrier Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 241000408551 Meza Species 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2206—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
- H01S5/221—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials containing aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2222—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
- H01S5/2227—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties special thin layer sequence
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/32308—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
- H01S5/32325—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm red laser based on InGaP
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、0.6μmに発振波長を有するA II G
aInPIn光半導体レーザに関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an A II G having an oscillation wavelength of 0.6 μm.
This invention relates to an aInPIn optical semiconductor laser.
現在、光ディスクの高密度化のため、0.6μm帯に発
振波長を有するAlGaInP系可視光半導体レーザの
開発が盛んに行われている。これまでに報告されている
AuGaInP可視光半導体レーザのほとんどは、N型
基板上に形成された半導体レーザに関する報告である。Currently, in order to increase the density of optical disks, AlGaInP-based visible light semiconductor lasers having an oscillation wavelength in the 0.6 μm band are being actively developed. Most of the AuGaInP visible light semiconductor lasers that have been reported so far are reports on semiconductor lasers formed on N-type substrates.
また、その主要なレーザ構造は、平坦なN型基板上にN
型Aj2GaInPクラッド層、GaInP活性層、P
型AuGaInPクラッド層をこの順に形成し、次に、
P型AβGa I nPクラッド層をメサ状ストライプ
に加工し、それ以外の部分をN型のブロック層で埋め込
んだ構造である。以下に、それらのレーザ構造に関する
発表例を示す。たとえば、エレクトロニクス・レターズ
1987年8月27日号Vol。In addition, the main laser structure is N-type on a flat N-type substrate.
Type Aj2GaInP cladding layer, GaInP active layer, P
A type AuGaInP cladding layer is formed in this order, and then
It has a structure in which a P-type AβGa I nP cladding layer is processed into mesa-like stripes, and the remaining portion is filled with an N-type block layer. Examples of presentations regarding these laser structures are shown below. For example, Electronics Letters August 27, 1987 Vol.
23Nα18 pp、938−939記載の“’Hig
h−power operation of a tr
ansverse−mode 5tabilised
A (IG a I n P visible I
ightsemiconductorlaser”、あ
るいは、1987年第19回固体素子・材料コンファレ
ンス予稿集、pp、115−118記載の“High
power operation of I n G
a P / I n A j2 Ptransver
se mode 5tabilized 1aser
diodesl+に報告されている。これらのレーザ構
造は、Al2GaAs半導体レーザの頃から良く知られ
た構造で、メサ状ストライプをブロック層で埋め込むこ
とにより、電流狭窄を行うと同時に、屈折率ステップを
形成し、横モード制御を行うことが可能である。23Nα18 pp, 938-939
h-power operation of a tr
anverse-mode 5-tabilised
A (IG a I n P visible I
"High Semiconductor Laser", or "High
power operation of I n G
a P / I n A j2 Ptransver
se mode 5tabilized 1aser
reported in diodesl+. These laser structures have been well known since the days of Al2GaAs semiconductor lasers, and by burying mesa-shaped stripes with a blocking layer, they perform current confinement and at the same time form a refractive index step to control transverse mode. is possible.
しかしながら、これら従来のN型基板上に形成したAρ
Ga InP半導体レーザの場合には、以下の問題が存
在する。すなわち、N型基板上に形成したAρGaIn
P半導体レーザでは、メサ状ストライブの電流注入部分
は、P型ApGaInP結晶で形成される。一方、P型
Aj7GaInP結晶は低抵抗化が難しく、その比抵抗
は、N型AρGaInP結晶に比べて、1桁程度高い値
を示すことがわかっている。我々のデータで具体的数値
を示せば、P型(AA o、eG a Q、4)0.5
I n o、s P (Znドープ)の比抵抗は、0
.7〜1.3Ωamであるのに対し、N型(Aj2 o
、aG a O,4)0.5 I n osP (S
i ドープ)の比抵抗は0.05〜0.08Ωいであり
、P型結晶の方が1桁程度高抵抗である。従って、特に
、幅3〜7μm、高さ約1μmの狭ストライプの電流注
入部分にP型AρGaInP結晶を用いた従来のAj2
GaInP半導体レーザでは、素子抵抗が非常に高く、
高出力・大電流動作での発熱による光出力の飽和が問題
となる。However, Aρ formed on these conventional N-type substrates
In the case of Ga InP semiconductor lasers, the following problems exist. That is, AρGaIn formed on an N-type substrate
In the P semiconductor laser, the current injection portion of the mesa-like stripe is formed of P-type ApGaInP crystal. On the other hand, it is known that it is difficult to reduce the resistance of P-type Aj7GaInP crystal, and its resistivity is about one order of magnitude higher than that of N-type AρGaInP crystal. If we were to show a specific value using our data, it would be P type (AA o, eG a Q, 4) 0.5
The specific resistance of I no,s P (Zn doped) is 0
.. 7 to 1.3 Ωam, whereas N type (Aj2 o
, aG a O, 4) 0.5 I n osP (S
The specific resistance of the i-doped crystal is 0.05 to 0.08Ω, and the P-type crystal has a resistance about one order of magnitude higher. Therefore, in particular, the conventional Aj2 that uses P-type AρGaInP crystal in the current injection part of a narrow stripe with a width of 3 to 7 μm and a height of about 1 μm.
GaInP semiconductor lasers have extremely high element resistance;
Saturation of optical output due to heat generation during high-output, large-current operation becomes a problem.
本発明の半導体レーザの構成は、P型G a A s基
板上に、Al2InPまたはAl2InPでなる第1の
クラッド層、GaInPまたはAl2InPでなる活性
層、A、ffGaInPまたはAl2InPでなる第2
のクラッド層をこの順に含むダブルヘテロ構造を少くと
も有し、前記第2のクラッド層の一部が部分的に層厚の
厚いメサストライプ状の電流注入領域を形成している半
導体レーザにおいて、前記メサストライプの側面および
メサストライプの両脇をP型GaAsまたはP型AβG
aAsでなる第1の電流ブロック層、N型GaInPま
たはN型AlGaInPでなる第2の電流ブロック層、
P型G a A sまたはP型Aj7GaAsでなる第
3の電流ブロック層の順で被覆したことを特徴とする。The structure of the semiconductor laser of the present invention is such that a first cladding layer made of Al2InP or Al2InP, an active layer made of GaInP or Al2InP, and a second cladding layer made of A, ffGaInP or Al2InP are formed on a P-type GaAs substrate.
In the semiconductor laser, the semiconductor laser has at least a double heterostructure including cladding layers in this order, and a part of the second cladding layer partially forms a thick mesa stripe-shaped current injection region, The sides of the mesa stripe and both sides of the mesa stripe are made of P-type GaAs or P-type AβG.
A first current blocking layer made of aAs, a second current blocking layer made of N-type GaInP or N-type AlGaInP,
A third current blocking layer made of P-type GaAs or P-type Aj7GaAs is coated in this order.
第1図、第2図に本発明のP型基板上A、ffGaIn
P半導体レーザの構造図を、第3図に従来のN型基板上
に形成したAρGaInP可視光半導体レーザの構造図
を示す。また、第4図に本発明の半導体レーザのメサス
トライプ以外の部分でのエネルギバンド図(電流ブロッ
ク層が3層構造よりなる場合。)を、第5図に比較のた
めに電流ブロック層が1層の電流ブロック層でなる場合
のエネルギバンド図を示す。なお、第2図の半導体レー
ザは、第1図の半導体レーザにメサ形成時のエツチング
に選択性を持たせるために、N型A4GaInPクラッ
ド層120と125の間にエツチングストッパ層122
を挟んだものであり、本質的には第1図の半導体レーザ
と同一であるので以下の説明では割愛する。Figures 1 and 2 show A, ffGaIn on the P-type substrate of the present invention.
A structural diagram of a P semiconductor laser is shown in FIG. 3, and a structural diagram of a conventional AρGaInP visible light semiconductor laser formed on an N-type substrate is shown in FIG. In addition, FIG. 4 shows the energy band diagram of the semiconductor laser of the present invention in a part other than the mesa stripe (when the current blocking layer has a three-layer structure), and FIG. An energy band diagram is shown in the case where the layer is a current blocking layer. The semiconductor laser shown in FIG. 2 has an etching stopper layer 122 between the N-type A4GaInP cladding layers 120 and 125 in order to provide etching selectivity during mesa formation compared to the semiconductor laser shown in FIG.
Since it is essentially the same as the semiconductor laser shown in FIG. 1, the following explanation will be omitted.
以下、第1図、第3図の構造図および第4図。Below, the structural diagrams of FIGS. 1 and 3 and FIG. 4 are shown.
第5図のエネルギバンド図を用いて本発明の作用につい
て説明する。まず、第1図の構造を説明する。第1図の
半導体レーザは、3回の有機金属熱分解気相成長法(以
下、MOVPE法と略記。)を用いた結晶成長と、メサ
加工プロセスにより形成される。まず、第1回目の結晶
成長では、P型GaAs基板210上に、P型のAJ2
GaInPクラッド層110.GaInP活性層100
.N型のAj7GaInPクラッド層120をこの順に
含むダブルヘテロ構造を形成する。次に、電流注入領域
を形成するため、N型Aj2GaInPクラッド層12
0の一部をメザ状に加工し、第2回目の結晶成長により
、メサ側面およびメサ両脇を3層の電流ブロック層18
0,190,200で埋め込む。そして、3回目の結晶
成長でメサ部上部にN型G a A sキャップ層16
0を形成する。The operation of the present invention will be explained using the energy band diagram shown in FIG. First, the structure shown in FIG. 1 will be explained. The semiconductor laser shown in FIG. 1 is formed by crystal growth using metal organic pyrolysis vapor phase epitaxy (hereinafter abbreviated as MOVPE method) three times and a mesa processing process. First, in the first crystal growth, P-type AJ2 is grown on a P-type GaAs substrate 210.
GaInP cladding layer 110. GaInP active layer 100
.. A double heterostructure including N-type Aj7GaInP cladding layers 120 in this order is formed. Next, in order to form a current injection region, an N-type Aj2GaInP cladding layer 12 is formed.
0 is processed into a meza shape, and by second crystal growth, a three-layer current blocking layer 18 is formed on the mesa side surface and both sides of the mesa.
Embed with 0,190,200. Then, in the third crystal growth, an N-type GaAs cap layer 16 is formed on the upper part of the mesa part.
form 0.
このメサ構造は、電流狭窄と同時に光閉じ込め構造とし
て働き、横モード制御の働きを持っている。This mesa structure functions as a light confinement structure as well as current confinement, and has the function of transverse mode control.
通常、メサ底部の幅は、3〜7μm程度である。Usually, the width of the mesa bottom is about 3 to 7 μm.
これに対して、従来のN型基板上半導体レーザを第3図
に示す。レーザ作製プロセスおよび構造は第1図のP型
基板半導体レーザとほとんど同じである。第3図と第1
図の相違点は、第3図では基板400がN型G a A
sであるのに対し、第1図では基板210がP型G
a A sである点である。On the other hand, a conventional N-type semiconductor laser on a substrate is shown in FIG. The laser manufacturing process and structure are almost the same as the P-type substrate semiconductor laser shown in FIG. Figure 3 and Figure 1
The difference between the figures is that in FIG. 3, the substrate 400 is of N type Ga A
In contrast, in FIG. 1, the substrate 210 is P-type G.
It is a point that a A s.
従って、第3図では電流注入領域を形成するメサ状クラ
ッド層330は、P型A4GaInPで形成される。Therefore, in FIG. 3, the mesa-shaped cladding layer 330 forming the current injection region is formed of P-type A4GaInP.
先はど課題の項でも述べたように、P型AρGaInP
結晶は低抵抗化が難しく、その比抵抗は、N型AuGa
InP結晶に比べて、1桁程度高い値を示すことがわか
っている。我々のデータで具体的数値を示せば、P型(
A RO,6G a O,4) o、s I n o、
5 P(Znドープ)の比抵抗は、0.7〜1.3Ωc
mであるのに対し、N型(Aj2 osG a 04)
0.5 I n o、sP (S iドープ)の比抵抗
は0.05〜0108Ωcmであり、P型結晶の方が1
桁程度高抵抗である。従って、特に、幅3〜7μm、高
さ約1μmの狭ストライフの電流注入部分にP型Ajl
’GaInP結晶を用いた第3図の従来型半導体レーザ
では、素子抵抗が非常に高く、高出力・大電流動作での
発熱による光出力の飽和が問題となる。As mentioned in the previous topic section, P-type AρGaInP
It is difficult to reduce the resistance of crystals, and their specific resistance is lower than that of N-type AuGa
It is known that the value is about one order of magnitude higher than that of InP crystal. If we were to show concrete numbers using our data, it would be P type (
A RO, 6G a O, 4) o, s I no,
5 The specific resistance of P (Zn doped) is 0.7 to 1.3 Ωc
m, whereas N type (Aj2 osG a 04)
The specific resistance of 0.5 Ino, sP (Si doped) is 0.05 to 0108 Ωcm, and the P type crystal is 1
It has an order of magnitude higher resistance. Therefore, in particular, P-type Ajl is applied to the current injection part with a narrow stripe of 3 to 7 μm in width and about 1 μm in height.
In the conventional semiconductor laser shown in FIG. 3 using a GaInP crystal, the element resistance is extremely high, and saturation of optical output due to heat generation during high-output, large-current operation becomes a problem.
然るに、本発明の第1図の半導体レーザでは、メサが1
桁程度低抵抗のN型AβGaInPで形成されるため、
素子抵抗の大幅な低減、および熱放散特性の大幅な改善
を行うことが可能で、高出力化にたいへん適した構造で
ある。However, in the semiconductor laser of the present invention shown in FIG.
Because it is formed of N-type AβGaInP, which has an order of magnitude lower resistance,
It is possible to significantly reduce element resistance and significantly improve heat dissipation characteristics, making it an extremely suitable structure for increasing output power.
また、第1図の本発明の半導体レーザのもう1つの特徴
として、電流ブロック層の発振光吸収によるポテンシャ
ル障壁の低下を、電流フロック層を3層構造とする事に
より防止している点が挙げられる。以下、その機構につ
いて第4図、第5図を用いて詳しく説明する。第4図は
本発明の第1図の半導体レーザの、メサストライプ両脇
の部分でのエネルギバンド図を、第5図は電流ブロック
層が1層のP型GaAsまたはAβGaAsでなる従来
例(第3図)のエネルギバンド図を示す。Another feature of the semiconductor laser of the present invention shown in FIG. 1 is that the potential barrier is prevented from lowering due to the absorption of oscillation light by the current blocking layer by forming the current flocking layer into a three-layer structure. It will be done. The mechanism will be explained in detail below with reference to FIGS. 4 and 5. FIG. 4 shows the energy band diagram of the semiconductor laser of the present invention shown in FIG. 1 at both sides of the mesa stripe, and FIG. Figure 3) shows the energy band diagram.
第5図のように電流ブロック層が1層構造でしかもP型
GaAsまたはP型AβGaAsである場合、従来のA
j2GaAsレーザの検討より以下のことが知られてい
る(参考文献: S 、 Yamamot。If the current blocking layer has a single layer structure and is made of P-type GaAs or P-type AβGaAs as shown in FIG.
The following is known from the study of j2GaAs lasers (Reference: S, Yamamot.
et al、A、P、L、40(5)、 I Marc
h 1982 。et al, A, P, L, 40(5), I Marc
h 1982.
PP、372−374)。すなわち、活性層で発生した
光は電流ブロック層であるP型GaAs層にしみだす。PP, 372-374). That is, light generated in the active layer leaks into the P-type GaAs layer, which is a current blocking layer.
一方、P型GaAs層の禁制体幅はGaInP活性層で
発生した光よりも低エネルギであるため、発振光を吸収
し電流ブロック層内に電子正孔対な形成する。しかしな
がら、GaAs中での電子、正孔の拡散長は各々〜3μ
m、〜0.6μmであるので、生成された電子正孔対の
内拡散長が電流ブロック層厚よりもはるかに大きい電子
のみ、電流ブロック層の両側へ拡散していき、正孔のみ
がたまっていく (第5図(a))。従って、電流ブロ
ック層のポテンシャルは低下していき、ついに電流ブロ
ックの効果が失われ電流狭窄構造が機能しなくなる(第
5図(b))。なお、通常電流ブロック層の層厚は1μ
m程度である。従って、通常電流ブロック層はN型G
a A sであるのが一般的である。On the other hand, since the forbidden width of the P-type GaAs layer has lower energy than the light generated in the GaInP active layer, it absorbs the oscillated light and forms electron-hole pairs in the current blocking layer. However, the diffusion length of electrons and holes in GaAs is ~3μ each.
m, ~0.6 μm, so only the electrons whose internal diffusion length of the generated electron-hole pairs is much larger than the current blocking layer thickness will diffuse to both sides of the current blocking layer, and only the holes will accumulate. (Figure 5(a)). Therefore, the potential of the current blocking layer decreases until the current blocking effect is lost and the current confinement structure ceases to function (FIG. 5(b)). Note that the thickness of the current blocking layer is usually 1μ.
It is about m. Therefore, the current blocking layer is usually N type G
Generally, it is a A s.
しかしながら本発明の半導体レーザのように、基板がP
型でなおかつメサストライプが活性層よりも上にある場
合、電流ブロック層はP型にならざるを得ない。そこで
、光吸収による電流ブロック層のポテンシャル低下を防
止する構造として第4図のように3層の電流ブロック層
を用いた。第1図、第4図において電流ブロック層は、
P型GaAsまたはP型A n G a A sでなる
第1の電流ブロック層180.N型GaInPまたはN
型A、ffGaInPでなる第2の電流ブロック層19
0゜P型GaAsまたはP型AuGaAsでなる第3の
電流ブロック層20003層構造より形成される。第4
図(a)に示すように、第5図と同様に活性層で発生し
た光は、第1のP型G a A sでなる電流ブロック
層で吸収され、電子は拡散していき、正孔のみが第1の
電流ブロック層中にたまっていく。その結果として第1
の電流ブロック層のポテンシャル障壁は低下する。しか
しながら、第4図(b)に示すように第1の電流ブロッ
ク層に蓄積した正孔は、第2の電流ブロック層との間に
価電子帯のポテンシャル障壁が存在するため、第1の電
流ブロック層から第3の電流ブロック層へ流入できない
。このため、第3の電流ブロック層は正常に機能し電流
ブロック層として良好に作用する。However, as in the semiconductor laser of the present invention, the substrate is P
type and the mesa stripe is above the active layer, the current blocking layer must be P type. Therefore, a three-layer current blocking layer as shown in FIG. 4 was used as a structure to prevent potential reduction of the current blocking layer due to light absorption. In FIGS. 1 and 4, the current blocking layer is
A first current blocking layer 180 made of P-type GaAs or P-type AnGaAs. N-type GaInP or N
Second current blocking layer 19 made of type A, ffGaInP
The third current blocking layer 2000 is made of 0° P-type GaAs or P-type AuGaAs and has a three-layer structure. Fourth
As shown in Figure (a), similar to Figure 5, the light generated in the active layer is absorbed by the first current blocking layer made of P-type GaAs, electrons are diffused, and holes are only accumulates in the first current blocking layer. As a result, the first
The potential barrier of the current blocking layer decreases. However, as shown in FIG. 4(b), the holes accumulated in the first current blocking layer are prevented from flowing through the first current blocking layer because there is a potential barrier in the valence band between the holes and the second current blocking layer. Current cannot flow from the blocking layer to the third blocking layer. Therefore, the third current blocking layer functions normally and works well as a current blocking layer.
従って、本発明の半導体レーザにおいては、電流ブロッ
ク層の光吸収によるポテンシャル障壁の低下が起こらず
、常に良好な電流狭窄構造が得られる。なお、第4図に
おいて第3の電流ブロック層は活性層から十分離れてお
り、発振光はほとんど吸収しないとする。Therefore, in the semiconductor laser of the present invention, the potential barrier does not decrease due to light absorption in the current blocking layer, and a good current confinement structure can always be obtained. Note that in FIG. 4, it is assumed that the third current blocking layer is sufficiently far away from the active layer and absorbs almost no oscillation light.
以下、本発明のP型基板上AρGaInP半導体レーザ
について、具体的数値例を用いて説明する。ここでは、
より最適化された構造として第2図の構造について説明
する。基板はl X 10 ”cm−3のZnドープP
型G a A、 s基板210を用いた。The AρGaInP semiconductor laser on a P-type substrate of the present invention will be described below using specific numerical examples. here,
The structure shown in FIG. 2 will be described as a more optimized structure. The substrate is l x 10” cm-3 Zn-doped P
A type G a A, s substrate 210 was used.
その基板上に70Torr減圧のMOVPE法により、
0.3μm厚のP型GaAsでなるバッファ層140.
0.02.czm厚のP型GaInP層130.1.1
μm厚のP型Aj2GaInPクラッド層110.0.
04μm厚のアンドープGaInP活性層100.0.
25μm厚のN型Aj2GaInPクラッド層120、
0.005μm厚のN型G a I n P 工yチン
ゲストツバ層122.0.9μm厚のN型A、ffGa
InPクラッド層125.0.01μm厚のN型GaI
nP層150.0.5 μm厚のN型GaAsキャップ
層160をこの順に順次結晶成長して基本となるダブル
ヘテロ構造ウェハーを形成した。By MOVPE method with reduced pressure of 70 Torr,
Buffer layer 140 made of P-type GaAs with a thickness of 0.3 μm.
0.02. P-type GaInP layer 130.1.1 with czm thickness
μm thick P-type Aj2GaInP cladding layer 110.0.
04 μm thick undoped GaInP active layer 100.0.
25 μm thick N-type Aj2GaInP cladding layer 120,
0.005 μm thick N type Ga In P engineering y Chingest collar layer 122.0.9 μm thick N type A, ffGa
InP cladding layer 125.0.01 μm thick N-type GaI
An N-type GaAs cap layer 160 having a thickness of 150 and 0.5 μm was crystal-grown in this order to form a basic double heterostructure wafer.
次に、レーザ構造を形成するため、N型Al2GaIn
P125をメサ状に加工した。メサ加工には、GaIn
Pに対して、AuGaInPのエツチングレートが十分
早い選択エッチャントを使用した。Next, to form the laser structure, N-type Al2GaIn
P125 was processed into a mesa shape. For mesa processing, GaIn
A selected etchant having a sufficiently high etching rate for AuGaInP was used.
そして、第2回目のMOVPE法による結晶成長で、メ
サ側面およびメサ両枠の部分に、0.3μm厚のP型G
aAsでなる第1の電流ブロック層180.0.3μm
厚のN型Ga I nPでなる第2の電流ブロック層1
90,0.3μm厚のP型GaAsでなる第3の電流ブ
ロック層200を順次結晶成長した。この結晶成長には
、選択成長法を用いた。そして、最後に、第3回目のM
OVPE法による結晶成長で全面にN型G a A s
でなるキャップ層170を成長し、素子両面に電極づけ
を行って本発明の半導体レーザを作製した。Then, in the second crystal growth using the MOVPE method, a 0.3 μm thick P-type G
First current blocking layer made of aAs 180.0.3 μm
Second current blocking layer 1 made of thick N-type Ga I nP
A third current blocking layer 200 made of P-type GaAs with a thickness of 90.0 and 0.3 μm was successively crystal-grown. A selective growth method was used for this crystal growth. And finally, the third M
N-type GaAs is grown on the entire surface by crystal growth using the OVPE method.
A cap layer 170 was grown, and electrodes were attached to both sides of the device to fabricate a semiconductor laser of the present invention.
なお、上記説明中、P型不純物にはすべてZnを、N型
不純物にはすべてSiを用いた。また、P型AβGaI
nPクラッド層のキャリア濃度は、3 X 1017c
m−’、比抵抗は0.8Ωσであり、N型AρGa I
nPクラッド層のキャリア濃度は、1、5 X 10
”am−”、比抵抗は0.08Ωcmであった。In the above description, Zn was used for all P-type impurities, and Si was used for all N-type impurities. In addition, P-type AβGaI
The carrier concentration of the nP cladding layer is 3 x 1017c
m-', the specific resistance is 0.8Ωσ, and the N-type AρGa I
The carrier concentration of the nP cladding layer is 1.5 x 10
"am-", and the specific resistance was 0.08 Ωcm.
以上の方法により作製した、第2図の構造の半導体レー
ザの特性として、以下に示す特性が得られた。電流注入
幅5μm、共振器長400μmの素子に対し、発振しき
い値電流は50mAであった。As the characteristics of the semiconductor laser having the structure shown in FIG. 2 manufactured by the above method, the following characteristics were obtained. The oscillation threshold current was 50 mA for a device with a current injection width of 5 μm and a resonator length of 400 μm.
素子抵抗は、第3図の半導体レーザの素子抵抗が14Ω
であったのに対し、第2図の半導体レーザの素子抵抗は
8Ωと大幅に低減できた。また、光出力特性も同一のサ
イズで試作した第3図の従来構造の半導体レーザの最高
光出力が30mWで熱飽和を起こすのに対し、第2図の
構造の半導体レーザでは、40mWまで熱飽和を起こす
ことがなく、良好な高出力特性が得られた。また、40
mW光出力時まで良好な電流狭窄が得られた。なお、上
記、光出力特性を測定した半導体レーザに関しては、第
2図、第3図の構造ともに前面6%、後面95%の非対
称コーティングを施した後、ダイヤモンドヒートシンク
上に融着して測定を行った。The element resistance of the semiconductor laser in Figure 3 is 14Ω.
On the other hand, the element resistance of the semiconductor laser shown in FIG. 2 was significantly reduced to 8Ω. In addition, the optical output characteristics of the semiconductor laser with the conventional structure shown in Figure 3, which was prototyped with the same size, reached thermal saturation at the maximum optical output of 30 mW, whereas the semiconductor laser with the structure shown in Figure 2 reached thermal saturation at 40 mW. Good high output characteristics were obtained without causing any problems. Also, 40
Good current confinement was obtained up to mW optical output. Regarding the semiconductor lasers whose optical output characteristics were measured above, both the structures shown in Figures 2 and 3 were coated with asymmetrical coating on 6% of the front surface and 95% of the rear surface, and then fused onto a diamond heat sink for measurement. went.
以上述べたように、本発明の半導体レーザによれば、A
lGaInP可視光半導体レーザの素子抵抗の大幅な低
減および高出力動作時の熱放散特性の大幅な改善および
良好な電流狭窄が可能である。As described above, according to the semiconductor laser of the present invention, A
It is possible to significantly reduce the element resistance of the lGaInP visible light semiconductor laser, to greatly improve the heat dissipation characteristics during high-power operation, and to achieve good current confinement.
第1図、第2図は本発明のP型基板上AρGaInP半
導体レーザの構造図(斜視図)、第3図は従来のN型基
板上AffGaInP半導体レーザの構造図(斜視図)
、第4図は本発明の半導体レーザのメザストライプ以外
の部分でのエネルギバンド図、第5図は1層の電流ブロ
ック構造のエネルギバンド図である。
100・・・・・・活性層、110,120,125・
・・・クラッド層、122・・・・・・エラチンストッ
パ層、130・・・・・・P型Ga I nPl、 1
40・・・・・・バッファ層、150・・・・・・N型
GaInP層、160・・・・・キャップ層、170・
・・・・・キャップ層、180・・・・・・第1の電流
ブロック層、190・・・・・・第2の電流ブロック層
、200・・・・・・第3の電流ブロック層、210・
・・・・・基板、330・・・・・・クラッド層、40
0・・・・・・基板。
代理人 弁理士 内 原 晋
第2
図
に瞼
ll
第3図
正ゴし
くαノ
(b)
(0,)1 and 2 are structural diagrams (perspective views) of an AρGaInP semiconductor laser on a P-type substrate according to the present invention, and FIG. 3 is a structural diagram (perspective view) of a conventional AffGaInP semiconductor laser on an N-type substrate.
, FIG. 4 is an energy band diagram of a portion other than the meza stripe of the semiconductor laser of the present invention, and FIG. 5 is an energy band diagram of a one-layer current block structure. 100... active layer, 110, 120, 125.
... Cladding layer, 122 ... Eratin stopper layer, 130 ... P-type Ga I nPl, 1
40... Buffer layer, 150... N-type GaInP layer, 160... Cap layer, 170...
... Cap layer, 180 ... First current blocking layer, 190 ... Second current blocking layer, 200 ... Third current blocking layer, 210・
... Substrate, 330 ... Cladding layer, 40
0... Board. Agent Patent Attorney Susumu Uchihara Figure 2: Eyelids Figure 3: Correctly α (b) (0,)
Claims (1)
Pでなる第1のクラッド層、GaInPまたはAlGa
InPでなる活性層、AlGaInPまたはAlInP
でなる第2のクラッド層をこの順に含むダブルヘテロ構
造を少くとも有し、前記第2のクラッド層の一部が部分
的に層厚の厚いメサストライプ状の電流注入領域を形成
している半導体レーザにおいて、前記メサストライプの
側面およびメサストライプの両脇をP型GaAsまたは
P型AlGaAsでなる第1の電流ブロック層、N型G
aInPまたはN型AlGaInPでなる第2の電流ブ
ロック層、P型GaAsまたはP型AlGaAsでなる
第3の電流ブロック層の順で被覆したことを特徴とする
半導体レーザ。AlGaInP or AlIn on a P-type GaAs substrate
First cladding layer made of P, GaInP or AlGa
Active layer made of InP, AlGaInP or AlInP
A semiconductor having at least a double heterostructure including a second cladding layer in this order, wherein a part of the second cladding layer partially forms a thick mesa stripe-shaped current injection region. In the laser, a first current blocking layer made of P-type GaAs or P-type AlGaAs and an N-type G
1. A semiconductor laser comprising: a second current blocking layer made of aInP or N-type AlGaInP; and a third current blocking layer made of P-type GaAs or P-type AlGaAs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2234803A JP2616185B2 (en) | 1990-09-05 | 1990-09-05 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2234803A JP2616185B2 (en) | 1990-09-05 | 1990-09-05 | Semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04115588A true JPH04115588A (en) | 1992-04-16 |
JP2616185B2 JP2616185B2 (en) | 1997-06-04 |
Family
ID=16976634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2234803A Expired - Fee Related JP2616185B2 (en) | 1990-09-05 | 1990-09-05 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2616185B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5291033A (en) * | 1991-05-29 | 1994-03-01 | Eastman Kodak Company | Semiconductor light-emitting device having substantially planar surfaces |
FR2695261A1 (en) * | 1992-08-12 | 1994-03-04 | Fujitsu Ltd | Surface emitting laser and its manufacturing process. |
US5499260A (en) * | 1993-08-04 | 1996-03-12 | Matsushita Electric Industrial Co., Ltd. | Semiconductor laser and a method for fabricating the same |
US5519722A (en) * | 1993-12-28 | 1996-05-21 | Nec Corporation | II-VI compound semiconductor laser with burying layers |
US5933443A (en) * | 1995-09-08 | 1999-08-03 | Rohm Co., Ltd. | Semiconductor laser |
US5974068A (en) * | 1993-07-21 | 1999-10-26 | Matsushita Electric Industrial Co., Ltd. | Semiconductor laser and a method for producing the same |
-
1990
- 1990-09-05 JP JP2234803A patent/JP2616185B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5291033A (en) * | 1991-05-29 | 1994-03-01 | Eastman Kodak Company | Semiconductor light-emitting device having substantially planar surfaces |
FR2695261A1 (en) * | 1992-08-12 | 1994-03-04 | Fujitsu Ltd | Surface emitting laser and its manufacturing process. |
US5373520A (en) * | 1992-08-12 | 1994-12-13 | Fujitsu Limited | Surface emitting laser and method of manufacturing the same |
US5974068A (en) * | 1993-07-21 | 1999-10-26 | Matsushita Electric Industrial Co., Ltd. | Semiconductor laser and a method for producing the same |
US5499260A (en) * | 1993-08-04 | 1996-03-12 | Matsushita Electric Industrial Co., Ltd. | Semiconductor laser and a method for fabricating the same |
US5519722A (en) * | 1993-12-28 | 1996-05-21 | Nec Corporation | II-VI compound semiconductor laser with burying layers |
US5933443A (en) * | 1995-09-08 | 1999-08-03 | Rohm Co., Ltd. | Semiconductor laser |
Also Published As
Publication number | Publication date |
---|---|
JP2616185B2 (en) | 1997-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4635268A (en) | Semiconductor laser device having a double heterojunction structure | |
JPH0381317B2 (en) | ||
CN110459952A (en) | The production method that SAG improves semiconductor laser chip reliability is grown by selective area | |
JPH04115588A (en) | Semiconductor laser | |
JP3763459B2 (en) | Semiconductor laser device and manufacturing method thereof | |
JPS61164287A (en) | Semiconductor laser | |
JPH05211372A (en) | Manufacture of semiconductor laser | |
JPH09129969A (en) | Semiconductor laser | |
JPS6362292A (en) | Semiconductor laser device and manufacture thereof | |
JP2855887B2 (en) | Semiconductor laser and method of manufacturing the same | |
JP2758597B2 (en) | Semiconductor laser device | |
JPH03104292A (en) | Semiconductor laser | |
JPH07170017A (en) | Semiconductor laser | |
JPH06164051A (en) | Gain coupled dfb laer and its manufacture | |
JPH0467353B2 (en) | ||
JPS6237557B2 (en) | ||
JP2973215B2 (en) | Semiconductor laser device | |
JP3194616B2 (en) | Semiconductor laser device | |
JPH0462882A (en) | Visible radiation semiconductor laser | |
JP3648357B2 (en) | Manufacturing method of semiconductor laser device | |
JP2000101186A (en) | Semiconductor optical element | |
JPH07120836B2 (en) | Semiconductor laser | |
JPH06196820A (en) | Semiconductor laser and manufacture thereof | |
JP2922010B2 (en) | Semiconductor laser device | |
JPS6112399B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |