[go: up one dir, main page]

JP2616185B2 - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JP2616185B2
JP2616185B2 JP2234803A JP23480390A JP2616185B2 JP 2616185 B2 JP2616185 B2 JP 2616185B2 JP 2234803 A JP2234803 A JP 2234803A JP 23480390 A JP23480390 A JP 23480390A JP 2616185 B2 JP2616185 B2 JP 2616185B2
Authority
JP
Japan
Prior art keywords
type
layer
semiconductor laser
algainp
current blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2234803A
Other languages
Japanese (ja)
Other versions
JPH04115588A (en
Inventor
宏明 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2234803A priority Critical patent/JP2616185B2/en
Publication of JPH04115588A publication Critical patent/JPH04115588A/en
Application granted granted Critical
Publication of JP2616185B2 publication Critical patent/JP2616185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • H01S5/221Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2227Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties special thin layer sequence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32325Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm red laser based on InGaP

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、0.6μmに発振波長を有するAlGaInP可視光
半導体レーザに関する。
Description: TECHNICAL FIELD The present invention relates to an AlGaInP visible light semiconductor laser having an oscillation wavelength of 0.6 μm.

〔従来の技術〕[Conventional technology]

現在、光ディスクの高密度化のため、0.6μm帯に発
振波長を有するAlGaInP系可視光半導体レーザの開発が
盛んに行われている。これまでに報告されているAlGaIn
P可視光半導体レーザのほとんどは、N型基板上に形成
された半導体レーザに関する報告である。また、その主
要なレーザ構造は、平坦なN型基板上にN型AlGaInPク
ラッド層,GaInP活性層,P型AlGaInPクラッド層をこの順
に形成し、次に、P型AlGaInPクラッド層をメサ状スト
ライプに加工し、それ以外の部分をN型のブロック層で
埋め込んだ構造である。以下に、それらのレーザ構造に
関する発表例を示す。たとえば、エレクトロニクス・レ
ターズ1987年8月27日号Vol.23 No.18 pp.938−939記載
の“High−power operation of a transverse−mode st
abilised AlGaInP visible light semiconductor lase
r"、あるいは、1987年第19回固体素子・材料コンファレ
ンス予稿集、pp.115−118記載の“High power operatio
n of InGaP/InAlP transverse mode stabilized lase
r diodes"に報告されている。これらのレーザ構造は、A
lGaAs半導体レーザの頃から良く知られた構造で、メサ
状ストライプをブロック層で埋め込むことにより、電流
狭窄を行うと同時に、屈折率ステップを形成し、横モー
ド制御を行うことが可能である。
At present, AlGaInP-based visible light semiconductor lasers having an oscillation wavelength in the 0.6 μm band are being actively developed in order to increase the density of optical disks. AlGaIn reported so far
Most of the P visible light semiconductor lasers are related to semiconductor lasers formed on an N-type substrate. The main laser structure is that an N-type AlGaInP cladding layer, a GaInP active layer, and a P-type AlGaInP cladding layer are formed in this order on a flat N-type substrate, and then the P-type AlGaInP cladding layer is formed into a mesa stripe. This is a structure in which processing is performed and the other parts are embedded with an N-type block layer. The following are examples of presentations on these laser structures. For example, “High-power operation of a transverse-mode st” described in Electronics Letters, Vol. 23, No. 18, pp. 938-939, August 27, 1987.
abilised AlGaInP visible light semiconductor lase
r ", or" High power operatio "described in 1987 19th Solid-state Device and Material Conference Proceedings, pp.115-118.
n of InGaP / InAlP transverse mode stabilized lase
r diodes ". These laser structures are
By embedding a mesa-like stripe with a block layer, it is possible to perform current confinement and form a refractive index step to control transverse mode at the same time by embedding a mesa stripe in a block layer.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、これら従来のN型基板上に形成したAl
GaInP半導体レーザの場合には、上下の問題が存在す
る。すなわち、N型基板上に形成したAlGaInP半導体レ
ーザでは、メサ状ストライプの電流注入部分は、P型Al
GaInP結晶で形成される。一方、P型AlGaInP結晶は低抵
抗化が難しく、その比抵抗は、N型AlGaInP結晶に比べ
て、1桁程高い値を示すことがわかっている。我々のデ
ータで具体的数値を示せば、P型(Al0.6Ga0.4)0.5I
n0.5P(Znドープ)の比抵抗は、0.7〜1.3Ωcmであるの
に対し、N型(Al0.6Ga0.40.5In0.5P(Siドープ)の
比抵抗は0.05〜0.08Ωcmであり、P型結晶の方が1桁程
度高抵抗である。従って、特に、幅3〜7μm、高さ約
1μmの狭ストライプの電流注入部分にP型AlGaInP結
晶を用いた従来のAlGaInP半導体レーザでは、素子抵抗
が非常に高く、高出力・大電流動作での発熱による光出
力の飽和が問題となる。
However, Al formed on these conventional N-type substrates
In the case of a GaInP semiconductor laser, there are upper and lower problems. That is, in the AlGaInP semiconductor laser formed on the N-type substrate, the current injection portion of the mesa stripe is formed by the P-type Al
It is formed of GaInP crystal. On the other hand, it is known that it is difficult to reduce the resistance of the P-type AlGaInP crystal, and it is known that the specific resistance thereof is about one digit higher than that of the N-type AlGaInP crystal. P-type (Al 0.6 Ga 0.4) ) 0.5 I
The specific resistance of n 0.5 P (Zn-doped) is 0.7 to 1.3 Ωcm, whereas the specific resistance of N-type (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P (Si-doped) is 0.05 to 0.08 Ωcm. The type crystal has higher resistance by about one digit. Therefore, in particular, in a conventional AlGaInP semiconductor laser using a P-type AlGaInP crystal for a current injection portion of a narrow stripe having a width of 3 to 7 μm and a height of about 1 μm, the element resistance is extremely high, and high output and large current operation are required. The saturation of the light output due to heat generation becomes a problem.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の半導体レーザの構成は、P型GaAs基板上に、
AlGaInPまたはAlInPでなる第1のクラッド層、GaInPま
たはAlGaInPでなる活性層、AlGaInPまたはAlInPでなる
第2のクラッド層をこの順に含むタブルヘテロ構造を少
くとも有し、前記第2のクラッド層の一部が部分的に層
厚の厚いメサストライプ状の電流注入領域を形成してい
る半導体レーザにおいて、前記メサストライプの側面お
よびメサストライプの両脇をP型GaAsまたはP型AlGaAs
でなる第1の電流ブロック層、N型GaInPまたはN型AlG
aInPでなる第2の電流ブロック層、P型GaAsまたはP型
AlGaAsでなる第3の電流ブロック層の順で被覆したこと
を特徴とする。
The configuration of the semiconductor laser of the present invention is as follows.
A part of the second cladding layer having at least a double heterostructure including a first cladding layer of AlGaInP or AlInP, an active layer of GaInP or AlGaInP, and a second cladding layer of AlGaInP or AlInP in this order; A semiconductor laser in which a partially thick mesa-stripe-shaped current injection region is formed, wherein the side surface of the mesa stripe and both sides of the mesa stripe are formed of P-type GaAs or P-type AlGaAs.
Current blocking layer of N-type GaInP or N-type AlG
aInP second current blocking layer, P-type GaAs or P-type
The third current blocking layer made of AlGaAs is covered in this order.

〔作用〕[Action]

第1図,第2図に本発明のP型基板上AlGaInP半導体
レーザの構造図を、第3図に従来のN型基板上に形成し
たAlGaInP可視光半導体レーザの構造図を示す。また、
第4図に本発明の半導体レーザのメサストライプ以外の
部分でのエネルギバンド図(電流ブロック層が3層構造
よりなる場合。)を、第5図に比較のために電流ブロッ
ク層が1層の電流ブロック層でなる場合のエネルギバン
ド図を示す。なお、第2図の半導体レーザは、第1図の
半導体レーザにメサ形成時のエッチングに選択性を持た
せるために、N型AlGaInPクラッド層120と125の間にエ
ッチングストッパ層122を挟んだものであり、本質的に
は第1図の半導体レーザと同一であるので以下の説明で
は割愛する。
1 and 2 show the structure of an AlGaInP semiconductor laser on a P-type substrate of the present invention, and FIG. 3 shows the structure of an AlGaInP visible light semiconductor laser formed on a conventional N-type substrate. Also,
FIG. 4 is an energy band diagram of a portion other than the mesa stripe of the semiconductor laser of the present invention (in the case where the current block layer has a three-layer structure). FIG. FIG. 3 shows an energy band diagram in the case of a current block layer. The semiconductor laser shown in FIG. 2 has an etching stopper layer 122 interposed between the N-type AlGaInP cladding layers 120 and 125 so that the semiconductor laser shown in FIG. Since this is essentially the same as the semiconductor laser of FIG. 1, it will not be described below.

以下、第1図,第3図の構造図および第4図,第5図
のエネルギバンド図を用いて本発明の作用について説明
する。まず、第1図の構造を説明する。第1図の半導体
レーザは、3回の有機金属熱分解気相成長法(以下、MO
VPE法と略記。)を用いた結晶成長と、メサ加工プロセ
スにより形成される。まず、第1回目の結晶成長では、
P型GaAs基板210上に、P型のAlGaInPクラッド層110,Ga
InP活性層100,N型のAlGaInPクラッド層120をこの順に含
むダブルヘテロ構造を形成する。次に、電流注入領域を
形成するため、N型AlGaInPクラッド層120の一部をメサ
状に加工し、第2回目の結晶成長により、メサ側面およ
びメサ両脇を3層の電流ブロック層180,190,200で埋め
込む。そして、3回目の結晶成長でメサ部上部にN型Ga
Asキップ層160を形成する。このメサ構造は、電流狭窄
と同時に光閉じ込め構造として働き、横モード制御の働
きを持っている。通常、メサ底部の幅は、3〜7μm程
度である。
Hereinafter, the operation of the present invention will be described with reference to the structural diagrams of FIGS. 1 and 3 and the energy band diagrams of FIGS. 4 and 5. First, the structure of FIG. 1 will be described. The semiconductor laser shown in FIG. 1 uses three metalorganic thermal decomposition chemical vapor deposition methods (hereinafter referred to as MO).
Abbreviation as VPE method. ) And a mesa processing process. First, in the first crystal growth,
On a P-type GaAs substrate 210, a P-type AlGaInP cladding layer 110, Ga
A double heterostructure including the InP active layer 100 and the N-type AlGaInP cladding layer 120 in this order is formed. Next, in order to form a current injection region, a part of the N-type AlGaInP cladding layer 120 is processed into a mesa shape, and the second crystal growth is used to form three current blocking layers 180, 190, 200 on the mesa side surface and on both sides of the mesa. Embed. Then, in the third crystal growth, N-type Ga
An As-kipping layer 160 is formed. This mesa structure works as a light confinement structure at the same time as the current confinement, and has a function of transverse mode control. Usually, the width of the mesa bottom is about 3 to 7 μm.

これに対して、従来のN型基板上半導体レーザを第3
図に示す。レーザ作製プロセスおよび構造は第1図のP
型基板半導体レーザとほとんど同じである。第3図と第
1図の相違点は、第3図では基板400がN型GaAsである
のに対し、第1図では基板210がP型GaAsである点であ
る。従って、第3図では電流注入領域を形成するメサ状
クラッド層330は、P型AlGaInPで形成される。
On the other hand, a conventional semiconductor laser on an N-type
Shown in the figure. The laser fabrication process and structure are shown in FIG.
It is almost the same as a mold substrate semiconductor laser. The difference between FIG. 3 and FIG. 1 is that in FIG. 3, the substrate 400 is N-type GaAs, whereas in FIG. 1 the substrate 210 is P-type GaAs. Accordingly, in FIG. 3, the mesa cladding layer 330 forming the current injection region is formed of P-type AlGaInP.

先ほど課題の項でも述べたように、P型AlGaInP結晶
は低抵抗化が難しく、その比抵抗は、N型AlGaInP結晶
に比べて、1桁程度高い値を示すことがわかっている。
我々のデータで具体的数値を示せば、P型(Al0.6G
a0.40.5In0.5P(Znドープ)の比抵抗は、0.7〜1.3Ω
mであるのに対し、N型(Al0.5Ga0.40.5In0.5P(Si
ドープ)の比抵抗は0.05〜0.08Ωcmであり、P型結晶の
方が1桁程度高抵抗である。従って、特に、幅3〜7μ
m、高さ約1μmの狭いストライプの電流注入部分にP
型AlGaInP結晶を用いた第3図の従来型半導体レーザで
は、素子抵抗が非常に高く、高出力・大電流動作での発
熱による光出力の飽和が問題となる。
As described above in the section of the problem, it is difficult to reduce the resistance of the P-type AlGaInP crystal, and it has been found that the specific resistance thereof is higher by about one digit than that of the N-type AlGaInP crystal.
P-type (Al 0.6 G
a 0.4 ) 0.5 In 0.5 P (Zn doped) has a specific resistance of 0.7 to 1.3Ω
m, whereas N-type (Al 0.5 Ga 0.4 ) 0.5 In 0.5 P (Si
The specific resistance of the dope is 0.05 to 0.08 Ωcm, and the P-type crystal has a higher resistance by about one digit. Therefore, in particular, the width is 3 to 7 μm.
m, P is applied to the current injection portion of a narrow stripe of about 1 μm in height.
In the conventional semiconductor laser shown in FIG. 3 using the type AlGaInP crystal, the element resistance is extremely high, and there is a problem of saturation of the optical output due to heat generation at high output and large current operation.

然るに、本発明の第1図の半導体レーザでは、メサが
1桁程度低抵抗のN型AlGaInPで形成されるため、素子
抵抗の大幅な低減、および熱放散特性の大幅な改善を行
うことが可能で、高出力化にたいへん適した構造であ
る。
However, in the semiconductor laser of FIG. 1 of the present invention, since the mesa is formed of N-type AlGaInP having a low resistance of about one digit, it is possible to greatly reduce the element resistance and significantly improve the heat dissipation characteristics. The structure is very suitable for high output.

また、第1図の本発明の半導体レーザのもう1つの特
徴として、電流ブロック層の発振光吸収によるポテンシ
ャル障壁の低下を、電流ブロック層を3層構造とする事
により防止している点が挙げられる。以下、その機構に
ついて第4図,第5図を用いて詳しく説明する。第4図
は本発明の第1図の半導体レーザの、メサストライプ両
脇の部分でのエネルギバンド図を、第5図は電流ブロッ
ク層が1層のP型GaAsまたはAlGaAsでなる従来例(第3
図)のエネルギバンド図を示す。第5図のように電流ブ
ロック層が1層構造でしかもP型GaAsまたはP型AlGaAs
である場合、従来のAlGaAsレーザの検討より以下のこと
が知られている(参考文献:S.Yamamoto et al.A.P.L.40
(5),1 March 1982,PP.372−374)。すなわち、活性
層で発生した光は電流ブロック層であるP型GaAs層にし
みだす。一方、P型GaAs層の禁制体幅はGaInP活性層で
発生した光よりも低エネルギであるため、発振光を吸収
し電流ブロック層内に電子正孔対を形成する。しかしな
がら、GaAs中での電子、正孔の拡散長は各々〜3μm、
〜0.6μmであるので、生成された電子正孔対の内拡散
長が電流ブロック層厚よりもはるかに大きい電子のみ、
電流ブロック層の両側へ拡散していき、正孔のみがたま
っていく(第5図(a))。従って、電流ブロック層の
ポテンシャルは低下していき、ついに電流ブロックの効
果が失われ電流狭窄構造が機能しなくなる(第5図
(b))。なお、通常電流ブロック層の層厚は1μm程
度である。従って、通常電流ブロック層はN型GaAsであ
るのが一般的である。
Another feature of the semiconductor laser of the present invention shown in FIG. 1 is that a potential barrier caused by absorption of oscillation light in the current blocking layer is prevented by forming the current blocking layer into a three-layer structure. Can be Hereinafter, the mechanism will be described in detail with reference to FIGS. FIG. 4 is an energy band diagram at both sides of the mesa stripe of the semiconductor laser of FIG. 1 of the present invention, and FIG. 5 is a conventional example in which the current block layer is made of a single P-type GaAs or AlGaAs (FIG. 3
FIG. As shown in FIG. 5, the current block layer has a single-layer structure and is of P-type GaAs or P-type AlGaAs.
In the case of, the following is known from the study of the conventional AlGaAs laser (reference: S. Yamamoto et al. APL 40).
(5), 1 March 1982, PP.372-374). That is, the light generated in the active layer seeps into the P-type GaAs layer which is the current blocking layer. On the other hand, since the forbidden body width of the P-type GaAs layer is lower than that of the light generated in the GaInP active layer, the P-type GaAs layer absorbs the oscillating light and forms an electron-hole pair in the current blocking layer. However, the diffusion length of electrons and holes in GaAs is ~ 3 μm each,
0.60.6 μm, so that only the electrons in which the internal diffusion length of the generated electron-hole pairs is much larger than the current block layer thickness,
The holes are diffused to both sides of the current blocking layer, and only the holes accumulate (FIG. 5A). Therefore, the potential of the current blocking layer decreases, and finally the effect of the current blocking is lost, and the current confinement structure does not function (FIG. 5 (b)). The thickness of the current block layer is usually about 1 μm. Therefore, the current blocking layer is generally made of N-type GaAs.

しかしながら本発明の半導体レーザのように、基板が
P型でなおかつメサストライプが活性層よりも上にある
場合、電流ブロック層はP型にならざるを得ない。そこ
で、光吸収による電流ブロック層のポテンシャル低下を
防止する構造として第4図のように3層の電流ブロック
層を用いた。第1図,第4図において電流ブロック層
は、P型GaAsまたはP型AlGaAsでなる第1の電流ブロッ
ク層180,N型GaInPまたはN型AIGaInPでなる第2の電流
ブロック層190,P型GaAsまたはP型AlGaAsでなる第3の
電流ブロック層200の3層構造より形成される。第4図
(a)に示すように、第5図と同様に活性層で発生した
光は、第1のP型GaAsでなる電流ブロック層で吸収さ
れ、電子は拡散していき、正孔のみが第1の電流ブロッ
ク層中にたまっていく。その結果として第1の電流ブロ
ック層のポテンシャル障壁は低下する。しかしながら、
第4図(b)に示すように第1の電流ブロック層に蓄積
した正孔は、第2の電流ブロック層との間に価電子帯の
ポテンシャル障壁が存在するため、第1の電流ブロック
層から第3の電流ブロック層へ流入できない。このた
め、第3の電流ブロック層は正常に機能して電流ブロッ
ク層として良好に作用する。従って、本発明の半導体レ
ーザにおいては、電流ブロック層の光吸収によるポテン
シャル障壁の低下が起こらず、常に良好な電流狭窄構造
が得られる。なお、第4図において第3の電流ブロック
層は活性層から十分離れており、発振光はほとんど吸収
しないとする。
However, when the substrate is P-type and the mesa stripe is above the active layer as in the semiconductor laser of the present invention, the current blocking layer must be P-type. Therefore, as shown in FIG. 4, three current blocking layers were used as a structure for preventing the potential of the current blocking layer from lowering due to light absorption. In FIGS. 1 and 4, the current block layers are a first current block layer 180 made of P-type GaAs or P-type AlGaAs, a second current block layer 190 made of N-type GaInP or N-type AIGaInP, and a P-type GaAs. Alternatively, the third current blocking layer 200 made of P-type AlGaAs has a three-layer structure. As shown in FIG. 4 (a), light generated in the active layer is absorbed by the first P-type GaAs current blocking layer, electrons are diffused, and only holes are formed as in FIG. Accumulate in the first current blocking layer. As a result, the potential barrier of the first current blocking layer decreases. However,
As shown in FIG. 4 (b), the holes accumulated in the first current blocking layer have a valence band potential barrier between the first current blocking layer and the second current blocking layer. Cannot flow into the third current blocking layer. For this reason, the third current blocking layer functions normally and functions well as a current blocking layer. Therefore, in the semiconductor laser of the present invention, the potential barrier does not decrease due to the light absorption of the current blocking layer, and a good current confinement structure can always be obtained. In FIG. 4, it is assumed that the third current blocking layer is sufficiently separated from the active layer and hardly absorbs oscillation light.

〔実施例〕〔Example〕

以下、本発明のP型基板上AlGaInP半導体レーザにつ
いて、具体的数値例を用いて説明する。ここでは、より
最適化された構造として第2図の構造について説明す
る。基板は1×1019cm-3のZnドープP型GaAs基板210を
用いた。その基板上に70Torr減圧のMOVPE法により、0.3
μm厚のP型GaAsでなるバッファ層140、0.02μm厚の
P型GaInP層130、1.1μm厚のP型AlGaInPクラッド層11
0、0.04μm厚アンドープGaInP活性層100、0.25μm厚
のN型AlGaInPクラッド層120、0.005μm厚のN型GaInP
エッチングストッパ層122、0.9μm厚のN型AlGaInPク
ラッド層125、0.01μm厚のN型GaInP層150、0.5μm厚
のN型GaAsキャップ層160をこの順に順次結晶成長して
基本となるダブルヘテロ構造ウェハーを形成した。次
に、レーザ構造を形成するため、N型AlGaInP125をメサ
状に加工した。メサ加工には、GaInPに対して、AlGaInP
のエッチングレートが十分早い選択エッチャントを使用
した。そして、第2回目のMOVPE法による結晶成長で、
メサ側面およびメサ両枠の部分に、0.3μm厚のP型GaA
sでなる第1の電流ブロック層180、0.3μm厚のN型GaI
nPでなる第2の電流ブロック層190、0.3μm厚のP型Ga
Asでなる第3の電流ブロック層200を順次結晶成長し
た。この結晶成長には、選択成長法を用いた。そして、
最後に、第3回目のMOVPE法による結晶成長で全面にN
型GaAsでなるキャップ層170を成長し、素子両面に電極
づけを行って本発明の半導体レーザを作製した。
Hereinafter, the AlGaInP semiconductor laser on a P-type substrate of the present invention will be described using specific numerical examples. Here, the structure of FIG. 2 will be described as a more optimized structure. The substrate used was a Zn-doped P-type GaAs substrate 210 of 1 × 10 19 cm −3 . On the substrate, the MOVPE method at 70 Torr
Buffer layer 140 made of P-type GaAs having a thickness of μm, P-type GaInP layer 130 having a thickness of 0.02 μm, P-type AlGaInP cladding layer 11 having a thickness of 1.1 μm.
0, 0.04 μm thick undoped GaInP active layer 100, 0.25 μm thick N-type AlGaInP cladding layer 120, 0.005 μm thick N-type GaInP
An etching stopper layer 122, a 0.9 μm thick N-type AlGaInP cladding layer 125, a 0.01 μm thick N-type GaInP layer 150, and a 0.5 μm thick N-type GaAs cap layer 160 are sequentially crystal-grown in this order to form a basic double hetero structure. A wafer was formed. Next, in order to form a laser structure, N-type AlGaInP125 was processed into a mesa shape. For mesa processing, use GaAlP instead of AlGaInP.
A selective etchant having a sufficiently high etching rate was used. Then, in the second MOVPE crystal growth,
0.3μm thick P-type GaAs on the mesa side and both mesa frames
s first current blocking layer 180, 0.3 μm thick N-type GaI
nP second current blocking layer 190, 0.3 μm thick P-type Ga
A third current blocking layer 200 made of As was crystal-grown sequentially. For this crystal growth, a selective growth method was used. And
Finally, the third MOVPE crystal growth is used
A semiconductor laser of the present invention was fabricated by growing a cap layer 170 of type GaAs and attaching electrodes to both sides of the device.

なお、上記説明中、P型不純物にはすべてZnを、N型
不純物にはすべてSiを用いた。また、P型AlGaInPクラ
ッド層のキャリア濃度は、3×1017cm-3、比抵抗は0.8
Ωmであり、N型AlGaInPクラッド層のキャリア濃度
は、1.5×1017cm-3、比抵抗は0.08Ωmであった。
In the above description, Zn was used for all P-type impurities, and Si was used for all N-type impurities. The P-type AlGaInP cladding layer has a carrier concentration of 3 × 10 17 cm −3 and a specific resistance of 0.8.
Ωm, the carrier concentration of the N-type AlGaInP cladding layer was 1.5 × 10 17 cm −3 , and the specific resistance was 0.08 Ωm.

以上の方法により作製した、第2図の構造の半導体レ
ーザの特性として、以下に示す特性が得られた。電流注
入幅5μm、共振器長400μmの素子に対し、発振しき
い値電流は50mAであった。素子抵抗は、第3図の半導体
レーザの素子抵抗が14Ωであったのに対し、第2図の半
導体レーザの素子抵抗は8Ωと大幅に低減できた。ま
た、光出力特性も同一のサイズで試作した第3図の従来
構造の半導体レーザの最高光出力が30mWで熱飽和を起こ
すのに対し、第2図の構造の半導体レーザでは、40mWま
で熱飽和を起こすことがなく、良好な高出力特性が得ら
れた。また、40mW光出力時まで良好な電流狭窄が得られ
た。なお、上記、光出力特性を測定した半導体レーザに
関しては、第2図,第3図の構造ともに前面6%、後面
95%の非対称コーティングを施した後、ダイヤモンドヒ
ートシンク上に融着して測定を行った。
The following characteristics were obtained as the characteristics of the semiconductor laser having the structure shown in FIG. 2 manufactured by the above method. The oscillation threshold current was 50 mA for an element having a current injection width of 5 μm and a resonator length of 400 μm. The device resistance of the semiconductor laser shown in FIG. 3 was 14Ω, whereas the device resistance of the semiconductor laser shown in FIG. 2 could be greatly reduced to 8Ω. The light output characteristics of the conventional semiconductor laser of FIG. 3 prototyped with the same size have a maximum light output of 30 mW, while the semiconductor laser of FIG. 2 causes thermal saturation up to 40 mW. And good high output characteristics were obtained. Also, good current confinement was obtained up to 40 mW light output. The semiconductor laser whose optical output characteristics were measured was 6% in the front surface and 6% in the rear surface in both the structures shown in FIGS.
After applying a 95% asymmetric coating, the measurement was performed by fusing on a diamond heat sink.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明の半導体レーザによれば、
AlGaInP可視光半導体レーザの素子抵抗の大幅な低減お
よび高出力動作時の熱放散特性の大幅な改善および良好
な電流狭窄が可能である。
As described above, according to the semiconductor laser of the present invention,
The device resistance of the AlGaInP visible light semiconductor laser can be significantly reduced, the heat dissipation characteristics during high-power operation can be significantly improved, and good current confinement can be achieved.

【図面の簡単な説明】 第1図,第2図は本発明のP型基板上AlGaInP半導体レ
ーザの構造図(斜視図)、第3図は従来のN型基板上Al
GaInP半導体レーザの構造図(斜視図)、第4図は本発
明の半導体レーザのメサストライプ以外の部分でのエネ
ルギバンド図、第5図は1層の電流ブロック構造のエネ
ルギバンド図である。 100……活性層、110,120,125……クラッド層、122……
エッチンストッパ層、130……P型GaInP層、140……バ
ッファ層、150……N型GaInP層、160……キャップ層、1
70……キャップ層、180……第1の電流ブロック層、190
……第2の電流ブロック層、200……第3の電流ブロッ
ク層、210……基板、330……クラッド層、400……基
板。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are structural views (perspective views) of an AlGaInP semiconductor laser on a P-type substrate of the present invention, and FIG.
FIG. 4 is a structural diagram (perspective view) of a GaInP semiconductor laser, FIG. 4 is an energy band diagram of a portion other than the mesa stripe of the semiconductor laser of the present invention, and FIG. 5 is an energy band diagram of a single-layer current block structure. 100 ... active layer, 110, 120, 125 ... clad layer, 122 ...
Etching stopper layer, 130: P-type GaInP layer, 140: buffer layer, 150: N-type GaInP layer, 160: cap layer, 1
70 ... cap layer, 180 ... first current blocking layer, 190
... A second current blocking layer, 200 a third current blocking layer, 210 a substrate, 330 a cladding layer, 400 a substrate.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】P型GaAs基板上に、AlGaInPまたはAlInPで
なる第1のクラッド層、GaInPまたはAlGaInPでなる活性
層、AlGaInPまたはAlInPでなる第2のクラッド層をこの
順に含むダブルヘテロ構造を少くとも有し、前記第2の
クラッド層の一部が部分的に層厚の厚いメサストライプ
状の電流注入領域を形成している半導体レーザにおい
て、前記メサストライプの側面およびメサストライプの
両脇をP型GaAsまたはP型AlGaAsでなる第1の電流ブロ
ック層、N型GaInPまたはN型AlGaInPでなる第2の電流
ブロック層、P型GaAsまたはP型AlGaAsでなる第3の電
流ブロック層の順で被覆したことを特徴とする半導体レ
ーザ。
1. A double heterostructure including a first clad layer made of AlGaInP or AlInP, an active layer made of GaInP or AlGaInP, and a second clad layer made of AlGaInP or AlInP in this order on a P-type GaAs substrate. In the semiconductor laser in which a part of the second cladding layer partially forms a thick mesa stripe current injection region, a side surface of the mesa stripe and both sides of the mesa stripe are P Current blocking layer made of p-type GaAs or p-type AlGaAs, second current blocking layer made of n-type GaInP or n-type AlGaInP, and third current blocking layer made of p-type GaAs or p-type AlGaAs A semiconductor laser characterized in that:
JP2234803A 1990-09-05 1990-09-05 Semiconductor laser Expired - Fee Related JP2616185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2234803A JP2616185B2 (en) 1990-09-05 1990-09-05 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2234803A JP2616185B2 (en) 1990-09-05 1990-09-05 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH04115588A JPH04115588A (en) 1992-04-16
JP2616185B2 true JP2616185B2 (en) 1997-06-04

Family

ID=16976634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2234803A Expired - Fee Related JP2616185B2 (en) 1990-09-05 1990-09-05 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP2616185B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04352374A (en) * 1991-05-29 1992-12-07 Eastman Kodak Japan Kk Semiconductor light-emitting device
JPH0669585A (en) * 1992-08-12 1994-03-11 Fujitsu Ltd Surface emitting semiconductor laser and manufacturing method thereof
US5523256A (en) * 1993-07-21 1996-06-04 Matsushita Electric Industrial Co., Ltd. Method for producing a semiconductor laser
JPH0750448A (en) * 1993-08-04 1995-02-21 Matsushita Electric Ind Co Ltd Semiconductor laser and manufacturing method thereof
JP2692563B2 (en) * 1993-12-28 1997-12-17 日本電気株式会社 Semiconductor laser embedded structure
JPH0983071A (en) * 1995-09-08 1997-03-28 Rohm Co Ltd Semiconductor laser

Also Published As

Publication number Publication date
JPH04115588A (en) 1992-04-16

Similar Documents

Publication Publication Date Title
JP2807250B2 (en) Semiconductor laser device
JPH07162086A (en) Manufacture of semiconductor laser
JP2616185B2 (en) Semiconductor laser
CN110459952A (en) The production method that SAG improves semiconductor laser chip reliability is grown by selective area
JPH09116222A (en) Manufacture of semiconductor laser and semiconductor laser
JPH10284800A (en) Semiconductor light emitting device and method of manufacturing the same
JPH11284280A (en) Semiconductor laser device, its manufacture and manufacture of iii-v compound semiconductor element
JP2812273B2 (en) Semiconductor laser
JPH0697592A (en) Semiconductor laser and manufacture thereof
JP2624881B2 (en) Semiconductor laser device and method of manufacturing the same
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPH05211372A (en) Manufacture of semiconductor laser
JP2865160B2 (en) Manufacturing method of semiconductor laser
JP2502835B2 (en) Semiconductor laser and manufacturing method thereof
JP2865325B2 (en) Semiconductor laser device
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPH0462882A (en) Visible radiation semiconductor laser
JPH07170017A (en) Semiconductor laser
JPH07120836B2 (en) Semiconductor laser
JPH0462883A (en) Visible radiation semiconductor laser
JP3143105B2 (en) Method for manufacturing semiconductor laser device
JP2973215B2 (en) Semiconductor laser device
JP2000040857A (en) Semiconductor laser element
JP2611486B2 (en) Semiconductor laser and method of manufacturing the same
JPS60132381A (en) Semiconductor laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees