[go: up one dir, main page]

JPH04115458A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH04115458A
JPH04115458A JP2234295A JP23429590A JPH04115458A JP H04115458 A JPH04115458 A JP H04115458A JP 2234295 A JP2234295 A JP 2234295A JP 23429590 A JP23429590 A JP 23429590A JP H04115458 A JPH04115458 A JP H04115458A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
aqueous electrolyte
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2234295A
Other languages
Japanese (ja)
Other versions
JP2943287B2 (en
Inventor
Takao Ogino
隆夫 荻野
Tadaaki Miyazaki
忠昭 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2234295A priority Critical patent/JP2943287B2/en
Priority to US07/748,840 priority patent/US5153082A/en
Priority to GB9118380A priority patent/GB2247771A/en
Publication of JPH04115458A publication Critical patent/JPH04115458A/en
Application granted granted Critical
Publication of JP2943287B2 publication Critical patent/JP2943287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain excellent battery properties of high voltage and high discharging capacity and improve the stability at the time of short circuit by using a carbonacesous material, which is a graphitized carbon consisting of mesophase small spherical bodies produced during carbonation of pitch and doped with lithium, as an anode active mass. CONSTITUTION:After heating pitch, mesophase small spherical bodies are separated by pyridine or quinoline. Then, firing at about 1500-3000 deg.C is carried out to graphitize the mesophase small spherical bodies. The graphitized carbon has high lithium-absorbing function and the voltage at the time of desorption of lithium and overvoltage at the time intercalation and desorption is low and high density is obtained as a combination agent. Then, the graphitized carbon is prepared into a negative electrode composing agent using a binder to prepare a negative electrode and doped with lithium.

Description

【発明の詳細な説明】 庄m冴υ引止匠 本発明は、負極活物質を改良したことにより、高電圧、
高放電容量の優れた電池性能を有し、かつ短絡時等の安
全性にも優れる非水電解質二次電池に関する。
[Detailed Description of the Invention] The present invention provides high voltage,
The present invention relates to a non-aqueous electrolyte secondary battery that has excellent battery performance with a high discharge capacity and is also excellent in safety in the event of a short circuit.

の   び  が  しようとする 近年、リチウム等のアルカリ金属を負極活物質に用いた
非水電解質電池は、高電圧、高エネルギー密度で優れた
自己放電性を示すことからパソコン、VTR等のメモリ
ーパックアンプやカメラ等の駆動源などとして非常に注
目されている。
In recent years, non-aqueous electrolyte batteries that use alkali metals such as lithium as negative electrode active materials have been used as memory pack amplifiers for personal computers, VTRs, etc. because they exhibit excellent self-discharge properties at high voltage and high energy density. It is attracting a lot of attention as a driving source for cameras and cameras.

しかしながら、高エネルギー密度を得るために負極にリ
チウム金属を使用した二次電池の場合、充放電の繰り返
しに伴ってデンドライト状のリチウムが形成されたり、
あるいはリチウムが電気化学的に不活性化することによ
り充放電のサイクル耐久性が非常に低下する傾向がある
ことが問題となっている。
However, in the case of secondary batteries that use lithium metal in the negative electrode to obtain high energy density, dendrite-like lithium may be formed as a result of repeated charging and discharging.
Another problem is that lithium tends to be electrochemically inactivated, resulting in a significant decrease in charge/discharge cycle durability.

また、リチウム金属は水分等に対し高活性で、かつ低融
点であるため発火し易く、急激な短絡時には高電流によ
る発熱が起こり、非常に危険な状況に至ることが懸念さ
れている。
In addition, lithium metal is highly active against moisture and has a low melting point, so it is easily ignited, and there are concerns that in the event of a sudden short circuit, heat will be generated due to high current, leading to an extremely dangerous situation.

そこで従来、これらの問題を解決するための一つの手段
として、例えば、黒鉛にリチウムをインターカレートさ
せた炭素質材など、リチウムを炭素原子で構成される結
晶の眉間にドープし得る炭素質材料を負極に用いること
が捉案されている(米国特許第4,423,125号な
ど)。
Conventionally, one way to solve these problems is to use carbonaceous materials that can be doped with lithium between the eyebrows of crystals composed of carbon atoms, such as carbonaceous materials in which lithium is intercalated with graphite. It has been proposed to use this as a negative electrode (eg, US Pat. No. 4,423,125).

ここで、高エネルギー電池のための負極に適する炭素質
材料として必要な特性は、炭素原子の層間へのリチウム
の吸蔵能力が大きいことはもちろんのこと、リチウム脱
離時の電圧が低いこと、リチウム挿入・脱離時の過電圧
の低いこと、そして炭素粉体をベースとして作製した合
剤が高い密度を示すことが望まれる。
Here, the characteristics necessary for a carbonaceous material suitable for negative electrodes for high-energy batteries include not only a high ability to absorb lithium between layers of carbon atoms, but also a low voltage when desorbing lithium, It is desired that the overvoltage during insertion and deintercalation be low, and that the mixture prepared using carbon powder as a base exhibits high density.

このような観点において、上記の炭素・質材料は、未だ
十分とはいい難いものである。また従来、このような炭
素質材料の(002)面の眉間距離や結晶子の大きさ等
について最適値が種々提案されており、例えば2000
℃以上というような高温焼成を行って黒鉛化処理を施し
たものは、比較的良好な特性を示すことが報告されてい
るが、上記要望をバランスよく満足しうる炭素質材料は
得られていないのが現状である。
From this point of view, the above-mentioned carbonaceous materials are still far from being sufficient. Furthermore, in the past, various optimal values have been proposed for the distance between the eyebrows of the (002) plane, the crystallite size, etc. of such carbonaceous materials; for example, 2000
It has been reported that graphitized materials subjected to high-temperature firing at temperatures above °C exhibit relatively good properties, but a carbonaceous material that satisfies the above requirements in a well-balanced manner has not been obtained. is the current situation.

本発明は、上記事情に鑑みなされたもので、リチウムの
吸蔵能力が大きく、またリチウムの脱離時の電圧及びリ
チウム挿入時・脱離時の過電圧が低く、しかも合剤とし
て高い密度が得られる炭素質材料を開発し、これを負極
活物質として用いることにより、高電圧、高放電容量の
優れた電池特性を有し、しかも短絡時の安全性にも優れ
る非水電解質二次電池を提供することを目的とする。
The present invention was developed in view of the above circumstances, and has a large lithium storage capacity, low voltage during lithium desorption and low overvoltage during lithium insertion and desorption, and can provide a high density as a mixture. By developing a carbonaceous material and using it as a negative electrode active material, we provide a non-aqueous electrolyte secondary battery that has excellent battery characteristics such as high voltage and high discharge capacity, and also has excellent safety in the event of a short circuit. The purpose is to

課 を” するための手  び 用 本発明者は、上記目的を達成するため、鋭意検討を行な
った結果、ピンチの炭素化過程で生しるメソフェーズ小
球体よりなる黒鉛化炭素質材料がリチウムの吸蔵能力が
大きく、またリチウムの脱離時の電圧及びリチウム挿入
時・脱離時の過電圧が低く、しかも合剤として高い密度
を得ることができ、非水電解質二次電池の負極材料とし
て非常に好ましい特性を有することを見い出した。
In order to achieve the above objective, the present inventor has conducted intensive studies and found that a graphitized carbonaceous material consisting of mesophase small spheres produced in the pinch carbonization process is a lithium-ion carbonaceous material. It has a large storage capacity, low voltage during lithium desorption and low overvoltage during lithium insertion and desorption, and can obtain high density as a mixture, making it extremely suitable as a negative electrode material for non-aqueous electrolyte secondary batteries. It has been found that it has favorable properties.

即ち、石油や石炭などのピンチから得られたメソフェー
ズカーボンは、平均粒径として5−15μmの均一な球
形状をしており、このメソフェーズカーボンを結着剤と
ともに合剤化したものは、その形状のため間隙が少なく
詰め込まれ、最密充填になり易く、合剤として非常に高
い密度が得られる。具体的には、従来のカーボン材料で
は1.5g/cm2が最高レベルであったが、本メソフ
ェーズカーボンでは上記の理由により1.8 g/cm
2もの高密度が得られるものである。また、このメソフ
ェーズカーボンに黒鉛化処理を施すと炭素原子は球の緯
度方向に層状に並び、眉間が球の全表面にわたって露出
した構造となり、従ってリチウムがあらゆる方向から侵
入できることになる。このため、コークス等の異方性を
持つ材料では、リチウムがある限られた方向からしか侵
入できないのに対し、この黒鉛化処理メソフェーズカー
ボンではリチウムが挿入、脱離できるサイト面積を広く
とることができ、高いリチウム吸蔵容量が得られ、それ
と同時に良好な高電流放電性も達成できるものである。
In other words, mesophase carbon obtained from a pinch of oil or coal has a uniform spherical shape with an average particle size of 5-15 μm, and a mixture of this mesophase carbon with a binder has a shape similar to that of Therefore, they are packed with few gaps, making it easy to achieve close packing, and a very high density can be obtained as a mixture. Specifically, the highest level for conventional carbon materials was 1.5 g/cm2, but for this mesophase carbon, it was 1.8 g/cm2 for the above reasons.
A high density of 2 can be obtained. Furthermore, when this mesophase carbon is graphitized, the carbon atoms are arranged in layers in the latitudinal direction of the sphere, creating a structure in which the glabella is exposed over the entire surface of the sphere, allowing lithium to enter from all directions. For this reason, whereas in anisotropic materials such as coke, lithium can only enter from a certain direction, this graphitized mesophase carbon has a wide site area where lithium can be inserted and desorbed. Therefore, a high lithium storage capacity can be obtained, and at the same time, good high current discharge properties can also be achieved.

更に、通常炭素質材料は、1500℃以上の高温で焼成
処理することにより、層間へのリチウムの吸蔵能力を高
く、またリチウム脱離電位を低くすることができ、これ
によって電池電圧を高くすることができるが、メソフェ
ーズ小球体は他の炭素質材料に比べて非常に黒鉛化し易
く、黒鉛化したメソフェーズ材料は、300 mAH/
g以上のりチウム吸蔵容量、そしてリチウムの酸化還元
電位に対して0.3 V以下のリチウム脱離電位が達成
され、非水電解質二次電池の負極材料として非常に好ま
しいものである。
Furthermore, by firing carbonaceous materials at a high temperature of 1500°C or higher, it is possible to increase the ability to absorb lithium between layers and lower the lithium desorption potential, thereby increasing the battery voltage. However, mesophase spherules are much easier to graphitize than other carbonaceous materials, and graphitized mesophase materials have a
It achieves a lithium storage capacity of more than 1.5 g and a lithium desorption potential of 0.3 V or less relative to the oxidation-reduction potential of lithium, making it highly preferable as a negative electrode material for non-aqueous electrolyte secondary batteries.

而して、本発明者は、上記黒鉛化メソフェーズ材料を活
物質とする負極を構成し、これに金属の酸化物や硫化物
或いは導電性ポリマーなどを活物質とする正極と、リチ
ウムを含む非水電解質とを組合わせることにより、高電
圧、高放電容量の優れた電池特性を有し、しかも短絡時
の安全性にも優れる非水電解質二次電池が得られること
を知見し、本発明を完成したものである。
Therefore, the present inventor constructed a negative electrode using the graphitized mesophase material as an active material, a positive electrode using a metal oxide, sulfide, or a conductive polymer as an active material, and a non-containing material containing lithium. It was discovered that a non-aqueous electrolyte secondary battery with excellent battery characteristics such as high voltage and high discharge capacity, as well as excellent safety in the event of a short circuit, can be obtained by combining it with an aqueous electrolyte. It is completed.

従って本発明は、正極と、リチウムを吸蔵・放出可能な
負極と、リチウムを含む非水電解質とを具備してなる非
水電解質二次電池において、上記負極の活物質としてピ
ッチの炭素化過程で生じるメソフェーズ小球体よりなる
黒鉛化炭素にリチウムをドープした炭素質材料を使用し
たことを特徴とする非水電解質二次電池を提供する。
Therefore, the present invention provides a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode capable of intercalating and deintercalating lithium, and a non-aqueous electrolyte containing lithium, in which pitch is carbonized as an active material of the negative electrode. Provided is a non-aqueous electrolyte secondary battery characterized by using a carbonaceous material in which graphitized carbon made of generated mesophase small spheres is doped with lithium.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明の非水電解質二次電池の負極は、上述のようにメ
ソフェーズ小球体を黒鉛化し、これにリチウムをドープ
した炭素質材料を活物質としたものである。
The negative electrode of the non-aqueous electrolyte secondary battery of the present invention uses, as an active material, a carbonaceous material in which mesophase small spheres are graphitized and doped with lithium, as described above.

ここで、上記メソフェーズ小球体は、ピンチの炭素化過
程で得られるものである。具体的には、石油や石炭など
から得たピンチを400〜450℃の温度で1〜2時間
熱処理した後、ピリジンやキノリンにより分離すること
により得られるものである。
Here, the mesophase spherules are obtained through a pinch carbonization process. Specifically, it is obtained by heat-treating a pinch obtained from petroleum, coal, etc. at a temperature of 400 to 450°C for 1 to 2 hours, and then separating it with pyridine or quinoline.

このメソフェーズ小球体を黒鉛化する方法としては、1
500〜3000℃、特に2000〜2500℃の温度
で5〜50時間程時間酸する方法が好適に採用される。
As a method for graphitizing these mesophase spherules, 1
A method of acidifying at a temperature of 500 to 3000°C, particularly 2000 to 2500°C for about 5 to 50 hours is preferably employed.

なお、この場合不活性ガス雰囲気中で焼成することが好
ましい。
In this case, it is preferable to perform the firing in an inert gas atmosphere.

このメソフェーズ小球体からなる黒鉛化炭素は、結着剤
を用いて負極合剤とされ、電池負極を構成するが、この
場合該黒鉛化炭素にリチウムをドープさせる。リチウム
をドープさせる方法としては、リチウムイオンを含む非
水電解液中で炭素材を対極として電気化学的にリチウム
をトープさせる方法、又はこの黒鉛化炭素を結着剤を用
いて板状等に成形し、これとリチウム金属とを圧接し、
正極、非水電解液と共に電池を組み立てた後、電池内で
リチウムをドープさせる方法を好適に採用することがで
きる。なお、負極合剤の調製に用いられる結着剤として
は、結着効果があり耐溶媒性があればいずれの物質でも
構わないが、特にフッ素樹脂が好ましく、中でもポリテ
トラフルオロエチレン粉末が好適に使用される。
This graphitized carbon consisting of mesophase small spheres is made into a negative electrode mixture using a binder and constitutes a battery negative electrode. In this case, the graphitized carbon is doped with lithium. Methods for doping lithium include electrochemically doping lithium with a carbon material as a counter electrode in a non-aqueous electrolyte containing lithium ions, or forming this graphitized carbon into a plate shape using a binder. Then, this and lithium metal are pressure-welded,
A method of doping lithium within the battery after assembling the battery with the positive electrode and the non-aqueous electrolyte can be suitably employed. As the binder used for preparing the negative electrode mixture, any substance may be used as long as it has a binding effect and solvent resistance, but fluororesin is particularly preferable, and polytetrafluoroethylene powder is especially preferable. used.

本発明非水電解質二次電池の正極としては、特に制限は
な(、通常の非水電解質二次電池に使用される正極材料
を用いることができ、具体的には、V2O5I V6O
13,LiCo0z、 MnO2,MnO3,LiCo
0z等の金属酸化物、Tl521 Mos!!等の金属
硫化物、ポリアニリン等の導電性ポリマーなどを活物質
とする正極を使用することができる。
The positive electrode of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited (the positive electrode materials used in ordinary non-aqueous electrolyte secondary batteries can be used; specifically, V2O5I V6O
13, LiCo0z, MnO2, MnO3, LiCo
Metal oxides such as 0z, Tl521 Mos! ! It is possible to use a positive electrode whose active material is a metal sulfide such as, a conductive polymer such as polyaniline, or the like.

また、本発明二次電池に使用される非水電解質は、リチ
ウムを含むものが使用され、具体的にはリチウム塩、特
にLiClO4,LiBシミi P F b + L 
r CF 3S03 +及びLiAsF、から選ばれた
1種または2種以上が好適である。これらの電解質は、
通常溶媒により溶解された状態で使用されるか、この場
合溶媒としては、特に限定されるものではないが、プロ
ピレンカーボネート、テトラヒドロフラン、エチレンカ
ーボネート、ジエチルカーボネート、ジメトキシエタン
、γ−ブチロラクトン、ジオキソラン、ブチレンカーボ
ネート及びジメチルホルムアミドから選ばれた1種また
は2種以上の混合溶媒が好適である。
Furthermore, the non-aqueous electrolyte used in the secondary battery of the present invention is one containing lithium, specifically lithium salt, especially LiClO4, LiB stain i P F b + L
One or more selected from r CF 3 S03 + and LiAsF are preferred. These electrolytes are
It is usually used in a dissolved state in a solvent, or in this case, the solvent includes, but is not limited to, propylene carbonate, tetrahydrofuran, ethylene carbonate, diethyl carbonate, dimethoxyethane, γ-butyrolactone, dioxolane, butylene carbonate. and dimethylformamide, or a mixed solvent of two or more thereof is suitable.

本発明の非水電解質二次電池は、通常正負極間に電解液
を介在させることにより構成されるが、この場合正負両
極間に両極の接触による電流の短絡を防ぐためセパレー
ターを介在することができる。セパレーターとしては、
両極の接触を確実に防止し得、かつ電解液を通したり含
んだりできる材料、例えばポリテトラフルオロエチレン
、ポリプロピレンやポリエチレン等の合成樹脂製の不織
布、織布多孔体や網などを挙げることができるが、特に
厚さ20−50μm程度のポリプロピレンまたはポリエ
チレン製の微孔性フィルムが好ましく用いられる。
The non-aqueous electrolyte secondary battery of the present invention is usually constructed by interposing an electrolyte between the positive and negative electrodes, but in this case, a separator may be interposed between the positive and negative electrodes to prevent current short-circuiting due to contact between the two electrodes. can. As a separator,
Materials that can reliably prevent contact between the electrodes and allow the electrolyte to pass through or contain them, such as nonwoven fabrics, porous woven fabrics, and nets made of synthetic resins such as polytetrafluoroethylene, polypropylene, and polyethylene, etc. However, a microporous film made of polypropylene or polyethylene having a thickness of about 20 to 50 μm is particularly preferably used.

なお、本発明の非水電解質二次電池のその他の構成部材
としては、通常使用されているものを支障なく用いるこ
とができる。また、電池の形態は特に制限されず、コイ
ンタイプ、ボタンタイプ、ペーパータイプ又はスパイラ
ル構造の筒型電池など、種々の形態とすることができる
In addition, as other constituent members of the non-aqueous electrolyte secondary battery of the present invention, those commonly used can be used without any problem. Further, the form of the battery is not particularly limited, and may be of various forms such as a coin type, button type, paper type, or spiral-structured cylindrical battery.

衾里■四果 以上説明したように、本発明の非水電解質二次電池は、
負極活物質としてリチウムをドープした黒鉛化メソフェ
ーズ小球体カーボンを使用しているので、高放電容量な
ど、優れた電池性能が得られ、また安全性にも非常に優
れたものである。
As explained above, the non-aqueous electrolyte secondary battery of the present invention is
Since graphitized mesophase small spherical carbon doped with lithium is used as the negative electrode active material, excellent battery performance such as high discharge capacity can be obtained, and it is also extremely safe.

以下、実施例、比較例を示し、本発明を具体的に説明す
るが、本発明は下記実施例に制限されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples below.

なお、実施例に先立ち、本発明非水電解質二次電池の負
極を構成するメソフェーズ小球体からなる黒鉛化炭素の
製造例を示す。
Prior to the Examples, an example of manufacturing graphitized carbon made of mesophase small spheres constituting the negative electrode of the non-aqueous electrolyte secondary battery of the present invention will be described.

ご製造例〕 コールタールピンチのキノリン可溶分を430℃で12
0分間熱処理した後、ピリジンによりメソフェーズ小球
体を分離した。
Production example: The quinoline-soluble content of a pinch of coal tar is heated to 430°C for 12
After heat treatment for 0 min, mesophase spherules were separated with pyridine.

このメソフェーズ小球体を窒素ガス雰囲気下に2500
℃で24時間焼成して黒鉛化し、電池負極用炭素質材料
を得た。
This mesophase small sphere was placed in a nitrogen gas atmosphere for 2500 min.
The mixture was fired at ℃ for 24 hours to graphitize, thereby obtaining a carbonaceous material for a battery negative electrode.

上記炭素質材料100部(重量部、以下同じ)に対して
、結着剤としてポリテトラフルオロエチレン粉末を10
部添加し、有機溶媒で混練後、ロール圧延により厚さ約
200μmの合剤シートを作製した。
For 100 parts (by weight, same hereinafter) of the above carbonaceous material, 10 parts of polytetrafluoroethylene powder was added as a binder.
After kneading with an organic solvent, a mixture sheet with a thickness of about 200 μm was prepared by roll rolling.

この合剤シートの密度を測定したところ、1.75g/
cm3であり、高密度なものであった。
When the density of this mixture sheet was measured, it was found to be 1.75g/
cm3, and had high density.

一方、ピッチコークスL PAN系ミルドファイバー、
アセチレンブラックそれぞれ100部にポリテトラフル
オロエチレン粉末を10部づつ添加し、上記と同様に厚
さ約200μmの合剤シートを3種類作製した。
On the other hand, pitch coke L PAN milled fiber,
10 parts of polytetrafluoroethylene powder was added to each 100 parts of acetylene black, and three types of mixture sheets each having a thickness of about 200 μm were prepared in the same manner as above.

これらの合剤シートの密度を測定したところ、ピッチコ
ークスは1.42g/cm3、P A N系ミルドファ
イバーは1.、48 g/cm′l′、アセチレンブラ
ックは1.38 g/cm”であり、いずれも上記メソ
フェーズカーボンの合剤シートに比べて低密度のもので
あった。
When the density of these mixture sheets was measured, it was 1.42 g/cm3 for pitch coke and 1.42 g/cm3 for PAN milled fiber. , 48 g/cm'l', and 1.38 g/cm'' for acetylene black, both of which had a lower density than the mesophase carbon mixture sheet.

〔実施例、比較例〕[Example, comparative example]

上記製造例で得た各合剤シートを所定寸法に打ち抜き、
これの−面側に厚さ70μmのリチウム箔を圧着し、更
に厚さ50μmのw4箔を集電体として導電性接着剤を
用いて一体化し、4種類の電池負極を作製した。
Each mixture sheet obtained in the above manufacturing example was punched out to a specified size,
A lithium foil with a thickness of 70 μm was bonded to the negative side of this, and a W4 foil with a thickness of 50 μm was further integrated as a current collector using a conductive adhesive, thereby producing four types of battery negative electrodes.

一方、化学式LiV、O,で示されるバナジウム酸化物
を活物質として用い、これに導電助剤としてアセチレン
ブラックを10部、結着剤としてフッ素樹脂を10部添
加して十分混合した後、有機溶媒により混練し、ロール
で約400μmに圧延して合剤シートを得た。このシー
トから上記負極と同様に所定寸法に打ち抜き、50μm
厚みのアルミニウム箔を集電体として導電性接着剤を用
いて一体化し、電池正極を作製した。
On the other hand, vanadium oxide represented by the chemical formula LiV, O, was used as an active material, 10 parts of acetylene black was added as a conductive agent, and 10 parts of fluororesin was added as a binder, and after thorough mixing, organic solvent The mixture was kneaded and rolled with a roll to a thickness of about 400 μm to obtain a mixture sheet. This sheet was punched out to a predetermined size in the same way as the negative electrode above, and was 50 μm thick.
A battery positive electrode was produced by integrating thick aluminum foil as a current collector using a conductive adhesive.

上記負極及び正極を用い、セパレーターに25μm厚の
ポリプロピレン製の微孔性フィルム、そして電解液には
プロピレンカーボネートとエチレンカーボネートとの混
合溶媒(容量比1:1)にLiPFbを1モル/7!溶
解したものを用い、寸法が直径20. Omr@、厚さ
1.6 mmのコイン型電池を4種類組み立てた。
Using the above negative and positive electrodes, a 25 μm thick polypropylene microporous film was used as the separator, and the electrolyte was a mixed solvent of propylene carbonate and ethylene carbonate (volume ratio 1:1) with 1 mol/7 of LiPFb! The diameter is 20. Omr@ assembled four types of coin-shaped batteries with a thickness of 1.6 mm.

なお、これらの電池は、正極のもつ放電可能容量として
約28mAHが期待されるが、−力負極側容量は多くて
も約18mAHであり、明らかに負極容量規制の電池で
ある。
It should be noted that these batteries are expected to have a dischargeable capacity of about 28 mAH on the positive electrode, but the capacity on the negative electrode side is at most about 18 mAH, and it is clear that these batteries are regulated by the negative electrode capacity.

上記4種類の電池について、それぞれ充放電電流1mA
において、放電終止電圧2.0■、充電終止電圧3.5
Vの条件で充放電を繰り返し、100サイクルまでのサ
イクル特性を測定した。その結果を図面に示す。
For the above four types of batteries, each charge/discharge current is 1 mA.
In, discharge end voltage 2.0■, charge end voltage 3.5
Charge and discharge were repeated under the condition of V, and cycle characteristics were measured up to 100 cycles. The results are shown in the drawing.

図面に示した結果より、本発明品である黒鉛化したメソ
フェーズ小球体よりなる合剤を用いた電池(実施例1)
は、放電容量が最も大きく、かつ充放電サイクルによる
容量劣化も非常に小さいことが確認された。
From the results shown in the drawings, it was found that a battery (Example 1) using a mixture of graphitized mesophase small spheres, which is a product of the present invention.
It was confirmed that the battery had the highest discharge capacity and the capacity deterioration due to charge/discharge cycles was very small.

また、参考として黒鉛化したメソフェーズ小球体よりな
る合剤シートの特性を確認するため、正極をリチウム金
属とした以外は上記と同様にして4種類のコイン型電池
を作製し、各電池について1mAの電流で負極からリチ
ウムイオンを脱離させる方向に反応を進め、リチウムの
酸化還元電位に対し+IVまでの吸蔵可能容量及び脱離
時の平均電圧を求めた。結果を第1表に示す。
In addition, in order to confirm the characteristics of a mixture sheet made of graphitized mesophase small spheres as a reference, four types of coin-type batteries were fabricated in the same manner as above except that the positive electrode was made of lithium metal, and each battery had a 1 mA current. The reaction proceeded in the direction of desorbing lithium ions from the negative electrode using an electric current, and the occlusion capacity up to +IV and the average voltage at the time of desorption with respect to the oxidation-reduction potential of lithium were determined. The results are shown in Table 1.

第1表に示した結果より、リチウムをドープした黒鉛化
メソフェーズ小球体は、高いリチウム吸蔵可能容量を有
し、かつ低電位でリチウムの挿入、脱離が可能であるこ
とが認められ、非水電解質二次電池の負極材料として非
常に適したものであることが確認された。
From the results shown in Table 1, it is confirmed that graphitized mesophase small spheres doped with lithium have a high lithium storage capacity and are capable of intercalating and deintercalating lithium at low potential. It was confirmed that this material is very suitable as a negative electrode material for electrolyte secondary batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の実施例及び比較例の電池の放電容量及
びサイクル特性を示すグラフである。 出願人 株式会社 ブリデストン
The drawing is a graph showing the discharge capacity and cycle characteristics of batteries of Examples and Comparative Examples of the present invention. Applicant Brideston Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、正極と、リチウムを吸蔵・放出可能な負極と、リチ
ウムを含む非水電解質とを具備してなる非水電解質二次
電池において、上記負極の活物質としてピッチの炭素化
過程で生じるメソフェーズ小球体よりなる黒鉛化炭素に
リチウムをドープした炭素質材料を使用したことを特徴
とする非水電解質二次電池。
1. In a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode capable of intercalating and deintercalating lithium, and a non-aqueous electrolyte containing lithium, a small mesophase produced in the carbonization process of pitch is used as the active material of the negative electrode. A non-aqueous electrolyte secondary battery characterized by using a carbonaceous material in which graphitized carbon consisting of spheres is doped with lithium.
JP2234295A 1990-09-04 1990-09-04 Manufacturing method of non-aqueous electrolyte secondary battery Expired - Fee Related JP2943287B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2234295A JP2943287B2 (en) 1990-09-04 1990-09-04 Manufacturing method of non-aqueous electrolyte secondary battery
US07/748,840 US5153082A (en) 1990-09-04 1991-08-23 Nonaqueous electrolyte secondary battery
GB9118380A GB2247771A (en) 1990-09-04 1991-08-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2234295A JP2943287B2 (en) 1990-09-04 1990-09-04 Manufacturing method of non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04115458A true JPH04115458A (en) 1992-04-16
JP2943287B2 JP2943287B2 (en) 1999-08-30

Family

ID=16968754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2234295A Expired - Fee Related JP2943287B2 (en) 1990-09-04 1990-09-04 Manufacturing method of non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2943287B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340670A (en) * 1992-06-01 1994-08-23 Kabushiki Kaisha Toshiba Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
EP0627776A3 (en) * 1993-05-14 1994-12-28 Sharp Kk
EP0688057A1 (en) 1994-06-15 1995-12-20 Kabushiki Kaisha Toshiba Lithium ion secondary battery
EP0698934A2 (en) 1994-07-29 1996-02-28 SHARP Corporation A method of manufacturing a negative electrode for lithium secondary battery
EP0713256A1 (en) 1994-10-27 1996-05-22 Sharp Kabushiki Kaisha Lithium secondary battery and process for preparing negative-electrode active material for use in the same
US5750282A (en) * 1995-06-07 1998-05-12 Duracell Inc. Process for improving lithium ion cell
US5965296A (en) * 1996-05-23 1999-10-12 Sharp Kabushiki Kaisha Nonaqueous secondary battery and a method of manufacturing a negative electrode active material
CN1046378C (en) * 1994-11-03 1999-11-10 北京有色金属研究总院 Carbon anode material for secondary lithium ion cell and prodn. method thereof
US6576369B1 (en) 1996-12-25 2003-06-10 Sumitomo Metal Industries, Ltd. Graphite powder suitable for negative electrode material of lithium ion secondary batteries
JP2005294028A (en) * 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Lithium secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340670A (en) * 1992-06-01 1994-08-23 Kabushiki Kaisha Toshiba Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
EP0627776A3 (en) * 1993-05-14 1994-12-28 Sharp Kk
US5432029A (en) * 1993-05-14 1995-07-11 Sharp Kabushiki Kaisha Lithium secondary battery
EP0688057A1 (en) 1994-06-15 1995-12-20 Kabushiki Kaisha Toshiba Lithium ion secondary battery
EP0698934A2 (en) 1994-07-29 1996-02-28 SHARP Corporation A method of manufacturing a negative electrode for lithium secondary battery
EP0713256A1 (en) 1994-10-27 1996-05-22 Sharp Kabushiki Kaisha Lithium secondary battery and process for preparing negative-electrode active material for use in the same
CN1046378C (en) * 1994-11-03 1999-11-10 北京有色金属研究总院 Carbon anode material for secondary lithium ion cell and prodn. method thereof
US5750282A (en) * 1995-06-07 1998-05-12 Duracell Inc. Process for improving lithium ion cell
US5965296A (en) * 1996-05-23 1999-10-12 Sharp Kabushiki Kaisha Nonaqueous secondary battery and a method of manufacturing a negative electrode active material
US6576369B1 (en) 1996-12-25 2003-06-10 Sumitomo Metal Industries, Ltd. Graphite powder suitable for negative electrode material of lithium ion secondary batteries
JP2005294028A (en) * 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Lithium secondary battery

Also Published As

Publication number Publication date
JP2943287B2 (en) 1999-08-30

Similar Documents

Publication Publication Date Title
JP4752244B2 (en) Layered lithium nickel manganese based composite oxide powder for lithium secondary battery positive electrode material, lithium secondary battery positive electrode using the same, and lithium secondary battery
EP0573266B1 (en) Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
US6379842B1 (en) Mixed lithium manganese oxide and lithium nickel cobalt oxide positive electrodes
US20070111102A1 (en) Negative electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery having the electrode, and method for producing negative electrode for non-aqueous electrolyte secondary batteries
WO2004001880A1 (en) Electrode and cell comprising the same
JPH04237971A (en) Nonaqueous electrolyte secondary battery
JPH10189044A (en) Nonaqueous electrolytic secondary battery
JP2017520892A (en) Positive electrode for lithium battery
JPH04115458A (en) Non-aqueous electrolyte secondary battery
JP2000053408A (en) Expanded graphite particle, its production, lithium secondary cell, its negative pole and negative pole material
JPH1131513A (en) Nonaqueous electrolyte secondary battery
JP3048808B2 (en) Non-aqueous electrolyte secondary battery
JPH0636760A (en) Nonaqueous electrolyte secondary battery
JPH06111818A (en) Carbon negative electrode for non-aqueous electrolyte secondary battery
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JPH07302594A (en) Carbonaceous particles and negative electrode for lithium ion secondary battery using the same
JPH04188559A (en) Non-aqueous electrolyte secondary battery
JP2004220801A (en) Nonaqueous electrolyte secondary battery
JPH10308236A (en) Nonaqueous electrolyte secondary battery
WO2002073731A1 (en) Battery
JPH0589879A (en) Lithium secondary battery
JP2000012017A (en) Graphite particle and manufacture therefor, negative electrode carbon material for lithium secondary battery, negative electrode for the lithium secondary battery, and lithium secondary battery
JPH07302593A (en) Carbon particle and negative electrode for nonaqueous secondary battery using this carbon particle
JPH08153512A (en) Electrode structure and battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees