JPH04111312A - Method and apparatus for fine processing - Google Patents
Method and apparatus for fine processingInfo
- Publication number
- JPH04111312A JPH04111312A JP2228017A JP22801790A JPH04111312A JP H04111312 A JPH04111312 A JP H04111312A JP 2228017 A JP2228017 A JP 2228017A JP 22801790 A JP22801790 A JP 22801790A JP H04111312 A JPH04111312 A JP H04111312A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- etching
- vacuum chamber
- microfabrication
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67069—Apparatus for fluid treatment for etching for drying etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/16—Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32623—Mechanical discharge control means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0838—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0866—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
- B29C2035/0872—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using ion-radiation, e.g. alpha-rays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0866—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
- B29C2035/0877—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using electron radiation, e.g. beta-rays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2079/00—Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
- B29K2079/08—PI, i.e. polyimides or derivatives thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/2001—Maintaining constant desired temperature
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Drying Of Semiconductors (AREA)
- ing And Chemical Polishing (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
この発明は、微細加工装置及び方法、特に、基板もしく
は基板上に形成された薄膜に弾性波を印加して微細加工
を行う装置及び方法に関するものである8
[従来の技術]
第5図は従来の微細加工装置例えばプラズマエツチング
装置の概略断面図である0図において、真空チャンバー
(1)内には微細加工される例えば半導体基板(2)が
配置されている。この半導体基板(2)は、例えば多結
晶シリコンF!1Mが表面に形成されかつ耐エツチング
マスクである7オトレジストパターンが多結晶シリコン
薄膜上に形成されたものである、この半導体基板(2)
は、高周波電源(3)に接続され高周波電力を供給する
試料台兼室fi(4)(以下、単に電極(4)とする)
上に載置されている。半導体基板(2)に対向した位置
には、反応性ガスであるエツチング材料ガス例えば塩素
ガスを半導体基板(2)に向けて均一に供給するための
ガスノズル(5〉が設けられた対向電極(6)が配置さ
れている。なお、真空チャンバー(1)には、真空チャ
ンバー(1)内を排気するための排気口(7)及びエツ
チング材料ガスを真空チャンバ(1)内に供給する反応
性ガス供給口(8)が設けられている。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a microfabrication device and method, particularly to a device and method for microfabrication by applying elastic waves to a substrate or a thin film formed on a substrate. 8 [Prior Art] FIG. 5 is a schematic cross-sectional view of a conventional microfabrication device, such as a plasma etching device. In FIG. is located. This semiconductor substrate (2) is, for example, polycrystalline silicon F! This semiconductor substrate (2) is one in which 1M is formed on the surface and a 7-photoresist pattern, which is an etching-resistant mask, is formed on a polycrystalline silicon thin film.
is a sample stage/chamber fi (4) connected to the high frequency power source (3) and supplying high frequency power (hereinafter simply referred to as electrode (4))
is placed on top. At a position facing the semiconductor substrate (2), a counter electrode (6) is provided with a gas nozzle (5) for uniformly supplying a reactive etching material gas such as chlorine gas toward the semiconductor substrate (2). ) is arranged in the vacuum chamber (1).The vacuum chamber (1) includes an exhaust port (7) for evacuating the inside of the vacuum chamber (1) and a reactive gas for supplying etching material gas into the vacuum chamber (1). A supply port (8) is provided.
従来の微細加工装置は上述したように構成され、微細加
工を行うには、まず、排気手段(図示しない)により真
空チャンバ(1)内を排気口(7)により排気しながら
、反応性ガス供給口(8)がらガスノズル(5)を介し
てエツチング材料ガスを真空チャンバー(1)内に導入
する0次に、高周波電源(3)により電極(4)及び対
向電極(6)間に高周波電圧を印加してグロー放電を生
じさせる。これにより、真空チャンバー(1)内に導入
されたエツチング材料ガスが活性化されてプラズマ(A
)を生じ、活性な中性分子、中性原子、イオンを発生さ
せることなる。これらの分子、原子、イオンによって半
導体基板(2)のエツチングが進行し、微細加工が行わ
れる。The conventional microfabrication apparatus is configured as described above, and in order to perform microfabrication, first, a reactive gas is supplied while the inside of the vacuum chamber (1) is evacuated through the exhaust port (7) by an exhaust means (not shown). Etching material gas is introduced into the vacuum chamber (1) through the gas nozzle (5) through the opening (8).Next, a high frequency voltage is applied between the electrode (4) and the counter electrode (6) by the high frequency power source (3). is applied to produce a glow discharge. As a result, the etching material gas introduced into the vacuum chamber (1) is activated and plasma (A
) and generate active neutral molecules, neutral atoms, and ions. Etching of the semiconductor substrate (2) progresses by these molecules, atoms, and ions, and microfabrication is performed.
[発明が解決しようとする課題]
上述したような従来の微細加工技術には、以下のような
問題点がある。[Problems to be Solved by the Invention] The conventional microfabrication techniques described above have the following problems.
(1)エツチング速度の均一性
従来の技術では、エツチングに寄与する活性化されたハ
ロゲンガス又はイオン等の空間分布が生じるために、特
に大口径化されたエツチング試料に対してエツチング速
度の面内分布が生じ、この面内分布を低減するためにエ
ツチングチャンバーの大型化が必要であるという問題点
があった。(1) Uniformity of etching rate In conventional techniques, the in-plane etching rate is particularly high for large-diameter etching samples because a spatial distribution of activated halogen gas or ions that contribute to etching occurs. There is a problem in that the etching chamber needs to be enlarged in order to reduce this in-plane distribution.
(2)下地膜とのエツチング選択性
従来の技術では、エツチングに荷電粒子等のエッチャン
トを加速させた状態で被加工試料に照射させるので、エ
ツチング面に照射損傷を与えるのみならず、下地エツチ
ング阻止層との選択性も十分に得ることができない。(2) Etching selectivity with respect to the underlying film In conventional techniques, the sample to be processed is irradiated with an etchant such as charged particles in an accelerated state, which not only damages the etched surface but also prevents the etching of the underlying film. It is also not possible to obtain sufficient selectivity between the layers.
(3)マイクロローディング効果による微細パターンの
エツチング速度の低下
従来の技術では、エッチャントの方向性が悪いために微
細パターン間隔でのエッチャントの供給が減少し、エツ
チング速度が減少する。また、エツチング時に形成され
るエツチングパターン側壁への反応生成物の付着の程度
においてもパターンサイズ依存性が発生し、異方性エツ
チングプロフィールのパターンサイズ依存性が問題とな
っている。(3) Decreased etching speed of fine patterns due to microloading effect In the conventional technology, due to poor etchant directionality, the supply of etchant at intervals between fine patterns decreases, and the etching speed decreases. Furthermore, pattern size dependence occurs in the degree of adhesion of reaction products to the sidewalls of etching patterns formed during etching, and the pattern size dependence of anisotropic etching profiles poses a problem.
(4)上述の問題に起因して、微細加エバターンによっ
て形成された能動素子の諸特性が劣化するという問題点
があった。(4) Due to the above-mentioned problems, there is a problem in that various characteristics of active elements formed by micro-machined evaturns deteriorate.
この発明は、このような問題点を解決するためになされ
たもので、エツチング圧力を下げることなく、かつエツ
チング速度を低下させずに良好な微細加工が可能で、か
つ良質なパターン形成が可能な微細加工装置及び方法を
得ることを目的とする。This invention was made to solve these problems, and it is possible to perform fine microfabrication without lowering the etching pressure or slowing down the etching speed, and to form a high-quality pattern. The purpose is to obtain a microfabrication device and method.
[課題を解決するための手段]
この発明の請求項(1)に係る微細加工装置は、試料を
載置する試料台兼電極の裏面に、弾性波発生手段を設け
たものである。[Means for Solving the Problems] A microfabrication apparatus according to claim (1) of the present invention is one in which an elastic wave generating means is provided on the back surface of a sample stage/electrode on which a sample is placed.
また、この発明の請求項(2)に係る微細加工方法は、
弾性波発生手段により試料に弾性波を印加しながら微細
加工を行うものである。Further, the microfabrication method according to claim (2) of the present invention includes:
Microfabrication is performed while applying elastic waves to the sample using an elastic wave generating means.
[作 用]
この発明による微細加工袋!及び方法においては、電極
に弾性波を印加して試料に弾性波を励起させながら微細
加工を行うので、良好な微細加工が可能であり、かつ良
好な加工特性を得ることができる。[Function] Microfabricated bag according to this invention! In this method, since microfabrication is performed while applying elastic waves to the electrodes and exciting the elastic waves in the sample, good microfabrication is possible and good machining characteristics can be obtained.
[実施例]
従来の基板等の微細加工においては、高周波、マイクロ
波、光エネルギー、エネルギービーム等を応用した技術
は既に発明されていたが、弾性波を応用したものはない
、以下に弾性波を応用した微細加工について説明する。[Example] In conventional microfabrication of substrates, etc., technologies that apply high frequencies, microwaves, optical energy, energy beams, etc. have already been invented, but none that apply elastic waves. We will explain microfabrication that applies this.
この発明による微細加工装置及び方法では、以下に示す
弾性波が物質に及ぼす影響を利用している。The microfabrication apparatus and method according to the present invention utilizes the following effects of elastic waves on materials.
(1)弾性波による物質の加熱
弾性波はその伝播の過程において、一般に媒質との相互
作用により減衰する。減衰により失われた波のエネルギ
ーは熱エネルギーとなり媒質を加熱し、温度の上昇をも
たらす、上記の波の減衰による単位体積当たりのエネル
ギー損失は、減衰係数が同一であれば、波の振幅が大き
いほど大きくなる。特に、共振構造が存在するとき、そ
の構造部において振幅が充分大きい定在波が励起され、
局所的に大きなエネルギー損失をもたらす。これにより
、局所加熱も可能となる。(1) Heating of materials by elastic waves During the propagation process, elastic waves are generally attenuated by interaction with a medium. The wave energy lost due to attenuation becomes thermal energy and heats the medium, leading to a rise in temperature.The energy loss per unit volume due to wave attenuation described above is: If the attenuation coefficient is the same, the amplitude of the wave is large. The larger it becomes. In particular, when a resonant structure exists, a standing wave with a sufficiently large amplitude is excited in the structure,
This results in large local energy losses. This also enables local heating.
被加工物を加熱し温度を上昇させることによる微細加工
特性における効果は、次のようなことが期待される。−
船釣なものとしては、■熱反応の促進による微細加工速
度の上昇、■局所的加熱における化学反応の違いによる
エツチング選択性の向上、■微細パターン内部へのエッ
チャントの侵入が容易になることによる微細加工性の向
上などがある。これらの作用により、微細加工性の改善
が可能となる。The following effects on microfabrication characteristics are expected by heating the workpiece and increasing the temperature. −
For boat fishing, ■Increase in microfabrication speed due to promotion of thermal reaction, ■Improvement in etching selectivity due to differences in chemical reactions during local heating, and ■Etchant penetration into the inside of fine patterns becomes easier. Improvements in microprocessability, etc. These effects make it possible to improve microprocessability.
(2)弾性波による物質の移動
弾性波は、物質の力学的平衡点からの移動により発生す
る平衡点への復元力により物質が動くことに因っている
ものであり、波が存在していることは、物質の変位が存
在していることと同義である。微細加工中のエツチング
に寄与する物質に弾性波が励起されているとき、その表
面の波長に比べ小さい領域は、波の進行方向、変化ベク
トルと波数ベクトルのなす角に依存するが、垂直な方向
、もしくは表面に接する方向に周期的な移動を行う。(2) Movement of matter due to elastic waves Elastic waves are caused by the movement of matter due to the restoring force to the equilibrium point that is generated by the movement of matter from its mechanical equilibrium point. The existence of a substance is synonymous with the existence of a displacement of matter. When elastic waves are excited in a material that contributes to etching during microfabrication, the region smaller than the wavelength of the surface depends on the direction of wave propagation and the angle between the change vector and the wave number vector, but in the vertical direction , or perform periodic movement in the direction tangent to the surface.
このような移動によって、微細加工特性は次のように改
善される。入射粒子の速度に比べ弾性波によって励起さ
れた速度が大きいときは、入射粒子の相対速度が大きく
なり、入射粒子の運動量が大きくなることにより、■微
細加工速度の上昇、■入射粒子の方向性の改善による加
工形状の向上、■微細パターン内部へのエッチャントの
侵入が容易になることによる微細加工性の向上、■段差
部の絶対膜厚の厚い領域のエツチングオフ性の向上、■
反応生成物が弾性波によって振動されることによる脱離
の促進向上などがある。これらの作用により、微細加工
性の改善が可能となる。Such movement improves the microfabrication characteristics as follows. When the velocity excited by the elastic wave is greater than the velocity of the incident particle, the relative velocity of the incident particle increases, and the momentum of the incident particle increases, resulting in ■increased microfabrication speed, and ■direction of the incident particle. ■Improvement of microfabrication by making it easier for etchant to penetrate into the fine pattern, ■Improvement of etch-off performance in areas with thick absolute film thickness at step portions, ■
This includes promotion and improvement of desorption due to the reaction products being vibrated by elastic waves. These effects make it possible to improve microprocessability.
(3)弾性波による物質の凝縮
弾性波によって微細な粒子だけが動かされ、衝突の機会
が増加するため、エッチャントの凝集や、プラズマ中で
のエッチャントの解離を促進するので、微細加工特性は
次のように改善される。■エッチャント密度の増加によ
る微細加工速度の上昇、■通常の放電作用によらない解
離現象によってエッチャントの種類を変化させることが
できるので、選択微細加工などが可能となる。これらの
作用により、微細加工性の改善が可能となる。(3) Condensation of matter caused by elastic waves Only minute particles are moved by elastic waves, increasing the chance of collision, which promotes etchant aggregation and etchant dissociation in the plasma, resulting in the following microfabrication characteristics: improved as follows. ■Increasing the microfabrication speed by increasing the etchant density; ■Since the type of etchant can be changed by a dissociation phenomenon that is not caused by the normal discharge action, selective microfabrication becomes possible. These effects make it possible to improve microprocessability.
次に、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による微細加工装置例えばプラ
ズマエツチング装置を示す概略図であり、(1)〜(8
)は上述した従来の微細加工装置におけるものと全く同
一である。この発明においては、弾性波発生手段(9)
として、弾性波の周波数が10KHz以上のいわゆる超
音波領域の波を発生させる超音波発生源を用いる。すな
わち、超音波発生源として、圧電振動子、電歪振動子、
磁歪振動子等を(試料台兼)を極(4)の裏面に物理的
に接続する。Next, an embodiment of the present invention will be described with reference to the drawings. 1st
The figure is a schematic diagram showing a microfabrication apparatus, such as a plasma etching apparatus, according to an embodiment of the present invention.
) is exactly the same as that in the conventional microfabrication apparatus described above. In this invention, elastic wave generating means (9)
As such, an ultrasonic generation source is used that generates waves in the so-called ultrasonic region with an elastic wave frequency of 10 KHz or more. That is, piezoelectric vibrators, electrostrictive vibrators,
Physically connect a magnetostrictive vibrator or the like (also serving as a sample stage) to the back surface of the pole (4).
第2図は第1図に示したプラズマエツチング装置により
半導体基板上の多結晶シリコン膜をエツチングしたとき
の断面形状を示している0図において、半導体基板(2
)の基材(1o)上にはシリコン酸化膜(11)が形成
されており、シリコン酸化膜(11)上には被加工膜で
ある多結晶シリコン膜(12)が形成されている。さら
に、多結晶シリコン膜(12)上には、耐エツチングマ
スクとして写真製版工程でパターン形成されたフォトレ
ジスト膜(13)が形成されている。また、第3図は、
弾性波発生手段(9)が設けられていない従来の微細加
工装置を用いた場合の第2図と同様な半導体基板(2)
の断面形状を示している。Figure 2 shows the cross-sectional shape of a polycrystalline silicon film on a semiconductor substrate etched by the plasma etching apparatus shown in Figure 1.
) A silicon oxide film (11) is formed on the base material (1o), and a polycrystalline silicon film (12), which is a film to be processed, is formed on the silicon oxide film (11). Further, on the polycrystalline silicon film (12), a photoresist film (13) patterned by a photolithography process is formed as an etching-resistant mask. Also, Figure 3 shows
A semiconductor substrate (2) similar to that shown in FIG. 2 when using a conventional microfabrication device that is not provided with an elastic wave generating means (9).
The cross-sectional shape is shown.
上述したように構成された微細加工装置を用いる微細加
工方法では、まず、被加工物である半導体基板(2)を
電極(4)上に載置する。次に、排気口(7)より真空
チャンバ(1)内を排気しながら、ガスノズル(5)か
ら反応性ガスである工・ンチング材料ガスを真空チャン
バ(1)内に導入する。さらに、高周波電源(3)によ
り電極(4)及び対抗電極(6)間に高周波電圧を印加
することによりグロー放電を生じ、真空チャンバ(1)
内に導入された工・ンチング材料ガスは活性化されてプ
ラズマ化し、活性な中性分子、中性原子、イオンを発生
させることなる。これらの分子、原子、イオンによって
半導体基板(2)のエツチングが進行し微細加工が行わ
れる。In the microfabrication method using the microfabrication apparatus configured as described above, first, a semiconductor substrate (2) as a workpiece is placed on an electrode (4). Next, while evacuating the inside of the vacuum chamber (1) through the exhaust port (7), a reactive gas, ie, a cutting material gas, is introduced into the vacuum chamber (1) through the gas nozzle (5). Furthermore, a glow discharge is generated by applying a high frequency voltage between the electrode (4) and the counter electrode (6) by the high frequency power source (3), and the vacuum chamber (1) is
The processing/etching material gas introduced into the chamber is activated and turned into plasma, generating active neutral molecules, neutral atoms, and ions. Etching of the semiconductor substrate (2) progresses by these molecules, atoms, and ions, and microfabrication is performed.
この時さらに、超音波発生源により超音波を発生させ、
半導体基板(2)が載置されている電極(4)に超音波
を印加し、これにより半導体基板(2)に超音波が励起
される。この時、上述した弾性波による物質の加熱、移
動及び凝縮の各作用により、半導体基板(2)の表面に
入射するイオン等は超音波で励起されていない場合に比
べ大きな運動量を持ち、かつ第2図に示すように微細パ
ターンの中まで進入することができる。従って、工・ン
チング圧力及び工・・Iチング速度を低下することなく
、半導体基板(2)の微細加工性が向上し、良質なパタ
ーン形成が可能となる。これに対し、超音波発生源を使
用しない第3図に示した場合て一+i、エツチング圧力
を低くして活性なイオンの平均寿命を長くし、かつ方向
性の良いイオンで工・ンチングを行ったとしても、イオ
ンが微細ノ(ターンの中まで充分に進入せず、良好な微
細加工を行うことができない。At this time, an ultrasonic wave is further generated by the ultrasonic generating source,
Ultrasonic waves are applied to the electrode (4) on which the semiconductor substrate (2) is placed, thereby exciting the ultrasonic waves in the semiconductor substrate (2). At this time, due to the above-mentioned effects of heating, movement, and condensation of the substance by the elastic waves, the ions, etc. that are incident on the surface of the semiconductor substrate (2) have a larger momentum than in the case where they are not excited by the ultrasonic waves. As shown in Figure 2, it is possible to penetrate into the fine pattern. Therefore, the fine machinability of the semiconductor substrate (2) is improved and high-quality pattern formation is possible without reducing the etching pressure and etching speed. On the other hand, in the case shown in Figure 3 which does not use an ultrasonic source, the etching pressure is lowered to lengthen the average life of active ions, and etching is performed using ions with good directionality. Even if it were, the ions would not penetrate sufficiently into the fine holes (turns), making it impossible to perform good fine processing.
なお、上述した実施例では、弾性波発生手段(9)を試
料台兼電極(4)の裏面に設けたが、第4図に示すよう
に、対向電極(6)の裏面に弾性波発生手段(14)を
設けてもよく、上述と同様の効果を奏する。In the above embodiment, the elastic wave generating means (9) was provided on the back surface of the sample stage/electrode (4), but as shown in FIG. (14) may also be provided, and the same effect as described above can be achieved.
また、上述した実施例では、微細加工方法としてプラズ
マエツチング法について説明したが、反応性イオンエツ
チング法、磁場支援型反応性イオンエツチング法、電子
サイクロトロンプラズマエ・ンチング法、中性ビームエ
ツチング法、光励起工・ンチング法、光支援型エツチン
グ法又は物理的イオンエツチング法にも同様に適用でき
る。In the above embodiments, plasma etching was explained as a microfabrication method, but reactive ion etching, magnetic field assisted reactive ion etching, electron cyclotron plasma etching, neutral beam etching, optical excitation etching It is equally applicable to etching, photo-assisted etching or physical ion etching.
また、被微細加工膜としてシリコン酸化膜(11)を使
用したが、シリコン窒化膜、シリコン酸化窒化膜であっ
てもよく、多結晶シリコン膜(12)の代わりに単結晶
シリコン膜を用いてもよい。Further, although the silicon oxide film (11) is used as the film to be microfabricated, it may be a silicon nitride film, a silicon oxynitride film, or a single crystal silicon film may be used instead of the polycrystalline silicon film (12). good.
さらに、被微細加工膜は、タングステン、タンタル、モ
リブデン、ジルコニウム、チタン、ハフニウム、クロム
、白金、鉄、亜鉛又はスズ、及びこれらのケイ化物もし
くは窒化物もしくは炭化物アルミニウム、銅、金、銀、
及びこれらを主成分とする合金;ノボラック系樹脂、ポ
リイミドなどの有機高分子材料のいずれの膜であっても
よい。Furthermore, the film to be microfabricated may include tungsten, tantalum, molybdenum, zirconium, titanium, hafnium, chromium, platinum, iron, zinc, or tin, and their silicides, nitrides, or carbides, aluminum, copper, gold, silver,
and alloys containing these as main components; films of organic polymer materials such as novolac resins and polyimides may be used.
また、被微細加工膜は、PZT (鉛・亜鉛 スズ)な
どの強誘電体、酸化物超電導体を含む超電導体、又は強
磁性体であってもよい。Further, the film to be microfabricated may be a ferroelectric material such as PZT (lead/zinc tin), a superconductor including an oxide superconductor, or a ferromagnetic material.
上述した実施例では、試料すなわち被加工物質として、
半導体集積回路製造過程にある半導体基板(2)上に形
成されている薄膜について説明したが、磁気記憶装置に
おいて用いられる磁気テープ、磁気ディスク等の記憶素
子形成過程の基材、光応用記憶装置において用いられる
光ディスク等の記憶素子形成過程の基材、金属整形物も
しくはその表面に微細加工形成された薄膜、又はネジ等
の機械要素もしくは加工用工具であってもよい。In the embodiments described above, the sample, that is, the material to be processed,
Although we have explained the thin film formed on the semiconductor substrate (2) in the manufacturing process of semiconductor integrated circuits, it is also used as a base material in the process of forming storage elements such as magnetic tapes and magnetic disks used in magnetic storage devices, and in optical storage devices. It may be a base material used in the process of forming a storage element such as an optical disk, a formed metal object or a thin film microfabricated on the surface thereof, or a mechanical element such as a screw or a processing tool.
[発明の効果コ
この発明による微細加工装置及び方法は、以上説明した
とおり、試料を載置した電極に弾性波を印加しながら微
細加工を行うので、エツチング圧力を下げることなく、
かつエツチング速度を低下させることなく良好な微細加
工が可能であり、かつ良質なパターン形成が可能で加工
特性も良好であるという効果を奏する。[Effects of the Invention] As explained above, the microfabrication apparatus and method according to the present invention performs microfabrication while applying elastic waves to the electrode on which the sample is placed, so that the microfabrication device and method according to the present invention perform microfabrication without reducing the etching pressure.
In addition, it is possible to perform fine microfabrication without reducing the etching speed, and also to form a high-quality pattern and have good processing characteristics.
第1図はこの発明の一実施例によるプラズマエツチング
装置を示す概略断面図、第2図は第1図に示した装置に
よりエツチングを行った半導体基板の側面断面図、第3
図は従来のプラズマエツチング装置によりエツチングを
行った半導体基板の側面断面図、第4図はこの発明の他
の実施例によるプラズマエンチング装置の概略断面図、
第5図は従来のプラズマエツチング装置の概略断面図で
ある。
図において、〈1)は真空チャンバ、(2)は半導体基
板、(3)は高周波電源、(4)は試料台兼電極、(5
)はガスノズル、(6)は対向電極、(7)は排気口、
(8)は反応性ガス供給口、(9)、(14)は弾性波
発生手段、(10)は基材、(11)はシリコン酸化膜
、(12)は多結晶シリコン膜、(13)はフォトレジ
スト膜である。
なお、各図中、同一符号は同一または相当部分を示す。FIG. 1 is a schematic cross-sectional view showing a plasma etching apparatus according to an embodiment of the present invention, FIG. 2 is a side cross-sectional view of a semiconductor substrate etched by the apparatus shown in FIG. 1, and FIG.
The figure is a side cross-sectional view of a semiconductor substrate etched by a conventional plasma etching apparatus, and FIG. 4 is a schematic cross-sectional view of a plasma etching apparatus according to another embodiment of the present invention.
FIG. 5 is a schematic cross-sectional view of a conventional plasma etching apparatus. In the figure, (1) is a vacuum chamber, (2) is a semiconductor substrate, (3) is a high frequency power supply, (4) is a sample stage and electrode, (5)
) is the gas nozzle, (6) is the counter electrode, (7) is the exhaust port,
(8) is a reactive gas supply port, (9) and (14) are elastic wave generating means, (10) is a base material, (11) is a silicon oxide film, (12) is a polycrystalline silicon film, (13) is a photoresist film. In each figure, the same reference numerals indicate the same or corresponding parts.
Claims (2)
供給手段と、 上記真空チャンバ内で上記反応性ガスのプラズマを発生
させるプラズマ発生手段と、 上記真空チャンバ内に配置され、試料を載置すると共に
上記プラズマ発生手段に接続され電極となる試料台兼電
極と、 この試料台兼電極の裏面に設けられた弾性波発生手段と
、 上記真空チャンバ内を排気する排気手段とを備えたこと
を特徴とする微細加工装置。(1) a vacuum chamber; a reactive gas supply means for supplying a reactive gas into the vacuum chamber; and a plasma generation means for generating plasma of the reactive gas in the vacuum chamber; disposed within the vacuum chamber. a sample stand/electrode on which a sample is placed and which is connected to the plasma generating means and serves as an electrode; an elastic wave generating means provided on the back side of the sample stand/electrode; and an exhaust means for evacuating the inside of the vacuum chamber. A microfabrication device characterized by comprising:
電極上に載置し、 上記真空チャンバ内を所定の真空度まで排気し、上記真
空チャンバ内に反応性ガスを供給し、上記試料台兼電極
及びプラズマ発生手段により上記反応性ガスのプラズマ
を上記真空チャンバ内に発生させ、次いで 上記試料台兼電極の裏面に設けられた弾性波発生手段に
より試料に弾性波を印加しながら微細加工を行うことを
特徴とする微細加工方法。(2) Place the sample to be microfabricated on a sample stand and electrode in a vacuum chamber, evacuate the vacuum chamber to a predetermined degree of vacuum, supply a reactive gas into the vacuum chamber, and Plasma of the reactive gas is generated in the vacuum chamber by the stage/electrode and the plasma generating means, and then microfabrication is performed while applying elastic waves to the sample by the elastic wave generating means provided on the back side of the sample stage/electrode. A microfabrication method characterized by performing.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2228017A JPH04111312A (en) | 1990-08-31 | 1990-08-31 | Method and apparatus for fine processing |
KR1019910014633A KR920005270A (en) | 1990-08-31 | 1991-08-23 | Micro Processing Apparatus and Method |
DE4128780A DE4128780A1 (en) | 1990-08-31 | 1991-08-29 | Fine structure formation appts. - for plasma etching of substrates or layers comprising vacuum chamber, gas supply, plasma generator, holder, etc. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2228017A JPH04111312A (en) | 1990-08-31 | 1990-08-31 | Method and apparatus for fine processing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04111312A true JPH04111312A (en) | 1992-04-13 |
Family
ID=16869887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2228017A Pending JPH04111312A (en) | 1990-08-31 | 1990-08-31 | Method and apparatus for fine processing |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPH04111312A (en) |
KR (1) | KR920005270A (en) |
DE (1) | DE4128780A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6268264B1 (en) * | 1998-12-04 | 2001-07-31 | Vanguard International Semiconductor Corp. | Method of forming shallow trench isolation |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04142734A (en) * | 1990-10-03 | 1992-05-15 | Mitsubishi Electric Corp | Fine processing device and method |
US5228940A (en) * | 1990-10-03 | 1993-07-20 | Mitsubishi Denki Kabushiki Kaisha | Fine pattern forming apparatus |
US6635577B1 (en) | 1999-03-30 | 2003-10-21 | Applied Materials, Inc | Method for reducing topography dependent charging effects in a plasma enhanced semiconductor wafer processing system |
SG93862A1 (en) * | 1999-03-30 | 2003-01-21 | Applied Materials Inc | Method for reducing topography dependent charging effects in a plasma enhanced semiconductor wafer processing system |
KR100364073B1 (en) * | 2000-03-24 | 2002-12-11 | 주식회사 기림세미텍 | Plasma etching apparatus and method for etching thereof |
KR102779927B1 (en) * | 2018-11-30 | 2025-03-10 | 어플라이드 머티어리얼스, 인코포레이티드 | Methods for patterning metal layers |
JP2021017602A (en) * | 2019-07-17 | 2021-02-15 | コニカミノルタ株式会社 | Manufacturing method of microstructure, and manufacturing apparatus of microstructure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS594025A (en) * | 1982-06-30 | 1984-01-10 | Hitachi Ltd | Treating method with plasma |
JPH02122625A (en) * | 1988-11-01 | 1990-05-10 | Toshiba Corp | Manufacture of semiconductor device and its apparatus |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3900768C1 (en) * | 1989-01-12 | 1990-02-22 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De | Plasma etching device and method for operating it |
DE4010672A1 (en) * | 1990-04-03 | 1991-10-10 | Leybold Ag | Reactive ion etching process - useful for rapid anisotropic etching of masked semiconductor substrates |
-
1990
- 1990-08-31 JP JP2228017A patent/JPH04111312A/en active Pending
-
1991
- 1991-08-23 KR KR1019910014633A patent/KR920005270A/en not_active IP Right Cessation
- 1991-08-29 DE DE4128780A patent/DE4128780A1/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS594025A (en) * | 1982-06-30 | 1984-01-10 | Hitachi Ltd | Treating method with plasma |
JPH02122625A (en) * | 1988-11-01 | 1990-05-10 | Toshiba Corp | Manufacture of semiconductor device and its apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6268264B1 (en) * | 1998-12-04 | 2001-07-31 | Vanguard International Semiconductor Corp. | Method of forming shallow trench isolation |
Also Published As
Publication number | Publication date |
---|---|
DE4128780A1 (en) | 1992-03-05 |
KR920005270A (en) | 1992-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5753066A (en) | Plasma source for etching | |
JP5205378B2 (en) | Method and system for controlling the uniformity of a ballistic electron beam by RF modulation | |
JP3171222B2 (en) | Microwave plasma processing equipment | |
JP2000173993A (en) | Plasma processing apparatus and etching method | |
JPH0426208B2 (en) | ||
JPH04111312A (en) | Method and apparatus for fine processing | |
JPH04111313A (en) | Method and apparatus for fine processing | |
US5277740A (en) | Apparatus and method for forming a fine pattern | |
JPH0845903A (en) | Plasma etching method | |
JPH0312921A (en) | Method and apparatus for etching | |
JP3164195B2 (en) | Microwave plasma processing equipment | |
JPS5841658B2 (en) | dry etching equipment | |
JPH04186619A (en) | Manufacture of semiconductor | |
JP2851765B2 (en) | Plasma generation method and apparatus | |
JP3164188B2 (en) | Plasma processing equipment | |
JPS59139628A (en) | Dry etching device | |
JPH02312231A (en) | Dryetching device | |
JP3220631B2 (en) | Plasma processing method and apparatus | |
JP3252542B2 (en) | Frequency adjustment method of piezoelectric element | |
JPS62249420A (en) | plasma processing equipment | |
JPH11340212A (en) | Surface wave plasma etching apparatus | |
JP2000012529A (en) | Surface processing equipment | |
JP3067375B2 (en) | Plasma processing apparatus and plasma processing method | |
JPH01179324A (en) | Microwave plasma treatment method | |
JPH05291155A (en) | Plasma processing device |