[go: up one dir, main page]

JPH0382055A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0382055A
JPH0382055A JP1218282A JP21828289A JPH0382055A JP H0382055 A JPH0382055 A JP H0382055A JP 1218282 A JP1218282 A JP 1218282A JP 21828289 A JP21828289 A JP 21828289A JP H0382055 A JPH0382055 A JP H0382055A
Authority
JP
Japan
Prior art keywords
insulating film
film
region
conductive film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1218282A
Other languages
Japanese (ja)
Inventor
Takehide Shirato
猛英 白土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1218282A priority Critical patent/JPH0382055A/en
Publication of JPH0382055A publication Critical patent/JPH0382055A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To make finer element regions, improve withstand voltage of a gate oxide film, improve carrier life and obtain higher speed by forming an element separating region from a first insulating film provided selectively, an electrically conductive film provided directly above it to which a fixed voltage is applied, and a second insulating film provided on their side surfaces. CONSTITUTION:An element separating region is formed from a first insulating film 4 provided selectively, an electrically conductive film 5 provided directly above it to which a fixed voltage is applied, and a second insulating film 6 provided on the side surfaces of the first insulating film 4 and the conductive film 5. For example, the first insulating film 4 and the conductive film 5 are selectively provided on a p-type silicon substrate 1, and the second insulating film 6 is provided on the side surfaces of the first insulating film 4 and the conductive film 5 by RIE process in self-aligning manner to form the element separating region from the first insulating film 4, the conductive film 5 and the second insulating film 6. The fixed voltage, which does not provide field inversion, is applied to the conductible film 5 and a channel stopper region is not formed.

Description

【発明の詳細な説明】 [概 要] 半導体基板上に設けられる素子分離領域が、選択的に設
けられた第1の絶縁膜、前記第1の絶縁膜の直上部に設
けられた固定電圧が与えられた導電膜及び前記第1の絶
縁膜と前記導電膜の側壁にRIE (反応性イオンエツ
チング)法によりセルファラインに設けられた第2の絶
縁膜とにより形成された構造を有しているためバーズビ
ークの存在しない構造に形成できることによる素子領域
の微細化、ゲート酸化膜耐圧の改善及びキャリア寿命の
改善を、第1の絶縁膜及び導電膜の段差を側壁に形成す
る第2の絶縁膜で緩和できることによるステップカバレ
ッジの良い配線体の形成を、チャネルストッパー領域の
未形成あるいはソースドレイン領域との分離形成により
接合容量を減少させることによる高速化を、接合耐圧を
増大させることによる高機能化を可能とした半導体装置
[Detailed Description of the Invention] [Summary] An element isolation region provided on a semiconductor substrate includes a first insulating film selectively provided, and a fixed voltage provided directly above the first insulating film. The conductive film has a structure formed by a given conductive film, the first insulating film, and a second insulating film provided in a self-line by an RIE (reactive ion etching) method on the sidewall of the conductive film. Therefore, miniaturization of the device area, improvement of gate oxide film breakdown voltage, and improvement of carrier life by forming a structure without bird's beak can be achieved by forming a second insulating film on the sidewall of the step between the first insulating film and the conductive film. It is possible to form wiring bodies with good step coverage by reducing the stress, increase speed by reducing the junction capacitance by not forming a channel stopper region or forming it separated from the source and drain regions, and improve functionality by increasing the junction breakdown voltage. The semiconductor device that made this possible.

[産業上の利用分野] 本発明はMIS型半導体装置に係り、特に、リークを低
減させたバーズビークのない素子分離領域を有する高集
積な半導体集積回路の形成を可能とした半導体装置に関
する。
[Industrial Application Field] The present invention relates to an MIS type semiconductor device, and more particularly to a semiconductor device that enables the formation of a highly integrated semiconductor integrated circuit having an element isolation region with reduced leakage and no bird's beak.

従来、半導体集積回路の素子分離領域の形成は、LOC
O8法によるフィールド酸化膜の形成及びフィールド酸
化膜下へのセルファラインによるチャネルストッパー領
域の形成によりなされてきたが、極めて集積度が上昇し
ている今日、LOCOS法により必ず生じてしまうスト
レスを誘引するバーズビークにより、素子形成領域の微
細化が難しい、薄膜化されたゲート酸化膜の耐圧が劣化
する、エレクトロン又はホールの容易なトラップにより
寿命が劣化する、あるいは高濃度のチャネルストッパー
領域とソースドレイン領域が接触するため接合容量が増
大する、接合耐圧が劣化する等の問題が顕著になってき
ており、高集積化への妨げになりつつある。そこでバー
ズビークが存在せず、素子特性が劣化しない高集積な素
子分離を実現できる手段が要望されている。
Conventionally, the formation of element isolation regions in semiconductor integrated circuits has been carried out using LOC.
This has been done by forming a field oxide film using the O8 method and forming a channel stopper region using a self-line under the field oxide film, but in today's world where the degree of integration is increasing significantly, the LOCOS method inevitably induces stress. Bird's beaks make it difficult to miniaturize the device formation region, deteriorate the withstand voltage of a thinned gate oxide film, shorten the lifespan due to easy trapping of electrons or holes, or cause problems in the highly concentrated channel stopper region and source/drain region. Problems such as an increase in junction capacitance due to contact and a deterioration of junction breakdown voltage are becoming more prominent, and these problems are becoming a hindrance to higher integration. Therefore, there is a need for a means that can realize highly integrated device isolation without bird's beak and without deterioration of device characteristics.

[従来の技術] 第5図は従来の半導体装置の模式側断面図である。51
はp−型シリコン(Si)基板、52はp型ウェル領域
、53はp型チャネルストッパー領域、54はフィール
ド酸化膜、55はn生型ソースドレイン領域、56はゲ
ート酸化膜、57はゲート電極、58はブロック用酸化
膜、59は燐珪酸ガラス(PSG)膜、60はA1配線
を示している。
[Prior Art] FIG. 5 is a schematic side sectional view of a conventional semiconductor device. 51
52 is a p-type silicon (Si) substrate, 52 is a p-type well region, 53 is a p-type channel stopper region, 54 is a field oxide film, 55 is an n-type source drain region, 56 is a gate oxide film, and 57 is a gate electrode. , 58 is a block oxide film, 59 is a phosphosilicate glass (PSG) film, and 60 is an A1 wiring.

同図においては、p−型シリコン(Si)基板51に選
択的にp型ウェル領域52が設けられており、前記p型
ウェル領域52にはNチャネルトランジスタが選択的に
形成されている。素子分離領域は窒化膜を使用した選択
酸化による、いわゆるLOCO8法によるフィールド酸
化膜の形成及びフィールド酸化膜下へのセルファライン
によるチャネルストッパー領域の形成により構成されて
おり、ストレスを内在するバーズビークが存在している
。LOCO8法によれば、素子分離領域の段差をバーズ
ビークにより緩和でき、ステップカバレッジの良い配線
体を形成できるという利点を持つが、−方、このバーズ
ビークの存在により、素子形成領域の微細化が難しい、
薄膜化されたゲート酸化膜の耐圧が劣化する、エレクト
ロン又はホールの容易なトラップにより寿命が劣化する
等の欠点がある。又、フィールド酸化膜下へのセルファ
ラインによるチャネルストッパー領域の形成によりソー
スドレイン領域はチャネルストッパー領域と必ず接触し
てしまうため、接合容量が増大することにより高速化に
難があること、接合耐圧が劣化するため高電圧駆動を可
能とする高機能化が難しいこと等の欠点もある。
In the figure, a p-type well region 52 is selectively provided on a p-type silicon (Si) substrate 51, and an N-channel transistor is selectively formed in the p-type well region 52. The element isolation region is constructed by forming a field oxide film by selective oxidation using a nitride film, the so-called LOCO8 method, and forming a channel stopper region by self-alignment under the field oxide film, and there is a bird's beak with inherent stress. are doing. The LOCO8 method has the advantage that the step difference in the element isolation region can be alleviated by the bird's beak, and a wiring body with good step coverage can be formed.However, the existence of the bird's beak makes it difficult to miniaturize the element forming region.
There are disadvantages such as the breakdown voltage of the thinned gate oxide film deteriorates and the lifetime deteriorates due to easy trapping of electrons or holes. In addition, due to the formation of the channel stopper region by self-alignment under the field oxide film, the source/drain region is always in contact with the channel stopper region, which increases the junction capacitance, making it difficult to increase the speed, and reducing the junction breakdown voltage. There are also drawbacks, such as the fact that it is difficult to improve functionality to enable high-voltage driving because of deterioration.

[発明が解決しようとする問題点] 本発明が解決しようとする問題点は、従来例に示される
ように、LOCO8法によるバーズビークの存在により
、素子形成領域の微細化が難しかったこと、薄膜化され
たゲート酸化膜の耐圧が劣化すること、エレクトロン又
はホールの容易なトラップにより寿命が劣化すること等
の改善ができなかったこと及びソースドレイン領域とチ
ャネルストッパー領域の接触により、接合容量が増大し
てしまうために高速化が、接合耐圧が劣化してしまうた
めに高電圧駆動を可能とする高機能化が難しかったこと
である。
[Problems to be Solved by the Invention] The problems to be solved by the present invention are that, as shown in the conventional example, it is difficult to miniaturize the element formation region due to the presence of bird's beaks in the LOCO8 method, and it is difficult to reduce the thickness of the film. It was not possible to improve the problems such as deterioration of the withstand voltage of the gate oxide film, deterioration of the lifetime due to easy trapping of electrons or holes, and increase in junction capacitance due to contact between the source drain region and the channel stopper region. This made it difficult to increase the speed, but it was difficult to increase the functionality to enable high voltage drive because the junction breakdown voltage deteriorated.

[問題点を解決するための手段] 上記問題点は半導体基板上に選択的に設けられた第1の
絶縁膜、前記第1の絶縁膜の直上部に設けられた固定電
圧が与えられた導電膜、前記第1の絶縁膜及び前記導電
膜の側壁に設けられた第2の絶縁膜とにより素子分離領
域が形成されている本発明の半導体装置によって解決さ
れる。
[Means for solving the problem] The above problem is solved by a first insulating film selectively provided on a semiconductor substrate, and a conductive film provided directly above the first insulating film to which a fixed voltage is applied. The problem is solved by the semiconductor device of the present invention, in which an element isolation region is formed by a film, the first insulating film, and a second insulating film provided on the sidewall of the conductive film.

[作 用] 即ち本発明の半導体装置においては、半導体基板上に設
けられる素子分離領域が、選択的に設けられた第1の絶
縁膜、前記第1の絶縁膜の直上部に設けられた固定電圧
が与えられた導電膜及び前記第1の絶縁膜と前記導電膜
の側壁にRIE (反応性イオンエツチング)法により
セルファラインに設けられた第2の絶縁膜とにより形成
された構造を有している。したがって、素子分離領域を
選択酸化による、いわゆるLOCO9法を使用せずに形
成できるため、即ちストレスを内在させるバーズビーク
の存在しない構造に形成できるため、微細な素子領域を
形成できることによる高集積化を、ゲート酸化膜の耐圧
を改善できることによる高性能化を、エレクトロン又は
ホールがトラップされにくくなり、キャリア寿命が改善
できることによる高信頼性を可能にすることができる。
[Function] That is, in the semiconductor device of the present invention, the element isolation region provided on the semiconductor substrate includes a selectively provided first insulating film and a fixed region provided directly above the first insulating film. The conductive film has a structure formed by a conductive film to which a voltage is applied, the first insulating film, and a second insulating film provided in a self-line by RIE (reactive ion etching) method on the sidewall of the conductive film. ing. Therefore, since the element isolation region can be formed without using the so-called LOCO9 method by selective oxidation, that is, it can be formed in a structure without bird's beaks that cause stress, high integration can be achieved by forming fine element regions. High performance can be achieved by improving the breakdown voltage of the gate oxide film, and high reliability can be achieved by making it difficult for electrons or holes to be trapped and improving carrier life.

又、第1の絶縁膜及び導電膜の段差を側壁に形成する第
2の絶縁膜で緩和できることによるステップカバレッジ
の良い配線体の形成も可能にすることができる。さらに
、チャネルストッパー領域の未形成又はチャネルストッ
パー領域を第1の絶縁膜下のみにセルファライン形成す
るため、ソースドレイン領域とチャネルストッパー領域
を第2の絶縁膜で分離形成できるため、接合容量の低減
化による高速化を、接合耐圧の増大による高電圧駆動を
可能とする高機能化をも可能にすることができる、即ち
、極めて高性能、高信頼、高機能、高速且つ高集積な半
導体集積回路の形成を可能とした半導体装置を得ること
ができる。
Further, since the step difference between the first insulating film and the conductive film can be alleviated by the second insulating film formed on the sidewall, it is possible to form a wiring body with good step coverage. Furthermore, since the channel stopper region is not formed or the channel stopper region is formed as a self-line only under the first insulating film, the source/drain region and the channel stopper region can be formed separately by the second insulating film, reducing the junction capacitance. In other words, extremely high performance, high reliability, high functionality, high speed, and highly integrated semiconductor integrated circuits can be realized. It is possible to obtain a semiconductor device that enables the formation of.

[実施例] 以下本発明を、図示実施例により具体的に説明する。第
1図は本発明の半導体装置における第1の実施例の模式
側断面図、第2図は本発明の半導体装置における第2の
実施例の模式側断面図、第3図は本発明の半導体装置に
おける第3の実施例の模式側断面図、第4図(a)〜(
d)は本発明の製造方法の一実施例の工程断面図である
[Examples] The present invention will be specifically described below with reference to illustrated examples. FIG. 1 is a schematic side sectional view of a first embodiment of the semiconductor device of the present invention, FIG. 2 is a schematic side sectional view of the second embodiment of the semiconductor device of the present invention, and FIG. 3 is a schematic side sectional view of the semiconductor device of the present invention. A schematic side sectional view of the third embodiment of the device, FIGS. 4(a) to (
d) is a process sectional view of an embodiment of the manufacturing method of the present invention.

全図を通じ同一対象物は同一符号で示す。Identical objects are indicated by the same reference numerals throughout the figures.

第1図はp型シリコン基板を用いた際の本発明の半導体
装置における第1の実施例の模式側断面図で、1は10
  cm  程度のp−型シリコン(Si)基板、2は
10” cs−3程度のp型ウェル領域、3は1020
C13程度のn生型ソースドレイン領域、4は0.4/
I1m程度の第1の絶縁膜〈フィールド酸化膜)、5は
0.ケー程度のフィールド酸化股上導電膜、6は幅0.
3I−程度の第2の絶縁膜(側壁絶縁膜)、7は20n
m程度のゲート酸化膜、8は300 nm程度のゲート
電極、9は50nm程度のブロック用酸化膜、10は0
.8/All程度の燐珪酸ガラス(PSG)膜、11は
1/AI程度のA1配線を示している。
FIG. 1 is a schematic side sectional view of the first embodiment of the semiconductor device of the present invention when a p-type silicon substrate is used, and 1 is 10
cm p-type silicon (Si) substrate, 2 is a p-type well region of about 10" cs-3, 3 is 1020
N-type source drain region of about C13, 4 is 0.4/
The first insulating film (field oxide film) is about I1m, 5 is 0. The field oxidized conductive film has a width of 0.
Second insulating film (side wall insulating film) of about 3I-, 7 is 20n
8 is a gate oxide film of about 300 nm, 9 is a block oxide film of about 50 nm, 10 is 0
.. A phosphosilicate glass (PSG) film of approximately 8/All, and 11 an A1 wiring of approximately 1/AI are shown.

同図においては、p−型シリコン(Si)基板1に選択
的に第1の絶縁M、4及び導電膜5が設けられており、
前記第1の絶縁WA4及び導電1i5の側壁にRIE 
(反応性イオンエツチング)法によりセルファラインに
第2の絶縁膜6が設けられており、前記第1の絶縁膜4
、導電膜5及び第2の絶縁膜6とにより素子分離領域が
形成されている。前記導電膜5にはフィールド反転をお
こさない固定電圧が与えられており、チャネルストッパ
ー領域は形成されていない。素子形成領域にはNチャネ
ルトランジスタが形成されており、閾値電圧は低濃度の
p型ウェル領域により制御されている。したがって、素
子分離領域を選択酸化による、いわゆるLOCO8法を
使用せずに形成できるため、即ちストレスを内在させる
バーズビークの存在しない構造に形成できるため、微細
な素子領域を形成できることによる高集積化を、ゲート
酸化膜の耐圧を改善できることによる高性能化を、エレ
クトロン又はホールがトラップされにくくなり、キャリ
ア寿命が改善できることによる高信頼性を可能にするこ
とができる。又、第1の絶縁膜及び導電膜の段差を側壁
に形成する第2の絶縁膜で緩和できることによるステッ
プカバレッジの良い配線体の形成も可能にすることがで
きる。さらに、チャネルストッパー領域を形成せず、フ
ィールド酸化股上に形成した導電膜にフィールド反転を
おこさない固定電圧を与えることにより、寄生MO8電
界効果トランジスタの形成を抑制し、フィールドリーク
を防止することができるため、ソーストレイン接合容量
の低減化による高速化を、ソースドレイン接合耐圧の増
大による高電圧駆動を可能とする高機能化をも可能にす
ることができる。
In the figure, a p-type silicon (Si) substrate 1 is selectively provided with first insulators M, 4 and a conductive film 5.
RIE on the side walls of the first insulating WA4 and conductive 1i5
A second insulating film 6 is provided on the self-line by a (reactive ion etching) method, and the first insulating film 4
, the conductive film 5 and the second insulating film 6 form an element isolation region. A fixed voltage that does not cause field reversal is applied to the conductive film 5, and no channel stopper region is formed. An N-channel transistor is formed in the element formation region, and its threshold voltage is controlled by a lightly doped p-type well region. Therefore, since the element isolation region can be formed without using the so-called LOCO8 method using selective oxidation, in other words, it can be formed in a structure without bird's beak that causes stress, and high integration can be achieved by forming fine element regions. High performance can be achieved by improving the breakdown voltage of the gate oxide film, and high reliability can be achieved by making it difficult for electrons or holes to be trapped and improving carrier life. Further, since the step difference between the first insulating film and the conductive film can be alleviated by the second insulating film formed on the sidewall, it is possible to form a wiring body with good step coverage. Furthermore, by not forming a channel stopper region and applying a fixed voltage that does not cause field reversal to the conductive film formed on the field oxide top, it is possible to suppress the formation of a parasitic MO8 field effect transistor and prevent field leakage. Therefore, it is possible to increase the speed by reducing the source-train junction capacitance, and to increase the functionality by enabling high-voltage driving by increasing the source-drain junction breakdown voltage.

第2図は本発明の半導体装置における第2の実施例の模
式側断面図で、1〜3.5〜11は第1図と同じ物を、
4aは不純物スルー酸化膜、4bは硼珪酸ガラス(BS
G)膜、12はp型チャネルストッパー領域を示してい
る。
FIG. 2 is a schematic side sectional view of a second embodiment of the semiconductor device of the present invention, and 1 to 3.5 to 11 are the same as in FIG.
4a is an impurity-through oxide film, 4b is a borosilicate glass (BS
G) Membrane, 12 indicates the p-type channel stopper region.

同図においては、第1の絶縁膜が不純物スルー酸化膜4
a及び硼珪酸ガラス(BSG)膜4bの積層構造からな
り、且つ硼珪酸ガラス(BSG)膜4bから不純物スル
ー酸化Baaを通して硼素が拡散しp型チャネルストッ
パー領域12が形戒されている点を除き第1図と同じ構
造を示してい40本実施例においては第1図の効果に加
え、第1図より製造工程はやや複雑になるが、ソースド
レイン領域と分離したp型チャネルストッパー領域が形
成されているため、よりフィールドリークを防止するこ
とができる。
In the figure, the first insulating film is an impurity-through oxide film 4.
Except for the fact that it has a laminated structure of a and a borosilicate glass (BSG) film 4b, and that boron is diffused from the borosilicate glass (BSG) film 4b through impurity through oxidation Baa to form a p-type channel stopper region 12. 40 In this example, in addition to the effect shown in Fig. 1, a p-type channel stopper region separated from the source/drain region is formed, although the manufacturing process is slightly more complicated than in Fig. 1. This makes it possible to further prevent field leaks.

第3図は本発明の半導体装置における第3の実施例の模
式側断面図で、l〜11は第1図と同じ物を、13はn
型ウェル領域、14はp十型ソースドレイン領域を示し
ている。
FIG. 3 is a schematic side sectional view of a third embodiment of the semiconductor device of the present invention, where 1 to 11 are the same as in FIG. 1, and 13 is n.
14 indicates a p-type source/drain region.

同図においては、本発明をC−MO8型半導体装置に適
用した実施例を示しており、選択的に形成されたp型ウ
ェル領域2及びn型ウェル領域13に、それぞれNチャ
ネルトランジスタ及びPチャネルトランジスタが形戒さ
れており、それぞれの素子分離領域の導電膜は分離され
、それぞれフィールド反転をおこさない異なる固定電圧
が与えられている点を除き第1図と同じ構造を示してい
る、C−MO3型半導体装置においても、第1図と同じ
効果を得ることができる。
This figure shows an embodiment in which the present invention is applied to a C-MO8 type semiconductor device, in which N-channel transistors and P-channel transistors and P-channel transistors and P-channel transistors and P-channel transistors and P-channel transistors and P-channel transistors and It shows the same structure as in Fig. 1, except that the transistors are fixed, the conductive films in each element isolation region are separated, and different fixed voltages that do not cause field reversal are applied. The same effect as shown in FIG. 1 can be obtained also in the MO3 type semiconductor device.

次いで本発明に係る半導体装置の製造方法の一実施例に
ついて第4図(a)〜(d)及び第3図を参照して説明
する。
Next, an embodiment of the method for manufacturing a semiconductor device according to the present invention will be described with reference to FIGS. 4(a) to 4(d) and FIG. 3.

第4図(a) 通常の技法を適用することにより、p−型シリコン基板
1にイオン注入用の薄い酸化膜(図示せず)を成長させ
る0次いで通常のフォトリソグラフィー技術を利用し、
レジスト(図示せず)をマスク層として、硼素をイオン
注入してp型ウェル領域2を、燐をイオン注入してn型
ウェル領域13をそれぞれ選択的に順次画定する。次い
で高温でランニングし所望の深さを持つp型ウェル領域
2及びn型ウェル領域13を形戒する9次いでイオン注
入用の薄い酸化膜をエツチング除去する。
FIG. 4(a) A thin oxide film (not shown) for ion implantation is grown on the p-type silicon substrate 1 by applying a conventional technique, and then by using a conventional photolithography technique,
Using a resist (not shown) as a mask layer, boron ions are implanted to define the p-type well region 2, and phosphorus ions are implanted to selectively define the n-type well region 13. Next, by running at a high temperature, the thin oxide film for ion implantation, which forms the p-type well region 2 and the n-type well region 13 having desired depths, is removed by etching.

第4図(b) 次いで酸化膜、多結晶シリコン膜を順次成長させる。次
いで通常のフォトリソグラフィー技術を利用し、レジス
ト(図示せず)をマスク層として前記多結晶シリコン膜
及び酸化膜を順次エツチングし、素子分離領域の一部を
構成するフィールド酸化膜(第1の絶縁膜)4及びフィ
ールド酸化膜上導電膜5を形戒する0次いで化学気相成
長法により酸化膜を成長する0次いで化学気相成長酸化
膜を異方性ドライエツチングし、フィールド酸化膜(第
1の絶縁膜)4及びフィールド酸化膜上導電膜5の側壁
にセルファラインに化学気相成長酸化膜(側壁絶縁膜と
なる第2の絶縁膜)6を残し、素子分離領域を形成する
FIG. 4(b) Next, an oxide film and a polycrystalline silicon film are sequentially grown. Next, using a normal photolithography technique, the polycrystalline silicon film and the oxide film are sequentially etched using a resist (not shown) as a mask layer, and a field oxide film (first insulating film) forming a part of the element isolation region is etched. 4 and the conductive film 5 on the field oxide film. Next, an oxide film is grown by chemical vapor deposition. Next, the chemical vapor grown oxide film is anisotropically dry etched, and the field oxide film (first A chemical vapor grown oxide film (a second insulating film serving as a sidewall insulating film) 6 is left on the sidewalls of the field oxide film (insulating film) 4 and the conductive film 5 on the field oxide film to form an element isolation region.

第4図(C) 次いでゲート酸化膜7、多結晶シリコン膜を順次成長さ
せる0次いで通常のフォトリングラフイー技術を利用し
、前記多結晶シリコン膜をバターニングし、ゲート電極
8を形成する。
FIG. 4(C) Next, a gate oxide film 7 and a polycrystalline silicon film are sequentially grown, and then the polycrystalline silicon film is patterned using a normal photolithography technique to form a gate electrode 8.

第4図(d) 次いで通常のフォトリソグラフィー技術を利用し、レジ
スト(図示せず)、導電膜5を積層した第1の絶縁M4
、第2の絶縁M(側壁絶縁M)6及びゲート電極8をマ
スク層として、砒素をイオン注入してn生型ソースドレ
イン領域3を、硼素をイオン注入してp生型ソースドレ
イン領域14をそれぞれ選択的に順次画定する。
FIG. 4(d) Next, using a normal photolithography technique, a resist (not shown) and a conductive film 5 are laminated to form a first insulating layer M4.
, using the second insulation M (side wall insulation M) 6 and the gate electrode 8 as mask layers, arsenic ions are implanted to form n-type source/drain regions 3, and boron ions are implanted to form p-type source/drain regions 14. Each is selectively defined in turn.

第3図 次いで不要部のゲート酸化膜8をエツチング除去する0
次いでブロック用酸化膜9、燐珪酸ガラス(PSG)膜
10を順次成長させる9次いでやや高温処理を施し所望
の深さを持つn生型ソースドレイン領域3及びp生型ソ
ースドレイン領域14を形戒する1次いで通常の技法を
適用することにより電極コンタクト窓の形成、A1配線
11の形成等をおこない半導体装置を完成する。
FIG. 3 Next, unnecessary portions of the gate oxide film 8 are removed by etching.
Next, a blocking oxide film 9 and a phosphosilicate glass (PSG) film 10 are sequentially grown.Next, a slightly high temperature treatment is performed to form n-type source drain regions 3 and p-type source drain regions 14 with desired depths. Next, by applying conventional techniques, electrode contact windows, A1 wiring 11, etc. are formed, and the semiconductor device is completed.

なお本発明の半導体装置の素子分離構造はCCD撮像デ
バイス用及び放射線耐性を強化した宇宙関連デバイス用
の半導体集積回路を製造する場合に、極めて有効である
Note that the element isolation structure of the semiconductor device of the present invention is extremely effective in manufacturing semiconductor integrated circuits for CCD imaging devices and space-related devices with enhanced radiation resistance.

以上実施例に示したように、本発明の半導体装置によれ
ば、素子分離領域を選択酸化による、いわゆるLOCO
,S法を使用せずに形成できるため、即ちストレスを内
在させるバーズビークの存在しない構造に形成できるた
め、微細な素子領域を形成できることによる高集積化を
、ゲート酸化膜の耐圧を改善できることによる高性能化
を、エレクトロン又はホールがトラップされにくくなり
、キャリア寿命が改善できることによる高信頼性を可能
にすることができる。又、第1の絶縁膜及び導電膜の段
差を側壁に形成する第2の絶縁膜で緩和できることによ
るステップカバレッジの良い配線体の形成も可能にする
ことができる。さらに、チャネルストッパー領域の未形
成又はチャネルストッパー領域を第1の絶縁膜下のみに
セルファライン形成するため、ソースドレイン領域とチ
ャネルストッパー領域を第2の絶縁膜で分離形成できる
ため、接合容量の低減化による高速化を、接合耐圧の増
大による高電圧駆動を可能とする高機能化をも可能にす
ることができる。
As shown in the embodiments above, according to the semiconductor device of the present invention, the element isolation region is formed by selective oxidation, so-called LOCO.
, because it can be formed without using the S method, that is, it can be formed into a structure without bird's beaks that cause stress, and it is possible to achieve high integration by forming fine device regions, and by improving the breakdown voltage of the gate oxide film. Performance can be improved, and high reliability can be achieved because electrons or holes are less likely to be trapped and carrier life can be improved. Further, since the step difference between the first insulating film and the conductive film can be alleviated by the second insulating film formed on the sidewall, it is possible to form a wiring body with good step coverage. Furthermore, since the channel stopper region is not formed or the channel stopper region is formed as a self-line only under the first insulating film, the source/drain region and the channel stopper region can be formed separately by the second insulating film, reducing the junction capacitance. It is possible to increase the speed by increasing the junction voltage, and also to increase the functionality by enabling high-voltage driving by increasing the junction breakdown voltage.

[発明の効果] 以上説明のように本発明によれば、MIS型半導体装置
において、半導体基板上に設けられる素子分離領域が、
選択的に設けられた第1の絶縁膜、前記第1の絶縁膜の
直上部に設けられた固定電圧が与えられた導電膜及び前
記第1の絶縁膜と前記導電膜の側壁に設けられた第2の
絶縁膜とにより形成された構造を有しているため、バー
ズビークの存在しない構造に形成できることによる素子
領域の微細化、ゲート酸化膜耐圧の改善及びキャリア寿
命の改善を、第1の絶縁膜段差を側壁に形成する第2の
絶縁膜で緩和できることによるステップカバレッジの良
い配線体の形成を、チャネルストッパー領域の未形成あ
るいはソースドレイン領域との分離形成により、接合容
量を減少させることによる高速化を、接合耐圧を増大さ
せることによる高電圧駆動を可能とする高機能化を可能
にすることができる。即ち、極めて高性能、高信頼、高
機能、高速且つ高集積な半導体集積回路の形成を可能と
した半導体装置を得ることができる。
[Effects of the Invention] As described above, according to the present invention, in the MIS type semiconductor device, the element isolation region provided on the semiconductor substrate is
a selectively provided first insulating film, a conductive film provided directly above the first insulating film to which a fixed voltage is applied, and a conductive film provided on sidewalls of the first insulating film and the conductive film. Since it has a structure formed by a second insulating film, it can be formed into a structure without bird's beaks, thereby achieving miniaturization of the element region, improvement of gate oxide film breakdown voltage, and improvement of carrier life. It is possible to form a wiring body with good step coverage by reducing the film step difference with the second insulating film formed on the sidewall, and to reduce the junction capacitance by not forming a channel stopper region or forming it separately from the source and drain regions. By increasing the junction breakdown voltage, high-voltage driving and high functionality can be achieved. That is, it is possible to obtain a semiconductor device that enables the formation of extremely high-performance, highly reliable, highly functional, high-speed, and highly integrated semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体装置における第1の実施例の模
式側断面図、第2図は本発明の半導体装置における第2
の実施例の模式側断面図、第3図は本発明の半導体装置
における第3の実施例の模式側断面図、第4図(a)〜
(d)は本発明の製造方法の一実施例の工程断面図、第
5図は従来の半導体装置の模式側断面図ある。 図において、 1はp−型シリコン(Si)基板、 2はp型ウェル領域、 3はn十型ソースドレイン領域、 4は第1の絶縁膜(フィールド酸化膜)、4aは不純物
スルー酸化膜、 4bは硼珪酸ガラス(BSG)膜、 5はフィールド酸化膜上導電膜、 6は第2の絶縁膜〈側壁絶縁膜〉、 7はゲート酸化膜、 8はゲート電極、 9はブロック用酸化膜、 10は燐珪酸ガラス(PSG)膜、 11はA1配線、 12はp型チャネルストッパー領域、 13はn型ウェル領域、 14はp十型ソースドレイン領域 を示す。
FIG. 1 is a schematic side sectional view of a first embodiment of the semiconductor device of the present invention, and FIG. 2 is a schematic side sectional view of a second embodiment of the semiconductor device of the present invention.
FIG. 3 is a schematic side sectional view of the third embodiment of the semiconductor device of the present invention, and FIGS.
(d) is a process cross-sectional view of an embodiment of the manufacturing method of the present invention, and FIG. 5 is a schematic side cross-sectional view of a conventional semiconductor device. In the figure, 1 is a p-type silicon (Si) substrate, 2 is a p-type well region, 3 is an n-type source/drain region, 4 is a first insulating film (field oxide film), 4a is an impurity through oxide film, 4b is a borosilicate glass (BSG) film, 5 is a conductive film on the field oxide film, 6 is a second insulating film (sidewall insulating film), 7 is a gate oxide film, 8 is a gate electrode, 9 is a block oxide film, 10 is a phosphosilicate glass (PSG) film, 11 is an A1 wiring, 12 is a p-type channel stopper region, 13 is an n-type well region, and 14 is a p-type source/drain region.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板上に選択的に設けられた第1の絶縁膜
、前記第1の絶縁膜の直上部に設けられた固定電圧が与
えられた導電膜、前記第1の絶縁膜及び前記導電膜の側
壁に設けられた第2の絶縁膜とにより素子分離領域が形
成されていることを特徴とする半導体装置。
(1) A first insulating film selectively provided on a semiconductor substrate, a conductive film provided directly above the first insulating film to which a fixed voltage is applied, the first insulating film, and the conductive film. A semiconductor device characterized in that an element isolation region is formed by a second insulating film provided on a side wall of the film.
(2)前記第1の絶縁膜が不純物を含む絶縁膜及び不純
物を含まない絶縁膜の積層構造からなり、且つ前記第1
の絶縁膜直下部にはチャネルストッパー領域が設けられ
ていることを特徴とする特許請求の範囲第1項記載の半
導体装置。
(2) The first insulating film has a laminated structure of an insulating film containing impurities and an insulating film not containing impurities, and
2. The semiconductor device according to claim 1, further comprising a channel stopper region provided directly under the insulating film.
(3)前記導電膜はn型半導体基体上及びp型半導体基
体上において島状に分離され、且つ異なる固定電圧が与
えられていることを特徴とする特許請求の範囲第1項記
載の半導体装置。
(3) The semiconductor device according to claim 1, wherein the conductive film is separated into islands on the n-type semiconductor substrate and on the p-type semiconductor substrate, and is applied with different fixed voltages. .
JP1218282A 1989-08-24 1989-08-24 Semiconductor device Pending JPH0382055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1218282A JPH0382055A (en) 1989-08-24 1989-08-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1218282A JPH0382055A (en) 1989-08-24 1989-08-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0382055A true JPH0382055A (en) 1991-04-08

Family

ID=16717409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1218282A Pending JPH0382055A (en) 1989-08-24 1989-08-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0382055A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169850A (en) * 1993-12-15 1995-07-04 Nec Corp Semiconductor device and manufacturing method thereof
KR20010099001A (en) * 2001-04-24 2001-11-09 박정훈 Input device & Extension-pack installed mobile terminal case
KR20040005273A (en) * 2002-07-09 2004-01-16 삼성전자주식회사 Portable computer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169850A (en) * 1993-12-15 1995-07-04 Nec Corp Semiconductor device and manufacturing method thereof
KR20010099001A (en) * 2001-04-24 2001-11-09 박정훈 Input device & Extension-pack installed mobile terminal case
KR20040005273A (en) * 2002-07-09 2004-01-16 삼성전자주식회사 Portable computer

Similar Documents

Publication Publication Date Title
US5512771A (en) MOS type semiconductor device having a low concentration impurity diffusion region
KR100221120B1 (en) Manufacturing Method of Semiconductor Device
JPH0519811B2 (en)
JPH06204469A (en) Field effect transistor and method of manufacturing the same
JP2001093984A (en) Semiconductor device and its manufacturing method
JPH0834313B2 (en) Semiconductor device and manufacturing method thereof
KR0150105B1 (en) Method of fabricating transistor of semiconductor device
JPH10107280A (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH0382055A (en) Semiconductor device
JPH08316335A (en) Semiconductor device and fabrication thereof
KR100308072B1 (en) Manufacturing method of semiconductor device
JP2952570B2 (en) Method for manufacturing semiconductor device
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPH10163338A (en) Semiconductor device and its manufacturing method
JP2608470B2 (en) Semiconductor device and manufacturing method thereof
KR100234692B1 (en) Transistor and the manufacturing method thereof
JPH0666326B2 (en) Semiconductor device and manufacturing method thereof
KR100197656B1 (en) Manufacturing Method of Semiconductor S.I.I.Device
KR100188008B1 (en) Method of manufacturing cmos semiconductor device
KR940005292B1 (en) Semiconductor device manufacturing method
JPH0521789A (en) Field effect type transistor and its manufacture
KR0165421B1 (en) Process of fabricating mos transistor
JP2602589B2 (en) Method for manufacturing LDD transistor
KR940010928B1 (en) MOS transistor and manufacturing method thereof
KR960009991B1 (en) Manufacturing Method of MOS FET