[go: up one dir, main page]

JPH0375278B2 - - Google Patents

Info

Publication number
JPH0375278B2
JPH0375278B2 JP58240504A JP24050483A JPH0375278B2 JP H0375278 B2 JPH0375278 B2 JP H0375278B2 JP 58240504 A JP58240504 A JP 58240504A JP 24050483 A JP24050483 A JP 24050483A JP H0375278 B2 JPH0375278 B2 JP H0375278B2
Authority
JP
Japan
Prior art keywords
welding
weight
stainless steel
weld metal
creep rupture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58240504A
Other languages
Japanese (ja)
Other versions
JPS60130496A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP24050483A priority Critical patent/JPS60130496A/en
Publication of JPS60130496A publication Critical patent/JPS60130496A/en
Publication of JPH0375278B2 publication Critical patent/JPH0375278B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はステンレス鋼溶接材料に関し、特に高
温機器の溶接に用いられる溶接材料の改良に係
る。 高速増殖炉、化学プラントあるいは火力プラン
ト等の高温機器には、SUS304オーステナイト系
ステンレス鋼(以下、SUS304ステンレス鋼とい
う)を用いたものが多い。そして、これら
SUS304ステンレス鋼で上記の高温機器を製作す
る際、溶接材料としてはSUS308系ステンレス鋼
からなる溶接材料が従来使用されている。 ところで、上記のような高温機器の溶接部に
は、常温および高温での強度といつた基本的な特
性の他、クリープ破断延性、クリープ破断強度お
よびクリープ疲労特性等のクリープに関する特性
が要求される。これに対して、上記高温機器の溶
接材料を選択するに際し、従来は常温および高温
での強度と、クリープ強度が重視され、クリープ
破断延性は犠牲にされる傾向があつた。このた
め、SUS308系ステンレス鋼からなる従来の溶接
材料を用いた高温機器では、特に長時間高温使用
後(550℃×5000時間)において、溶接金属(溶
接部分)のクリープ破断延性が低下するという問
題があつた。 本発明は上記事情に鑑みてなされたもので、高
温機器、特にSUS304ステンレス鋼からなる高温
機器の溶接に使用した際、溶接金属の常温および
高温における引張り強度が所定の適正値を満足
し、且つ長時間高温使用後のクリープ破断延性が
低下しない溶接金属が得られるようなステンレス
鋼溶接材料を提供するものである。 即ち、本発明によるステンレス鋼溶接材料は、
下記(1)式で示されるクリープ破断伸びEL(%)≧
10を満足し、下記の組成からなることを特徴とす
る。 EL=−60−22Si+12Mn+103P+5.3Ni +25V−20Ti−40Nb+103[O]+0.2λ ……(1) C;0.02〜0.07重量% Si;0.05〜0.90重量% Mn;1.5〜3.0重量% P;0.01〜0.04重量% S;0.030重量%以下 Ni;9.0〜11.0重量% Cr;18.0〜21.0重量% Mo;3.0重量%以下 V;0.15重量%以下 Ti;0.10重量%以下 B;0.02重量%以下 O;0.001〜0.01重量% N;0.005〜0.10重量% Feおよび不可避的不純物;残部 尚、式(1)中、Si、Mn、P、Ni、V、Ti、Nb、
[O]は夫々各元素の重量%、λは溶接入熱
(KJ/cm)を示す。 上記本発明に係る溶接材料の組成は、SUS304
ステンレス鋼片を溶接母材とし、SUS308ステン
レス鋼を溶接材料として行なつた溶接試験データ
から帰納して得られたものである。次にこの溶接
試験と帰納方法について説明する。 溶接試験 種々のSUS308ステンレス鋼片を溶接材料とし
て用い、二つのSUS304ステンレス鋼片を種々の
溶接法で溶接することにより、夫々の場合につい
てGL=30mm、外形6mmの試験片を作製した。こ
の各々の試験片につき、溶接金属の常温における
引張り強さT1、溶接金属の550℃における引張り
強さT2、溶接金属の550℃×5000時間後における
クリープ破断伸びELを定法により測定した。 続いて、各試験片について得られた上記T1
ELの値をプロツトすることにより第1図に示す
相関図を得、またT2とELの値をプロツトして第
2図に示す相関図を得た。図中、曲線Mはこれら
データの平均線を示し、曲線U、曲線Lは曲線M
に基づいて描かれた上限線、下限線を夫々示して
いる。但し、この相関図は本発明で得ようとして
いる特性をもつた組成を帰納するために作製した
もので、この意味から厳選されたデータによつて
作製されている。従つて、SUS304ステンレス鋼
を溶接材料とした実際のデータは、これよりもバ
ラツキが更に大きいものとなる。 なお、第1図および第2図において、○、△、
□、◇、☆は当該プロツトに係る試験片が夫々下
記の溶接方法で作製されたことを示している。 ○:GTA(Gas Tungsten Arc溶接) △:被覆アーク溶接 □:サブマージアーク溶接 ◇:GMA(Gas Metal Arc溶接) ☆:電子ビーム溶接 また、図中●および▲は後述する実施例に係る
データを示している。 帰納方法 上記第1図および第2図のデータから、次のよ
うにして本発明による溶接材料の組成を求めた。 まず、本発明のステンレス鋼溶接材料で達成し
ようとする目標を、SUS304ステンレス鋼を溶接
したときの溶接金属が、EL≧10%(550℃×5000
時間での値)、T1=53〜62Kgf/mm2、T2≦39Kg
f/mm2の特性をもつことに置いた。550℃×5000
時間でのクリープ破断伸びELを10%以上に設定
したのは、これが第1図および第2図にインプツ
トされているデータの大半が満足している範囲に
当り、一部10%を割るデータが出たとしても略そ
れに近い数値が得られると考えたからである。も
し、上記ELの設定値を15%、20%と高くした場
合、クリープ延性については更に優れたものを得
ることができるが、それだけ種々の条件が厳しく
なり、これを満し得るものは極く狭い範囲に限定
されざるを得ないこととなる。 ところで、第1図の相関図上で550℃×5000時
間におけるELとして10%以上の値を得ることを
考えた場合、平均線Mを目安とすれば、溶接金属
が53〜62Kgf/mm2のT1をもつようにすれば良い
と考えることができる。ここで、35Kgf/mm2は母
材であるSUS304ステンレス鋼の最低引張り強さ
である。また、第2図の相関図上で平均線Mを目
安に考えた場合、T2が39Kgf/mm2以下であれば
10%以上のEL値(550℃×5000時間のもの)が得
られ、特にT2を35Kgf/mm2以下にすればクリー
プ延性の非常に優れた溶接金属が得られることが
分る。 他方、第1図および2図上において、下限線L
を目安にしてクリープ破断伸びELが10%以上を
考えた場合、T1、T2に関する規制条件は平均線
Mを用いるときよりも更に厳しいものとなる。ま
た、上限線Lを目安にしてクリープ破断伸びEL
が10%以上になるように考えた場合には、引張り
強さT1、T2の値が大きくなる。本発明ではT1
T2をできるだけ低い値に押えることによつて10
%以上のクリープ破断伸びELを得ることを目的
としていることから、平均線Mを目安とした。 次に、重回帰分析を行なうことによつて、550
℃×5000時間後におけるクリープ破断伸びELに
及ぼす溶接ワイヤ化学成分の影響を求めた。その
結果によれば、550℃×5000時間後におけるクリ
ープ破断伸びEL(%)は下記(1)式によつて与えら
れる。 EL=−60−22Si+12Mn+103P+5.3Ni +25V−20Ti−40Nb+103[O]+0.2λ ……(1) ここで、Si、Mn、P、Ni、V、Ti、Nb、
[O]は夫々各元素の重量%、λは溶接入熱
(KJ/cm)を示している。また、これらの元素以
外に、C、S、Cr、Mo、B、Cu、Co、Al、N
についても重回帰分析を行なつたが、EL(%)に
与える影響を見るための一つのパラメータである
t値が低く、寄与率が低いため削除した。 なお、既述のようにGTA、被覆アーク、サブ
マージアーク、GMA、電子ビーム溶接の5通り
の異なつた溶接方法が用いられているが、上記(1)
式には、溶接方法の違いがEL(%)に影響する化
学成分的因子(Oの量等)および熱的因子(入熱
λ)が含まれているから、溶接方法の違いはあま
り問題にはならない。従つて、上記(1)式は前記5
通りの溶接方法の全部について適用できると考え
られる。 以上から、本発明で目的としたクリープ延性、
即ち、550℃×5000時間において10%以上のクリ
ープ破断伸びELを有する溶接金属は、(1)式にお
いてEL≧10を満足し得る各成分元素の量を求め
ることによつて得られる。前述した本発明の溶接
材料組成はこうして求められたものであり、後述
の実施例の結果に示されるように、本発明の組成
範囲に適合する溶接材料によれば、550℃×5000
時間でのクリープ破断伸びが10%以上得られ、同
時に常温および高温における引張り強度も適正値
の範囲で満足することができる。この場合、S、
V、Ti、Nb、Bに上限を付したのは、これらの
成分を入れ過ぎると溶接金属のクリープ破断伸び
を損うからである。また、O、Nについては溶接
性を加味して上限および下限を設定した。O及び
Nの量は従来のSUS308溶接材料では規制されて
いないが、これらは多過ぎるとブローホールと呼
ばれる溶接欠陥を生じる原因となるものである。
従つて、O、Nの量を上記のように規制した本発
明の溶接材料では、溶接性の向上が期待できる。 なお、上述した本発明による溶接ワイヤの化学
成分と、これによる溶接金属の機械的性質を第1
表に纒めて示す(後述する実施例の化学成分およ
び機械的性質も一緒に記載した)。同表中に溶接
金属の機械的性質の一つとして記載したFNは、
δフエライト量(デイロング状態図によるフエラ
イト番号)である。FNについては、溶接時の割
れ感受性を下げるために0.5FN以上必要である
が、多過ぎると長時間の加熱によりδフエライト
がσ相に変態してクリープ延性を低下させる。こ
の意味から、表中に記載したように0.5〜10FNと
するのが望ましい。 なお、参考のためにSUS308溶接材料に関する
化学成分を第2表に示す。
The present invention relates to stainless steel welding materials, and particularly to improvements in welding materials used for welding high-temperature equipment. SUS304 austenitic stainless steel (hereinafter referred to as SUS304 stainless steel) is often used in high-temperature equipment such as fast breeder reactors, chemical plants, or thermal power plants. And these
When manufacturing the above-mentioned high-temperature equipment using SUS304 stainless steel, welding materials made from SUS308 series stainless steel have conventionally been used. By the way, in addition to basic properties such as strength at room temperature and high temperature, the welded parts of high-temperature equipment as mentioned above are required to have creep-related properties such as creep rupture ductility, creep rupture strength, and creep fatigue properties. . On the other hand, when selecting welding materials for the above-mentioned high-temperature equipment, conventionally, strength at room temperature and high temperature, and creep strength have been emphasized, and creep rupture ductility has tended to be sacrificed. For this reason, high-temperature equipment using conventional welding materials made of SUS308 stainless steel has the problem that the creep rupture ductility of the weld metal (welded part) decreases, especially after long-term high-temperature use (550°C x 5000 hours). It was hot. The present invention has been made in view of the above circumstances, and when used for welding high-temperature equipment, particularly high-temperature equipment made of SUS304 stainless steel, the present invention satisfies predetermined appropriate values for the tensile strength of the weld metal at room temperature and high temperature, and An object of the present invention is to provide a stainless steel welding material that can yield a weld metal whose creep rupture ductility does not deteriorate after long-term high-temperature use. That is, the stainless steel welding material according to the present invention is
Creep rupture elongation EL (%) shown by the following formula (1) ≧
10 and is characterized by having the following composition. EL=−60−22Si+12Mn+103P+5.3Ni +25V−20Ti−40Nb+103[O]+0.2λ ……(1) C; 0.02 to 0.07 wt% Si; 0.05 to 0.90 wt% Mn; 1.5 to 3.0 wt% P; 0.01 to 0.04 Weight% S; 0.030% by weight or less Ni; 9.0-11.0% by weight Cr; 18.0-21.0% by weight Mo; 3.0% by weight or less V; 0.15% by weight or less Ti; 0.10% by weight or less B; 0.02% by weight or less O; 0.001- 0.01% by weight N; 0.005 to 0.10% by weight Fe and unavoidable impurities; remainder In formula (1), Si, Mn, P, Ni, V, Ti, Nb,
[O] represents the weight percent of each element, and λ represents the welding heat input (KJ/cm). The composition of the welding material according to the present invention is SUS304
This was obtained by induction from welding test data conducted using stainless steel pieces as the welding base material and SUS308 stainless steel as the welding material. Next, this welding test and induction method will be explained. Welding Test Using various SUS308 stainless steel pieces as welding materials, two SUS304 stainless steel pieces were welded by various welding methods to produce test pieces with a GL of 30 mm and an outer diameter of 6 mm in each case. For each test piece, the tensile strength T 1 of the weld metal at room temperature, the tensile strength T 2 of the weld metal at 550°C, and the creep rupture elongation EL of the weld metal after 5000 hours at 550°C were measured using standard methods. Subsequently, the above T 1 obtained for each specimen and
The correlation diagram shown in FIG. 1 was obtained by plotting the EL value, and the correlation diagram shown in FIG. 2 was obtained by plotting the T 2 and EL values. In the figure, curve M indicates the average line of these data, and curve U and curve L indicate curve M
The upper limit line and lower limit line drawn based on the above are shown, respectively. However, this correlation diagram was created in order to derive a composition having the characteristics that the present invention is trying to obtain, and from this point of view, it was created using carefully selected data. Therefore, actual data using SUS304 stainless steel as a welding material has even greater variation than this. In addition, in Figures 1 and 2, ○, △,
□, ◇, and ☆ indicate that the test pieces related to the plots were produced by the following welding methods, respectively. ○: GTA (Gas Tungsten Arc welding) △: Covered arc welding □: Submerged arc welding ◇: GMA (Gas Metal Arc welding) ☆: Electron beam welding In addition, ● and ▲ in the figure indicate data related to examples described later. ing. Recursive Method The composition of the welding material according to the present invention was determined from the data shown in FIGS. 1 and 2 as follows. First, the goal that we are trying to achieve with the stainless steel welding material of the present invention is that the weld metal when welding SUS304 stainless steel has an EL≧10% (550℃×5000℃).
time value), T 1 = 53-62Kgf/mm 2 , T 2 ≦39Kg
It was set to have a characteristic of f/mm 2 . 550℃×5000
The creep rupture elongation EL over time was set at 10% or more because this is the range that most of the data input in Figures 1 and 2 satisfies, and some data below 10% are within the range. This is because I thought that even if it did, I would be able to obtain a value that was close to that. If the above-mentioned EL setting value is increased to 15% or 20%, even better creep ductility can be obtained, but various conditions become stricter, and there are very few products that can satisfy these conditions. It has no choice but to be limited to a narrow range. By the way, when considering obtaining a value of 10% or more as EL at 550℃ x 5000 hours on the correlation diagram in Figure 1, if the average line M is used as a guide, the weld metal should be 53 to 62 kgf/mm 2 . It can be considered that it is sufficient to have T 1 . Here, 35Kgf/mm 2 is the minimum tensile strength of the base material SUS304 stainless steel. Also, when considering the average line M on the correlation diagram in Figure 2 as a guide, if T 2 is 39Kgf/mm 2 or less,
It can be seen that an EL value of 10% or more (550°C x 5000 hours) is obtained, and a weld metal with extremely excellent creep ductility can be obtained especially if T 2 is set to 35 Kgf/mm 2 or less. On the other hand, in FIGS. 1 and 2, the lower limit line L
When considering creep rupture elongation EL of 10% or more using as a guideline, the regulatory conditions regarding T 1 and T 2 are even stricter than when using the average line M. Also, using the upper limit line L as a guide, creep rupture elongation EL
When considering that the tensile strength is 10% or more, the values of the tensile strengths T 1 and T 2 become large. In the present invention, T 1 ,
10 by keeping T 2 as low as possible.
% or more, the average line M was used as a guideline. Next, by performing multiple regression analysis, we found that 550
The influence of welding wire chemical composition on creep rupture elongation EL after 5000 hours at °C was determined. According to the results, the creep rupture elongation EL (%) after 550°C x 5000 hours is given by the following equation (1). EL=-60-22Si+12Mn+103P+5.3Ni +25V-20Ti-40Nb+103[O]+0.2λ...(1) Here, Si, Mn, P, Ni, V, Ti, Nb,
[O] represents the weight percent of each element, and λ represents the welding heat input (KJ/cm). In addition to these elements, C, S, Cr, Mo, B, Cu, Co, Al, N
Multiple regression analysis was also conducted for EL (%), but the t value, which is one of the parameters used to see the influence on EL (%), was low and the contribution rate was low, so it was deleted. As mentioned above, five different welding methods are used: GTA, coated arc, submerged arc, GMA, and electron beam welding.
The formula includes chemical component factors (such as the amount of O) and thermal factors (heat input λ) that affect EL (%) due to differences in welding methods, so differences in welding methods do not really matter. Must not be. Therefore, the above formula (1) is
It is considered that this method can be applied to all conventional welding methods. From the above, the creep ductility aimed at in the present invention,
That is, a weld metal having a creep rupture elongation EL of 10% or more at 550°C x 5000 hours can be obtained by determining the amount of each component element that can satisfy EL≧10 in equation (1). The composition of the welding material of the present invention described above was obtained in this manner, and as shown in the results of the examples described later, according to the welding material that conforms to the composition range of the present invention, the composition of the welding material of the present invention is 550℃
Creep rupture elongation over time of 10% or more can be obtained, and at the same time, tensile strength at room temperature and high temperature can be satisfied within the appropriate range. In this case, S,
The reason for placing upper limits on V, Ti, Nb, and B is that adding too much of these components will impair the creep rupture elongation of the weld metal. Further, upper and lower limits were set for O and N in consideration of weldability. Although the amounts of O and N are not regulated in conventional SUS308 welding materials, too much of these can cause welding defects called blowholes.
Therefore, the welding material of the present invention in which the amounts of O and N are regulated as described above can be expected to improve weldability. In addition, the chemical composition of the welding wire according to the present invention described above and the mechanical properties of the weld metal based on the chemical composition of the welding wire according to the present invention are
The results are summarized in a table (the chemical components and mechanical properties of Examples described below are also listed). FN, which is listed as one of the mechanical properties of weld metal in the same table, is
δ ferrite amount (ferrite number according to Daylong phase diagram). Regarding FN, 0.5FN or more is necessary to reduce cracking susceptibility during welding, but if it is too large, δ ferrite will transform into σ phase due to long-term heating, reducing creep ductility. From this point of view, it is desirable to set it to 0.5 to 10FN as described in the table. For reference, the chemical composition of SUS308 welding material is shown in Table 2.

【表】【table】

【表】【table】

【表】 以下に本発明の実施例を説明する。 実施例 1 定法により、第1表の実施例1の欄に示した成
分組成を有する溶接材料を製造し、これを溶接ワ
イヤに加工した。 次に、この溶接ワイヤを用い、SUS304ステン
レス鋼片をGTA溶接法により溶接してGL=30
mm、外径6mmの試験片を作製した。この試験片に
ついて、溶接金属の常温における引張り強さT1
溶接金属の550℃における引張り強さT2、溶接金
属の550℃×5000時間後におけるクリープ破断伸
びELを定法により測定した。その結果を第1表
中に記載すると共に、第1図および第2図中に●
で示した。この結果から明かなように、この実施
例の溶接材料によれば所期のクリープ延性および
所定の引張り強さをもつた溶接金属を得ることが
できる。 実施例 2 定法により、第1表の実施例2の欄に示した成
分組成を有する溶接材料を製造し、これを溶接ワ
イヤに加工した。この溶接ワイヤを用い、被覆ア
ーク溶接により実施例1の場合と同様の試験片を
作製し、該試験片を用いて実施例1の場合と同じ
試験を行なつた。その結果を第1表中に記載する
と共に、第1図および第2図中に▲で示した。こ
の結果から明かなように、この実施例の溶接材料
による場合も、所期のクリープ延性および所定の
引張り強さをもつた溶接金属を得ることができ
る。 以上詳述したように、本発明のステンレス鋼溶
接材料によれば、高温機器、特にSUS304ステン
レス鋼からなる高温機器の溶接に使用した際、溶
接金属の常温および高温における引張り強度が所
定の適正値を満足し、且つ長時間高温使用後のク
リープ破断延性が低下しない溶接金属が得られる
等、顕著な効果を奏し得るものである。
[Table] Examples of the present invention will be described below. Example 1 A welding material having the composition shown in the Example 1 column of Table 1 was produced by a standard method, and processed into a welding wire. Next, using this welding wire, weld a SUS304 stainless steel piece using the GTA welding method so that GL = 30
mm, and a test piece with an outer diameter of 6 mm was prepared. Regarding this test piece, the tensile strength of the weld metal at room temperature T 1 ,
The tensile strength T 2 of the weld metal at 550°C and the creep rupture elongation EL of the weld metal after 5000 hours at 550°C were measured by standard methods. The results are listed in Table 1, and in Figures 1 and 2.
It was shown in As is clear from these results, according to the welding material of this example, a weld metal having desired creep ductility and predetermined tensile strength can be obtained. Example 2 A welding material having the composition shown in the Example 2 column of Table 1 was produced by a standard method, and processed into a welding wire. Using this welding wire, a test piece similar to that in Example 1 was prepared by covered arc welding, and the same test as in Example 1 was conducted using this test piece. The results are listed in Table 1 and indicated by ▲ in FIGS. 1 and 2. As is clear from these results, even when using the welding material of this example, a weld metal having the desired creep ductility and predetermined tensile strength can be obtained. As detailed above, according to the stainless steel welding material of the present invention, when used for welding high-temperature equipment, especially high-temperature equipment made of SUS304 stainless steel, the tensile strength of the weld metal at room temperature and high temperature can be maintained at a predetermined appropriate value. It is possible to obtain a weld metal that satisfies the above requirements and whose creep rupture ductility does not deteriorate after long-term use at high temperatures, and other remarkable effects can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSUS304ステンレス鋼片を種々の溶接
方法で溶接した試験片について、その溶接金属の
常温における引張り強さと550℃×5000時間での
クリープ破断伸びとの相関を示す図であり、第2
図は溶接金属の550℃における引張り強さと550℃
×5000時間でのクリープ破断伸びとの相関を示す
図である。
Figure 1 is a diagram showing the correlation between the tensile strength of the weld metal at room temperature and the creep rupture elongation at 550°C x 5000 hours for test pieces made of SUS304 stainless steel pieces welded by various welding methods.
The figure shows the tensile strength of weld metal at 550℃ and 550℃
It is a figure showing the correlation with creep rupture elongation at ×5000 hours.

Claims (1)

【特許請求の範囲】 1 下記(1)式で示されるクリープ破断伸びEL
(%)≧10を満足し、下記の組成からなることを特
徴とするステンレス鋼溶接材料。 EL=−60−22Si+12Mn+103P+5.3Ni +25V−20Ti−40Nb+103[O]+0.2λ ……(1) C;0.02〜0.07重量% Si;0.05〜0.90重量% Mn;1.5〜3.0重量% P;0.01〜0.04重量% S;0.030重量%以下 Ni;9.0〜11.0重量% Cr;18.0〜21.0重量% Mo;3.0重量%以下 V;0.15重量%以下 Ti;0.10重量%以下 B;0.02重量%以下 O;0.001〜0.01重量% N;0.005〜0.10重量% Feおよび不可避的不純物;残部 尚、式(1)中、Si、Mn、P、Ni、V、Ti、Nb、
[O]は夫々各元素の重量%、λは溶接入熱
(KJ/cm)を示す。
[Claims] 1 Creep rupture elongation EL expressed by the following formula (1)
A stainless steel welding material that satisfies (%)≧10 and has the following composition. EL=−60−22Si+12Mn+103P+5.3Ni +25V−20Ti−40Nb+103[O]+0.2λ ……(1) C; 0.02 to 0.07 wt% Si; 0.05 to 0.90 wt% Mn; 1.5 to 3.0 wt% P; 0.01 to 0.04 Weight% S; 0.030% by weight or less Ni; 9.0-11.0% by weight Cr; 18.0-21.0% by weight Mo; 3.0% by weight or less V; 0.15% by weight or less Ti; 0.10% by weight or less B; 0.02% by weight or less O; 0.001- 0.01% by weight N; 0.005 to 0.10% by weight Fe and unavoidable impurities; remainder In formula (1), Si, Mn, P, Ni, V, Ti, Nb,
[O] represents the weight percent of each element, and λ represents the welding heat input (KJ/cm).
JP24050483A 1983-12-20 1983-12-20 Stainless steel welding material Granted JPS60130496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24050483A JPS60130496A (en) 1983-12-20 1983-12-20 Stainless steel welding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24050483A JPS60130496A (en) 1983-12-20 1983-12-20 Stainless steel welding material

Publications (2)

Publication Number Publication Date
JPS60130496A JPS60130496A (en) 1985-07-11
JPH0375278B2 true JPH0375278B2 (en) 1991-11-29

Family

ID=17060497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24050483A Granted JPS60130496A (en) 1983-12-20 1983-12-20 Stainless steel welding material

Country Status (1)

Country Link
JP (1) JPS60130496A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2831051B2 (en) * 1989-09-22 1998-12-02 株式会社神戸製鋼所 Austenitic stainless steel welding wire
JP2622516B2 (en) * 1992-03-25 1997-06-18 住友金属工業株式会社 Welding material for heat resistant steel with excellent creep strength
CN106736028A (en) * 2016-12-15 2017-05-31 昆山京群焊材科技有限公司 A kind of austenitic stainless steel welding wire for submerged-arc welding
JP7428601B2 (en) * 2020-06-29 2024-02-06 株式会社神戸製鋼所 Gas shielded arc welding method, structure manufacturing method and shielding gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551909A (en) * 1978-06-17 1980-01-09 Nippon Steel Corp Welding wire for austenitic stainless steel
JPS5653897A (en) * 1979-10-04 1981-05-13 Nippon Steel Corp Austenite stainless welding wire superior in resistance to high-temperature creep
JPS58202993A (en) * 1982-05-19 1983-11-26 Daido Steel Co Ltd Welding wire rod of stainless steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551909A (en) * 1978-06-17 1980-01-09 Nippon Steel Corp Welding wire for austenitic stainless steel
JPS5653897A (en) * 1979-10-04 1981-05-13 Nippon Steel Corp Austenite stainless welding wire superior in resistance to high-temperature creep
JPS58202993A (en) * 1982-05-19 1983-11-26 Daido Steel Co Ltd Welding wire rod of stainless steel

Also Published As

Publication number Publication date
JPS60130496A (en) 1985-07-11

Similar Documents

Publication Publication Date Title
US4227925A (en) Heat-resistant alloy for welded structures
JPH028840B2 (en)
JPH0565762B2 (en)
JP2018122329A (en) Coated arc welding electrode
EP0075416B1 (en) Heat treatment of controlled expansion alloys
JPH0375278B2 (en)
JPH0814014B2 (en) Welded steel pipe
JPS6123259B2 (en)
JP2831051B2 (en) Austenitic stainless steel welding wire
EP0076574B1 (en) Heat treatment of controlled expansion alloys
JPS62180043A (en) Austenitic-ferritic two-phase stainless cast steel having low sensitivity to cracking by thermal shock, superior corrosion resistance and mechanical property
JPH0114991B2 (en)
JPS58177444A (en) Heat treatment of ni-cr alloy
JPH01215491A (en) Covered arc welding electrode for cr-mo low alloy steel
JPH0570694B2 (en)
US2871118A (en) Resistance to hot-cracking of chromiumnickel steel welds
JPS6144136B2 (en)
US4265983A (en) Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging
JPH0219447A (en) Ferritic stainless steel
JPS62224493A (en) Wire for welding 9cr-2mo steel
US2481386A (en) Weld and weld rod
JPS61180693A (en) Welding method of high-ductility austenite stainless steel
Binkley STATE-OF-THE-ART REVIEW: WELDABILITY OF STABILIZED 2 1/4 Cr--1 Mo STEELS.
JPS6039118A (en) Manufacture of austenitic stainless steel containing boron and having superior resistance to intergranular corrosion and intergranular stress corrosion cracking
JPS6027494A (en) Wire for welding stainless steel