[go: up one dir, main page]

JPH0366369B2 - - Google Patents

Info

Publication number
JPH0366369B2
JPH0366369B2 JP58046533A JP4653383A JPH0366369B2 JP H0366369 B2 JPH0366369 B2 JP H0366369B2 JP 58046533 A JP58046533 A JP 58046533A JP 4653383 A JP4653383 A JP 4653383A JP H0366369 B2 JPH0366369 B2 JP H0366369B2
Authority
JP
Japan
Prior art keywords
steel
less
magnetic
manufacturing
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58046533A
Other languages
Japanese (ja)
Other versions
JPS59173219A (en
Inventor
Giichi Moryama
Nobuyuki Tanaka
Isamu Hirasa
Yutaka Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Panasonic Holdings Corp
Original Assignee
Toyo Kohan Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP4653383A priority Critical patent/JPS59173219A/en
Publication of JPS59173219A publication Critical patent/JPS59173219A/en
Publication of JPH0366369B2 publication Critical patent/JPH0366369B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Non-Insulated Conductors (AREA)
  • Heat Treatment Of Steel (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は磁気シールド用素材の製造法に関し、
より詳しくは工程の省略を図りつつ一方で高度の
シールド効果が得られるカラー受像管用内部磁気
シールドを製造するに適した磁気シールド用素材
の製造法に関する。 従来一般に地磁気その他の外部擾乱磁場が電子
ビームに影響するのを避けるため、カラー受像管
内あるいは外に漏斗状の磁気シールドを設ける事
が行われている。 就中カラー受像管内部に封入される磁気シール
ドが一般的であり、この場合素材として用いられ
る強磁性体である鋼板(鋼帯)には、透磁率が高
いこと、成形加工性が良いこと、機械的強度が大
きいことの他、熱放射率が高く、かつガス放出の
少ないことなどが特に要求される。 従来これらカラー受像管用磁気シールドは次の
ようにして製造されていた。 すなわち、リムド鋼(キヤツプド鋼)ないしア
ルミキルド鋼熱延鋼帯に圧下率50%以上の一次冷
間圧延を施して中間板厚に仕上げた後、電気清浄
装置を通してから所謂オープンコイル焼鈍を施し
て脱炭処理をし、ついで圧下率40〜90%の二次冷
間圧延を施し、電気清浄の後、タイトコイル状の
箱型焼鈍を施す。 しかる後調質圧延(圧下率0.3〜3%)を行な
いついでスリツターを経てコイル状のシールド用
素材(鋼帯)を製造する。次にこのシールド用素
材よりブランキングしてブランクを切り出し、ブ
ランクを絞り加工するか又は折曲加工後重合部を
点溶接するか等してシールド構体となし、ついで
還元性雰囲気中でシールド構体を(650〜800℃)
×(30〜60分)加熱する磁気特性回復、向上のた
めの所謂磁性焼鈍を行なう。しかる後更に防錆及
び熱射射率向上のためにシールド構体に黒化処理
を施す。黒化処理は例えば水蒸気添加空気の様な
湿潤雰囲気及び/もしくはCO2等のガス雰囲気中
で(550〜600℃)×(10〜30分)加熱する工程であ
る。 以上が従来の磁気シールド製造法であるが、こ
れには下記の幾つかの問題点があつた。 (1) オープンコイル焼鈍、箱型焼鈍、磁性焼鈍及
び黒化処理の4つの加熱工程を必要とするので
工程が複雑であり、かつエネルギー的に不経済
であり、性質的にも結晶粒粗大化を招くので機
械的強度が低下し、取扱い中の変形を生じ易
い。 (2) 調質圧延工程が不可欠である。 (3) 上記の様にして結晶粒の粗大化したシールド
構体表面に生成した黒化膜は組織が粗く、緻密
さを欠く傾向があり、従つて黒化膜の脱落を生
じ易い。 (4) 磁気特性(透磁率)が必ずしも充分とは云え
ない。 (5) コスト的に不利である。 そこで本発明者等は、特に磁気シールド構体の
成形加工法がプレスによる絞り加工から折曲、点
溶接加工等に移行した事を考慮するとシールド用
素材は必ずしも高度のプレス成形性を有しなくて
もよい事になるから、従つて従来の磁気シールド
用素材製造法において箱型焼鈍と調質圧延を省略
し、かつシールド加工法における磁性焼鈍をも省
略可能であることに着目した上で種々考察及び実
験を重ねた結果、本発明に到達した。 本発明の目的は製造工程を省略して省エネルギ
ー及びコストダウンを図りつつ、磁気的性質の優
れたカラー受像管用内部磁気シールドを得るに適
した磁気シールド用素材の製造法を提供するにあ
る。 本発明の他の目的はシールド構体としての工程
中及び製品としての機械的強度即ち剛性の高い磁
磁気シールドを得るに適した磁気シールド用素材
の製造法を提供するにある。 本発明の更に他の目的は、製品結晶粒度が細密
であり、従つて緻密な黒化膜を有する磁気シール
ドを得るに適した磁気シールド用素材の製造法を
提供するにある。 本発明により、 ブランクを折曲加工し、黒化処理を施した後、
結晶粒度をASTM No.7〜9、比透磁率
(0.350e)を700以上とするためのカラー受像管内
部磁気シールド用素材の製造法において、低炭素
リムド鋼(キヤツプド鋼)熱延鋼帯に、少なくと
も一次冷間圧延、処理後のC成分が0.01%以下と
なるオープンコイル脱炭焼鈍、圧下率が40〜90%
の二次冷間圧延を施し、その後の箱型焼鈍と調質
圧延とを省略した事を特徴とするカラー受像管内
部磁気シールド用素材の製造法が提供される。 以下に本発明を実施例を交えて詳細に説明す
る。 第1図は磁気シールドを内装したカラー受像管
の断面図である。 第1図においてガラスバルブ1のパネル部1A
からフアンネル部1Bの内側にかけて内部磁気シ
ールド2が装着されている状態が示されている。
3本の電子ビーム4は電子銃3より発射され、水
平、垂直偏向コイル5によつて駆動されてシヤド
ウマスク6上を走査し、パネル内壁の螢光膜7に
射突して発光する。この間の電子ビーム行程が外
部擾乱磁場によつてズレ(mislanding)を生じ
ない様に機能するのが磁気シールド2である。 第2図、第3図は夫々従来の絞り加工による磁
気シールド及び本発明の折曲、点溶接加工による
磁気シールドの斜視図である。なお、磁気シール
ド構体への加工法としては弾性限内の曲げ加工を
する場合や点溶接以外の接合法を用いる場合もあ
る。 従来の絞り加工(第2図)では成形加工度が大
きいので、柔かく(低硬度、低降伏点)、かつ加
工度の良い(高ランクフオードr値、n値、少降
伏点伸び)ことが必要であるが、折曲加工(第3
図)では補強用のビードをつける程度しか絞り一
張出加工はなく、専ら折曲のみであるから絞り加
工の場合(第2図)のように加工性は余り必要と
しない。 また磁気的性質について述べると、外部擾乱磁
場として最も普通の地磁気(1ガウス以下)によ
つても、例えば、磁気シールドを装備しない20イ
ンチ形カラー受像管の場合、螢光面における電子
ビーム射突点に100μm以上のずれが生じる。内
部磁気シールドによるシールド効果を向上させる
ためには、内部磁気シールドの構造も重要である
が、使用する材料の透磁率を高めることとがより
重要で、実用し得る鋼帯の比透磁率(0.35エルス
テツド)は経験上650以上必要である。 透磁率を高めるためには、磁壁移動を阻害する
炭素Cおよび窒素N並びにこれらの析出物を極少
にするとともに、結晶粒界を少なくし、結晶粒径
を大にする必要がある。本発明は、CおよびNを
少なくし、結晶粒径を比較的小に保つて高い透磁
率を得ようとするものである。 従つて本発明に用いる素材鋼種はAlN等の析
出物の多いアルミキルド鋼であつてはならず、イ
ンゴツト材リムド鋼(キヤツプド鋼を含む)であ
る必要がある。なお、キヤツプド鋼は蓋打ち時間
を加減してリミングアクシヨンと介在物の分散を
図つたリムド鋼であり、リムド鋼の一種である。
なお、C,N成分を減らすために製鋼段階でDH
法、RH法などの炉外精錬法を採用し、後のオー
プンコイル焼鈍工程を簡素化もしくは省略する事
も可能である。 以下に本発明に用いるべき鋼成分について述べ
る。 Cは、プレス成形性および透磁率を高め、ガス
放出を少なくするために最終的に0.01%以下にす
ることが必要である。Cが0.01%以下のシールド
用素材は、Cが0.12%以下の低炭素鋼熱延鋼帯を
一次冷間圧延により、中間厚み0.4〜1.0mmの鋼帯
となし、電気清浄後オープンコイル焼鈍法を用い
て脱炭処理を行なうことにより得られる。 Mnは0.10%未満では熱間脆性が起こり、熱間
圧延を行ないにくく、0.50%を超えると鋼帯が硬
化し、プレス成形法が悪くなる。従つてMnは
0.10〜0.50%の範囲とした。 Siは、非金属介在物の主要な構成因子をなして
おり、この介在物の存在は前述のように磁気特性
を劣化させ、かつ黒化膜の密着性を劣化させるの
で少ない方が望ましい。但し、耐火物からの混入
は不可避であるため0.02%以下とした。 Pは、含有量が増加すると鋼の硬化によりプレ
ス成形性を阻害するので0.03%以下とした。 Sは、硫化物系介在物が、Si同様に磁気特性を
劣化させる傾向があり、また熱間加工性も悪くす
るので、0.03%以下とした。 Sol、Alは、含有量が多いと黒化処理時におい
て結晶粒成長を阻害し、磁気特性に悪影響を与
え、かつ黒化膜密着性を劣化させるので0.01%以
下とした。 Nは、プレス成形性並びに磁気特性を悪くする
ので可能な限り少ない方が望ましいが、脱窒可能
下限が実用上0.0001%以上であるので、範囲を
0.0001〜0.01%とした。 つぎに製造工程について述べる。 第4図は本発明と従来の製造工程とを対比して
示した工程図である。 第4図によつて判る様に本発明では二次冷延後
の箱型焼鈍、調質圧延を省略する事が出来、更に
カラー受像管メーカにおいて成形加工後の磁性焼
鈍を省略する事が出来る。 以下にその技術内容について詳細に説明する。 本発明の特徴は、要するに二次冷延後充分に加
工硬化した状態(フルハード)で折曲、点溶接加
工等によりシールド構体に成形加工し、従来技術
程度の黒化処理(例えば575℃×15分加熱)工程
において、黒化と同時に再結晶と結晶粒成長によ
る歪の除去及び磁気特性の向上を図るところにあ
る。すなわち二次冷延における加工硬化歪を再結
晶の駆動力として利用する訳である。従つて本発
明は第4図に於ける従来法と比較して把握される
べきものであるが、その用途は旧シールド加工法
でなく、新シールド加工法である。すなわち本発
明が期待される作用効果を発揮するのはあくまで
も新シールド加工法との組合せに於いてである。 本発明実施例では、前述の成分範囲のリムド鋼
(キヤツプド鋼)熱延鋼帯を第4図の本発明工程
に従つて鋼板メーカにおいて板厚0.15mmのシール
ド用素材を造つた。 この場合、二次冷延率(圧下率)は75%であ
る。この鋼帯は、降状点伸びがないのでストレツ
チヤストレインは発生せず、かつ、CおよびNが
少ないために二次冷延のままで内部磁気シールド
構体に折曲成形加工することが可能であり、箱型
焼鈍及び調質圧延は不要である。次いでカラー受
像管メーカにおいて該磁気シールド構体を湿潤雰
囲気及び/もしくはガス雰囲気中、575℃の温度
で15分間加熱して表面黒化処理を行なう。その結
晶、結晶粒径がASTM No.7〜9で比透磁率
(0.35エルステツド)750程度の内部磁気シールド
を得ることができた。 第1表に本発明実施例及び比較例の化学組成を
示す。炭素の欄の上段はレードル分析値、下段は
脱炭処理後の組成を示す。このような各種の化学
組成からなる鋼を熱間圧延で2.0mmに圧延し、さ
らに一次冷間圧延で0.6mmまで圧延する。次いで
オープンコイル焼鈍法により約710℃×10時間脱
炭性雰囲気(H2+N2混合ガス、露点+20℃)中
で均熱し、ついで約710℃×7時間ドライガス
(露点−40℃)中で乾燥し、C:0.001%以下に脱
炭した。 ついで二次冷延(圧下率75%)して板厚0.15mm
の本発明シールド用素材を造つた。 なお比較例として二次冷延後更に630℃×14時
間の光輝箱型焼鈍と、約1%の圧下率の乾燥調質
圧延を施した試料を作製した。 第1表において本発明実施例の試料Aはリムド
鋼(キヤツプド鋼)を強脱炭したものであり、試
料Bは強脱窒したものであり、試料Cは強脱炭及
び強脱窒したものである。比較例の試料Dはアル
ミキルド鋼連鋳材を通常脱炭したものであり、試
料Eは、リムド鋼(キヤツプド鋼)を通常脱炭し
たものである。 第2表は黒化処理条件別の比透磁率、ガス放出
量、機械的性質について本発明実施例の効果を比
The present invention relates to a method for manufacturing a material for magnetic shielding,
More specifically, the present invention relates to a method for manufacturing a magnetic shielding material suitable for manufacturing an internal magnetic shield for a color picture tube, which can achieve a high degree of shielding effect while omitting steps. Conventionally, in order to prevent the earth's magnetism and other external disturbing magnetic fields from affecting the electron beam, a funnel-shaped magnetic shield has been provided inside or outside the color picture tube. In particular, a magnetic shield enclosed inside a color picture tube is common, and in this case, the ferromagnetic steel plate (steel strip) used as the material has high magnetic permeability, good formability, In addition to high mechanical strength, high thermal emissivity and low gas emissions are particularly required. Conventionally, these magnetic shields for color picture tubes have been manufactured in the following manner. In other words, rimmed steel (capped steel) or aluminium-killed hot-rolled steel strip is subjected to primary cold rolling at a reduction rate of 50% or more to finish it to an intermediate thickness, and then passed through an electric cleaning device and then subjected to so-called open coil annealing to remove it. It is subjected to charcoal treatment, then subjected to secondary cold rolling at a reduction rate of 40 to 90%, and after electrical cleaning, box-shaped annealing is applied to form a tight coil. Thereafter, it is subjected to skin pass rolling (reduction ratio of 0.3 to 3%) and then passed through a slitter to produce a coiled shielding material (steel strip). Next, blanks are cut out from this shielding material, the blanks are drawn, or the overlapping parts are spot welded after bending to form a shield structure, and then the shield structure is assembled in a reducing atmosphere. (650~800℃)
x (30 to 60 minutes) Perform so-called magnetic annealing to recover and improve magnetic properties. Thereafter, the shield structure is blackened to prevent rust and improve heat radiation. The blackening treatment is a process of heating (550 to 600° C.) x (10 to 30 minutes) in a humid atmosphere such as steam-added air and/or a gas atmosphere such as CO2 . The above is a conventional magnetic shield manufacturing method, but this method has several problems as described below. (1) Since it requires four heating steps: open coil annealing, box annealing, magnetic annealing, and blackening treatment, the process is complex, energy-efficient, and tends to coarsen grains. This results in a decrease in mechanical strength and a tendency to deform during handling. (2) Skin pass rolling process is essential. (3) The blackened film formed on the surface of the shield structure with coarse crystal grains as described above tends to have a coarse structure and lack density, and therefore is likely to fall off. (4) Magnetic properties (magnetic permeability) are not necessarily sufficient. (5) It is disadvantageous in terms of cost. Therefore, the present inventors believe that shielding materials do not necessarily have a high degree of press formability, especially considering that the forming method for magnetic shield structures has shifted from drawing using presses to bending, spot welding, etc. Therefore, various considerations were made, focusing on the fact that box annealing and temper rolling can be omitted in the conventional manufacturing method for magnetic shield materials, and that magnetic annealing in the shield processing method can also be omitted. As a result of repeated experiments, we have arrived at the present invention. An object of the present invention is to provide a method for manufacturing a magnetic shielding material suitable for obtaining an internal magnetic shield for a color picture tube with excellent magnetic properties while saving energy and reducing costs by omitting manufacturing steps. Another object of the present invention is to provide a method for manufacturing a magnetic shield material suitable for obtaining a magnetic shield having high mechanical strength, that is, rigidity, during the process of forming a shield structure and as a product. Still another object of the present invention is to provide a method for producing a magnetic shield material suitable for obtaining a magnetic shield having a fine crystal grain size and a dense blackened film. According to the present invention, after the blank is bent and subjected to blackening treatment,
In the manufacturing method of the material for the internal magnetic shield of color picture tubes, which has a crystal grain size of ASTM No. 7 to 9 and a relative magnetic permeability (0.350e) of 700 or more, low carbon rimmed steel (capped steel) hot-rolled steel strip is used. , at least primary cold rolling, open coil decarburization annealing with a C content of 0.01% or less after treatment, and a rolling reduction of 40 to 90%.
Provided is a method for producing a material for a magnetic shield inside a color picture tube, which is characterized by performing secondary cold rolling and omitting the subsequent box annealing and temper rolling. The present invention will be explained in detail below with reference to examples. FIG. 1 is a sectional view of a color picture tube equipped with a magnetic shield. In FIG. 1, the panel portion 1A of the glass bulb 1
A state in which an internal magnetic shield 2 is attached from the inside of the funnel portion 1B is shown.
Three electron beams 4 are emitted from an electron gun 3, are driven by horizontal and vertical deflection coils 5, scan a shadow mask 6, impinge on a fluorescent film 7 on the inner wall of the panel, and emit light. The magnetic shield 2 functions to prevent the electron beam path from being mislanded by an external disturbing magnetic field during this time. FIGS. 2 and 3 are perspective views of a magnetic shield formed by a conventional drawing process and a magnetic shield formed by a bending and spot welding process according to the present invention, respectively. Note that as a processing method for the magnetic shield structure, there are cases where bending within the elastic limit is performed, and there are cases where a joining method other than spot welding is used. Conventional drawing processing (Figure 2) requires a large degree of forming, so it is necessary to be soft (low hardness, low yield point) and have good workability (high rank Ford r value, n value, low yield point elongation). However, the bending process (third
In the case of drawing (Fig. 2), the drawing process only involves the addition of reinforcing beads, and only bending is required, so it does not require much workability as in the case of drawing (Fig. 2). Regarding magnetic properties, even with the most common external disturbance magnetic field, terrestrial magnetism (1 Gauss or less), for example, in the case of a 20-inch color picture tube without a magnetic shield, the electron beam impinges on the fluorescent surface. A deviation of 100 μm or more occurs at the point. In order to improve the shielding effect of the internal magnetic shield, the structure of the internal magnetic shield is important, but it is even more important to increase the magnetic permeability of the material used. Based on my experience, 650 or more is required for Elsted. In order to increase the magnetic permeability, it is necessary to minimize the amount of carbon C, nitrogen N, and their precipitates that inhibit domain wall motion, as well as to reduce the number of grain boundaries and increase the grain size. The present invention aims to obtain high magnetic permeability by reducing C and N and keeping the crystal grain size relatively small. Therefore, the material steel used in the present invention must not be aluminum killed steel with many precipitates such as AlN, but must be ingot-rimmed steel (including capped steel). Note that capped steel is rimmed steel in which the rimming action and inclusions are dispersed by adjusting the capping time, and is a type of rimmed steel.
In addition, in order to reduce C and N components, DH is applied at the steel manufacturing stage.
It is also possible to simplify or omit the subsequent open coil annealing process by adopting an outside-furnace refining method such as the RH method or the RH method. The steel components to be used in the present invention will be described below. C ultimately needs to be 0.01% or less in order to improve press formability and magnetic permeability and to reduce gas release. The material for shielding with a C content of 0.01% or less is produced by first cold rolling a low carbon steel hot-rolled steel strip with a C content of 0.12% or less into a steel strip with an intermediate thickness of 0.4 to 1.0 mm, which is then electrically cleaned and then subjected to open coil annealing. It can be obtained by decarburizing using. If Mn is less than 0.10%, hot brittleness occurs and hot rolling becomes difficult, and if it exceeds 0.50%, the steel strip will harden and the press forming method will deteriorate. Therefore, Mn is
The range was 0.10% to 0.50%. Si is a major component of nonmetallic inclusions, and the presence of these inclusions deteriorates the magnetic properties and the adhesion of the blackened film as described above, so it is desirable to have a small amount. However, since contamination from refractories is unavoidable, the content was set at 0.02% or less. P content was set to 0.03% or less because as the content increases, it hardens the steel and inhibits press formability. S is set to 0.03% or less because sulfide-based inclusions, like Si, tend to deteriorate magnetic properties and also impair hot workability. Sol and Al are set at 0.01% or less because if the content is too high, it inhibits crystal grain growth during the blackening process, adversely affects the magnetic properties, and deteriorates the adhesion of the blackened film. N deteriorates press formability and magnetic properties, so it is desirable to reduce it as much as possible, but the lower limit of possible denitrification is practically 0.0001% or more, so the range should be limited.
It was set at 0.0001 to 0.01%. Next, we will discuss the manufacturing process. FIG. 4 is a process chart showing a comparison between the present invention and a conventional manufacturing process. As can be seen from FIG. 4, in the present invention, box annealing and temper rolling after secondary cold rolling can be omitted, and color picture tube manufacturers can also omit magnetic annealing after forming. . The technical content will be explained in detail below. The feature of the present invention is that after the secondary cold rolling, the shield structure is formed into a shield structure by bending, spot welding, etc. in a sufficiently work-hardened state (fully hardened), and the blackening treatment (for example, 575°C In the 15-minute heating process, the blackening process simultaneously removes distortion due to recrystallization and crystal grain growth and improves magnetic properties. In other words, the work hardening strain in the secondary cold rolling is used as a driving force for recrystallization. Therefore, the present invention should be understood by comparing it with the conventional method shown in FIG. 4, but its application is not the old shield processing method but the new shield processing method. That is, the present invention exhibits the expected effects only in combination with the new shield processing method. In an example of the present invention, a shielding material having a thickness of 0.15 mm was produced at a steel plate manufacturer using hot-rolled rimmed steel (capped steel) steel strips having the above-mentioned composition range according to the process of the present invention shown in FIG. In this case, the secondary cold rolling ratio (reduction ratio) is 75%. This steel strip has no elongation at the drop point, so no stretch strain occurs, and since it contains little C and N, it can be bent and formed into an internal magnetic shield structure without being secondary cold rolled. Yes, box annealing and temper rolling are not required. Next, at a color picture tube manufacturer, the magnetic shield structure is heated in a humid atmosphere and/or gas atmosphere at a temperature of 575° C. for 15 minutes to perform a surface blackening treatment. It was possible to obtain an internal magnetic shield with a crystal grain size of ASTM No. 7 to 9 and a relative magnetic permeability (0.35 oersted) of about 750. Table 1 shows the chemical compositions of Examples and Comparative Examples of the present invention. The upper row of the carbon column shows the ladle analysis value, and the lower row shows the composition after decarburization. Steels having various chemical compositions are hot rolled to a thickness of 2.0 mm, and then primary cold rolled to a thickness of 0.6 mm. Next, it was soaked in a decarburizing atmosphere (H 2 + N 2 mixed gas, dew point +20°C) for about 710°C x 10 hours using the open coil annealing method, and then soaked in a dry gas (dew point -40°C) for about 710°C x 7 hours. It was dried and decarburized to C: 0.001% or less. Then, it is subjected to secondary cold rolling (reduction ratio 75%) to a plate thickness of 0.15mm.
A material for shielding according to the present invention was prepared. As a comparative example, a sample was prepared which was subjected to bright box type annealing at 630° C. for 14 hours after secondary cold rolling, and dry skin pass rolling at a rolling reduction of about 1%. In Table 1, sample A of the present invention is a rimmed steel (capped steel) that has been strongly decarburized, sample B is a rimmed steel that has been strongly denitrified, and sample C is a rimmed steel that has been strongly denitrified. It is. Sample D of the comparative example is a continuously cast aluminium-killed steel material that is normally decarburized, and Sample E is a rimmed steel (capped steel) that is normally decarburized. Table 2 compares the effects of the embodiments of the present invention in terms of relative magnetic permeability, gas release amount, and mechanical properties depending on the blackening treatment conditions.

【表】 上段:脱炭前 下段:脱炭後
[Table] Upper row: Before decarburization Lower row: After decarburization

【表】 較例と対比して示したものである。但し機械的性
質のデータは本発明実施例である試料A,B,C
については二次冷延のままのシールド用素材の段
階における測定値であり、比較例である試料D,
Eについては光輝箱型焼鈍及び調質圧延後のシー
ルド用素材段階における測定値である。 第2表において本発明実施例である試料A,
B,Cの場合は、通常黒化処理条件(575℃×15
分)において磁場0.35エルステツド(Oe)での
比透磁率がすべて700以上あり、特に試料Cにお
いては強脱炭、強脱窒を実施している為、試料
A,Bに比べてさらに比透磁率が良くなつてい
る。これは、強脱炭、強脱窒を実施すると、比較
的低温での再結晶が容易となり結晶粒径が他と比
べて大きくなるからであろう。 またガス放出量については、各試料(約100g)
毎に10-4〜10-5Torr.の真空中で450゜×60分間加
熱した時のガス放出量(cm3×Torr.at24℃)を測
定した。比較例Dはアルミキルド鋼連鋳材である
ため元来ガス放出量は少なく4.92(cm3×Torr.)で
あり、比較例Eはそれよりもやや多く5.30(cm3×
Torr.)であつた。これに対し、本発明実施例
A,B,Cでは5.25〜5.30(cm3×Torr.)であり、
比較例と同等もしくは少ないガス放出量であつ
た。 機械的性質については第2表に示すとおり、本
発明実施例A,B,Cの抗張力T.Sは比較例D.E
のそれに比べて2倍以上大きく、伸びElは1/20〜
1/40に過ぎない。しかし、この程度の機械的性質
であつても実用上磁気シールド構体を折曲、点溶
接加工等によつて造る限りにおいては、その成形
加工に充分耐えられることが確認された。しか
も、一方ではシールド加工工程並びに製品となつ
てからも剛性(機械的強度)が高く、歩留りが良
いという効果がある。 第5図は黒化処理もしくは磁性焼鈍の際の加熱
温度と0.35Oe直流磁場における製品比透磁率の
関係を示すグラフである。 第5図により、従来の磁性焼鈍を伴なう比較例
(破線)に対し、本発明実施例(実線)は黒化処
理のみで、加熱温度度約400℃において交差し、
それ以上の加熱温度では、寧ろ比透磁率が凌駕し
ている事が判る。なお比較例の場合、磁性焼鈍後
に575℃程度の黒化処理を行なつても比透磁率は
殆んど変らないので磁性焼鈍後で比較した。 従つて、極くありふれた作業条件である550℃
乃至650℃の加熱処理(黒化処理)のみによつて、
比較例(従来品)よりも工程が省略されているに
も拘らず優れた比透磁率が得られる。 なお、黒化処理温度は、550℃より低いと、再
結晶もしない事があるので、下限を550℃とし、
上限は、650℃を超えると緻密な黒化処理皮膜の
形成が困難となるので、650℃で行なう。 また本発明製品である磁気シールド用素材を
22″−110゜カラー管に適用した場合、本発明実施
例の比透磁率は700以上あるのに対し、比較例の
それは640付近であり、それに従つて本発明実施
例では電子ビームのズレも10〜20%減少してい
る。 以上詳述した本発明を実施することにより、前
述の目的がすべて達成される。すなわち、シール
ド用素材製造工程において箱型焼鈍と調質圧延の
2工程を省略出来るのみならず、シールド加工工
程においても磁性焼鈍という計3つの工程を省略
して省エネ並びにコストダウンを図りつつ、緻密
な黒化皮膜を備え、遮蔽効果の優れたカラー受像
管用内部磁気シールドを歩留りよく製造すること
が出来る。
[Table] Shown in comparison with comparative examples. However, the mechanical property data is for samples A, B, and C, which are examples of the present invention.
is the measured value at the stage of the shielding material as it is in the secondary cold rolling, and is a comparative example of sample D,
E is a measured value at the shielding material stage after bright box annealing and temper rolling. In Table 2, sample A, which is an example of the present invention,
In the case of B and C, the normal blackening treatment conditions (575℃ x 15
The relative magnetic permeability at a magnetic field of 0.35 oersted (Oe) is 700 or higher in all cases.Specimen C in particular has a higher relative permeability than Samples A and B because strong decarburization and strong denitrification have been carried out. is getting better. This is probably because when strong decarburization and strong denitrification are carried out, recrystallization at relatively low temperatures becomes easier and the crystal grain size becomes larger than in other cases. Regarding the amount of gas released, each sample (approximately 100g)
The amount of gas released (cm 3 ×Torr.at 24°C) when heated at 450° for 60 minutes in a vacuum of 10 -4 to 10 -5 Torr was measured for each sample. Since Comparative Example D is a continuously cast aluminium-killed steel material, the amount of gas released is originally small at 4.92 (cm 3 × Torr.), while Comparative Example E has a slightly higher gas emission amount of 5.30 (cm 3 × Torr.).
Torr.). On the other hand, in Examples A, B, and C of the present invention, it is 5.25 to 5.30 (cm 3 × Torr.),
The amount of gas released was equal to or less than that of the comparative example. Regarding mechanical properties, as shown in Table 2, the tensile strength TS of Examples A, B, and C of the present invention is that of Comparative Example DE.
It is more than twice as large as that of , and the elongation El is 1/20 ~
It's only 1/40th. However, it has been confirmed that even with this level of mechanical properties, as long as a magnetic shielding structure is practically fabricated by bending, spot welding, etc., it can sufficiently withstand the forming process. Moreover, on the other hand, it has the effect of having high rigidity (mechanical strength) and good yield during the shield processing process and after becoming a product. FIG. 5 is a graph showing the relationship between the heating temperature during blackening treatment or magnetic annealing and the relative magnetic permeability of the product in a 0.35 Oe DC magnetic field. As shown in FIG. 5, in contrast to the comparative example (broken line) involving conventional magnetic annealing, the example of the present invention (solid line) uses only blackening treatment and intersects at a heating temperature of about 400°C.
It can be seen that at heating temperatures higher than that, the relative magnetic permeability is actually superior. In the case of the comparative example, the relative magnetic permeability hardly changes even if blackening treatment at about 575° C. is performed after magnetic annealing, so the comparison was made after magnetic annealing. Therefore, 550℃, which is a very common working condition.
By only heat treatment (blackening treatment) at temperatures between 650℃ and 650℃,
Even though the process is omitted compared to the comparative example (conventional product), superior relative magnetic permeability can be obtained. In addition, if the blackening treatment temperature is lower than 550℃, recrystallization may not occur, so the lower limit is set to 550℃.
The upper limit is 650°C, since it becomes difficult to form a dense blackened film if the temperature exceeds 650°C. In addition, the material for magnetic shielding, which is a product of the present invention,
When applied to a 22"-110° collar tube, the relative magnetic permeability of the embodiment of the present invention is over 700, while that of the comparative example is around 640. Accordingly, the shift of the electron beam in the embodiment of the present invention is By carrying out the present invention detailed above, all of the above objectives are achieved. That is, the two steps of box annealing and skin pass rolling are omitted in the shielding material manufacturing process. Not only can we do this, but we have also omitted the three steps of magnetic annealing in the shield processing process, saving energy and reducing costs.We have also made it possible to produce internal magnetic shields for color picture tubes that have a dense black coating and have excellent shielding effects. It can be manufactured well.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁気シールドを内装したカラー受像管
の断面図、第2図、第3図は夫々従来及び本発明
の製法別磁気シールド構体斜視図、第4図は従来
及び本発明の工程図、第5図は加熱温度と比透磁
率の関係を示すグラフである。 1……ガラスバルブ、2……内部磁気シール
ド。
FIG. 1 is a sectional view of a color picture tube equipped with a magnetic shield, FIGS. 2 and 3 are perspective views of magnetic shield structures according to manufacturing methods according to the conventional method and the present invention, and FIG. 4 is a process diagram of the conventional method and the present invention. FIG. 5 is a graph showing the relationship between heating temperature and relative magnetic permeability. 1...Glass bulb, 2...Internal magnetic shield.

Claims (1)

【特許請求の範囲】 1 ブランクを折曲加工し、黒化処理を施した
後、結晶粒度をASTM No.7〜9、比透磁率
(0.350e)を700以上とするためのカラー受像管内
部磁気シールド用素材の製造法において、低炭素
リムド鋼(キヤツプド鋼)熱延鋼帯に、少なくと
も一次冷間圧延、処理後のC成分が0.01%以下
(重量%、以下同様)となるオープンコイル脱炭
焼鈍、圧下率が40〜90%の二次冷間圧延を施し、
その後の箱型焼鈍と調質圧延とを省略した事を特
徴とするカラー受像管内部磁気シールド用素材の
製造法。 2 低炭素リムド鋼(キヤツプド鋼)熱延鋼帯が
C:0.12%以下、Mn:0.10〜0:50%、Si:0.02
%以下、P:0.03%以下、S:0.03%以下、Sol.
Al:0.01%以下、N:0.0001%〜0.01%、残部Fe
及び不可避的不純物で成るリムド鋼(キヤツプド
鋼)熱延鋼帯である特許請求の範囲第1項記載の
製造法。 3 黒化処理が湿潤雰囲気またはガス雰囲気中で
(550〜650℃)×(10〜30分)加熱する加熱処理で
ある特許請求の範囲第1項または第2項記載の製
造法。
[Claims] 1. After bending a blank and subjecting it to blackening treatment, the interior of a color picture tube is made to have a crystal grain size of ASTM No. 7 to 9 and a relative magnetic permeability (0.350e) of 700 or more. In the manufacturing method of magnetic shielding materials, low carbon rimmed steel (capped steel) hot-rolled steel strip is subjected to at least primary cold rolling and an open coil removal process in which the C content after treatment is 0.01% or less (weight %, the same shall apply hereinafter). Charcoal annealing and secondary cold rolling with a rolling reduction of 40 to 90%,
A method for producing a material for a magnetic shield inside a color picture tube, characterized in that the subsequent box-shaped annealing and temper rolling are omitted. 2 Low carbon rimmed steel (capped steel) hot rolled steel strip has C: 0.12% or less, Mn: 0.10 to 0:50%, Si: 0.02
% or less, P: 0.03% or less, S: 0.03% or less, Sol.
Al: 0.01% or less, N: 0.0001% to 0.01%, balance Fe
The manufacturing method according to claim 1, which is a rimmed steel (capped steel) hot-rolled steel strip comprising unavoidable impurities. 3. The manufacturing method according to claim 1 or 2, wherein the blackening treatment is a heat treatment of heating (550 to 650°C) x (10 to 30 minutes) in a humid atmosphere or gas atmosphere.
JP4653383A 1983-03-18 1983-03-18 Manufacture of magnetic shielding material Granted JPS59173219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4653383A JPS59173219A (en) 1983-03-18 1983-03-18 Manufacture of magnetic shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4653383A JPS59173219A (en) 1983-03-18 1983-03-18 Manufacture of magnetic shielding material

Publications (2)

Publication Number Publication Date
JPS59173219A JPS59173219A (en) 1984-10-01
JPH0366369B2 true JPH0366369B2 (en) 1991-10-17

Family

ID=12749924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4653383A Granted JPS59173219A (en) 1983-03-18 1983-03-18 Manufacture of magnetic shielding material

Country Status (1)

Country Link
JP (1) JPS59173219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006285A1 (en) * 1995-08-07 1997-02-20 Toyo Kohan Co., Ltd. Raw material for magnetic shield, production method thereof, and color television receiver

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435436B1 (en) * 1999-11-23 2004-06-10 주식회사 포스코 A Steel Material for Shielding Low Frequency having Magnetic Property
JP4780927B2 (en) * 2004-05-11 2011-09-28 Idec株式会社 Safety switch
CN103031426B (en) * 2011-09-29 2015-07-08 鞍钢股份有限公司 Method for improving performance of non-oriented electrical steel high-efficiency and high-grade product
DE102020124189A1 (en) * 2020-09-16 2022-03-17 Mogema BV Process for the manufacture and design of complex three-dimensional magnetic shielding elements, shielding elements and their use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392324A (en) * 1977-01-25 1978-08-14 Kawasaki Steel Co Decarburization anealing method of heat rolled silicon steel to be used for cold mill
JPS57157437A (en) * 1981-03-23 1982-09-29 Hitachi Ltd Shadow mask

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392324A (en) * 1977-01-25 1978-08-14 Kawasaki Steel Co Decarburization anealing method of heat rolled silicon steel to be used for cold mill
JPS57157437A (en) * 1981-03-23 1982-09-29 Hitachi Ltd Shadow mask

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006285A1 (en) * 1995-08-07 1997-02-20 Toyo Kohan Co., Ltd. Raw material for magnetic shield, production method thereof, and color television receiver

Also Published As

Publication number Publication date
JPS59173219A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
KR970007205B1 (en) Cold rolled steel sheet for shadow mask and manufacturing method
JPH0366369B2 (en)
US6025673A (en) Magnetic shield material, production method thereof and color image tube assembling the material
JPS59171431A (en) Manufacture of color picture tube
JP4069970B2 (en) Steel plate for internal magnetic shield, manufacturing method thereof, and internal magnetic shield
JP3647582B2 (en) High-strength steel sheet for low thermal expansion frame electrode assembly
JP2000178652A (en) Production of thin cold rolled inside shield steel sheet having excellent magnetic field shielding property
CN1078625C (en) High-strength cold rolled steel sheet and high-strength plated steel sheet which have excellent geomagnetism shielding characteristics, and method of mfg. them
EP0860510B1 (en) Material for magnetic shield, production method thereof, and color television tube
JPS5919619B2 (en) Method for manufacturing internal magnetic shield for color picture tube
KR100415654B1 (en) A method for manufacturing a cold-rolled steel sheet for an inner shield excellent in black film adhesion and magnetic shielding
JPS59171430A (en) Manufacture of internal magnetic shield for color picture tube
JP3828838B2 (en) Steel plate for TV CRT frame and manufacturing method thereof
JP3647581B2 (en) Steel plate for mask frame of shadow mask type color picture tube
JP3888020B2 (en) Steel plate for heat shrink band and method for producing the same
KR100360094B1 (en) Cold rolled steel sheet for Braun tube having excellent self-shielding property and manufacturing method thereof
JP2000169945A (en) Material for inner shield and its production
JP3765222B2 (en) Steel sheet for magnetic shield and manufacturing method thereof
KR100514786B1 (en) A method of manufacturing inner shield for braun tube having superior magnetic shield properties
US6583545B1 (en) Aperture grill material for color picture tube, production method thereof, aperture grill and picture tube
JP2005054255A (en) High-strength hot-rolled steel plate for frame of cathode-ray tube, manufacturing method therefor, and frame of cathode-ray tube
JPS60181252A (en) Cold rolled al killed steel sheet having superior demagnetizing characteristic, its manufacture, and shadow mask and color television using it
JPH059665A (en) Thin steel plate for magnetic shield
JPS5845323A (en) Production of steel plate for shielding inside surface of color cathode-ray tube
JP2001011574A (en) Hot rolled steel sheet for TV cathode ray tube frame and method of manufacturing the same