JPH0364830B2 - - Google Patents
Info
- Publication number
- JPH0364830B2 JPH0364830B2 JP13409385A JP13409385A JPH0364830B2 JP H0364830 B2 JPH0364830 B2 JP H0364830B2 JP 13409385 A JP13409385 A JP 13409385A JP 13409385 A JP13409385 A JP 13409385A JP H0364830 B2 JPH0364830 B2 JP H0364830B2
- Authority
- JP
- Japan
- Prior art keywords
- crack
- potential difference
- ratio
- aspect ratio
- depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000009826 distribution Methods 0.000 claims description 61
- 238000005259 measurement Methods 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 40
- 230000007547 defect Effects 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 20
- 230000005684 electric field Effects 0.000 description 15
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は金属構造部材に発生したき裂を検出す
るき裂検出方法に係り、特に表面き裂の形状を精
度よく検出するのに好適な方法に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a crack detection method for detecting cracks generated in metal structural members, and is particularly suitable for detecting the shape of surface cracks with high accuracy. Regarding.
従来のポテンシヤル法によるき裂検出方法とし
てはいわゆる4端子法と呼ばれるものがある。そ
れは一対の給電端子とその内側に一対の測定端子
を一列に配列した探触子を構造部材の表面を走査
して、電位差分布の変化からき裂を検出するもの
である。き裂の判定はき裂がないと思われる領域
における電位差を基準電位差とし、それよりも大
きい電位差となつたとところにき裂があるとする
ものである。従つて4端子法においてはき裂の有
無及びき裂のある程度の形状は判定できても、き
裂の形状を精度よく求めることはできないという
欠点があつた。
As a conventional crack detection method using a potential method, there is a so-called four-terminal method. In this method, a probe having a pair of power supply terminals and a pair of measurement terminals arranged in a row inside the probe scans the surface of a structural member to detect cracks from changes in the potential difference distribution. In determining a crack, the potential difference in a region where no crack is expected to be present is used as a reference potential difference, and a crack is determined to exist where the potential difference is larger than that. Therefore, although the four-terminal method can determine the presence or absence of a crack and the shape of the crack to some extent, it has the disadvantage that the shape of the crack cannot be determined with high accuracy.
本発明の目的は構造部材に生じた欠陥または表
面き裂の形状を簡易的ではあるが、小型コンピユ
ータにより精度よく検出可能な方法を提供するこ
とにある。
An object of the present invention is to provide a method that is simple but capable of accurately detecting the shape of defects or surface cracks occurring in structural members using a small computer.
種々のアスペクト比の表面欠陥を有する試験片
を用いて、欠陥に直交する方向に直流電流を印加
し、欠陥周辺の電位分布或いは電位差分布を測定
した結果、表面欠陥近傍での欠陥をはさんだ位置
での電位差は欠陥の先端で大きく変化し、欠陥の
最深点で最大値を示した。表面欠陥の各位置での
欠陥深さと電位差との間には一意的な関係があつ
たが、両者の関係は欠陥のアスペクト比によつて
異なつた。但し、アスペクト比が0.25よりも小さ
くなると両者の関係はアスペクト比には依存しな
くなる傾向にあることが分かつた。また、有限要
素法を用いて表面欠陥を有する部材の電場を解析
し、試験片での測定結果と比較した結果、両者は
よく一致することが分かつた。従つて、数種類の
アスペクト比、深さを有する欠陥の要素を作成し
ておき、部材表面の欠陥周辺での電位差分布を測
定して、電位差分布によく対応するアスペクト比
の要素を抽出して電位差分布を比較し、電位差分
布に相違があれば要素の接点位置を部分的に修正
して電場を解析し、一致したときの欠陥形状を実
際の欠陥形状とすれば精度よく欠陥形状を求めら
れることが分かつた。しかしこの方法では精度は
非常に良いけれども、形状決定に時間がかかる
し、有限要素法の計算が可能な比較的大型のコン
ピユータを必要とする。そこで疲労により形成さ
れた種々の板厚のステンレス鋼管内面のき裂の形
状を電位差測定結果から判定するに当たり、大型
のコンピユータで解析した種々のアスペクト比の
き裂に対する電位分布を基に電位差測定端子間距
離の板厚に対する比から電位差比とき裂深さ、或
いはアスペクト比とき裂深さのマスターカーブを
作成することによりき裂形状を簡易的に求めた結
果、比較的精度良くき裂形状を判定できることが
判つた。
Using test pieces with surface defects of various aspect ratios, we applied a direct current in a direction perpendicular to the defects and measured the potential distribution or potential difference distribution around the defects. The potential difference at the tip of the defect changed significantly and reached its maximum value at the deepest point of the defect. Although there was a unique relationship between the defect depth and potential difference at each location of the surface defect, the relationship between the two differed depending on the aspect ratio of the defect. However, it was found that when the aspect ratio becomes smaller than 0.25, the relationship between the two tends to become independent of the aspect ratio. Furthermore, the electric field of the member with surface defects was analyzed using the finite element method, and the results were compared with the results measured on the test piece, and it was found that the two coincided well. Therefore, defect elements with several different aspect ratios and depths are created, the potential difference distribution around the defect on the surface of the member is measured, and the potential difference is extracted by extracting elements with aspect ratios that closely correspond to the potential difference distribution. Compare the distributions, and if there is a difference in the potential difference distribution, partially correct the contact position of the element, analyze the electric field, and use the defect shape when they match as the actual defect shape to accurately determine the defect shape. I understand. However, although this method has very high accuracy, it takes time to determine the shape and requires a relatively large computer that can perform calculations using the finite element method. Therefore, in order to determine the shape of cracks formed on the inner surface of stainless steel pipes of various thicknesses due to fatigue from the potential difference measurement results, the potential difference measurement terminal was By creating a master curve of potential difference ratio and crack depth, or aspect ratio and crack depth from the ratio of the gap distance to the plate thickness, the crack shape can be determined with relatively high accuracy. I found out that it can be done.
以下、本発明の実施例を図により説明する。第
1図は直流電流を印加したときの表面き裂近傍で
の電位分布を示す等電位線図である。これは、厚
さ20mmの平板に表面厚さ30mm、深さ15mmの半円き
裂がある場合について有限要素法により解析して
求めた結果である。き裂面の電位分布に注目する
と、等電位線はき裂面にもぐり込む。き裂面にも
ぐり込む等電位線の数はき裂深さに応じて変化す
る。また電位分布はき裂面に対して対称な分布を
示すことが分かる。即ち、き裂をはさんで電位は
逆の分布を示すことから、き裂位置を判定するこ
とは容易である。勿論、き裂をはさんで電位差を
測定するとき裂のあるところでは電位差は大きく
なるため検出できる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an equipotential diagram showing the potential distribution near a surface crack when a direct current is applied. This is the result of analysis using the finite element method for a case where a 20 mm thick flat plate has a semicircular crack with a surface thickness of 30 mm and a depth of 15 mm. If we pay attention to the potential distribution on the crack surface, the equipotential lines will sink into the crack surface. The number of equipotential lines that penetrate into the crack surface changes depending on the crack depth. It can also be seen that the potential distribution shows a symmetrical distribution with respect to the crack surface. That is, since the potential shows an inverse distribution across the crack, it is easy to determine the position of the crack. Of course, when measuring the potential difference across a crack, the potential difference becomes larger where there is a crack, so it can be detected.
次に、き裂周辺の電位分布を計算した結果を第
2図に示す。これは、第1図に示したき裂につい
て求めたもので、き裂から1,2,3,4,5,
10mm離れた位置におけるき裂面を基準にした電位
差分布である。第2図から分かるようにき裂から
10mm離れた位置でもき裂形状はある程度判定する
ことが可能である。しかし、き裂形状の精度よい
検出は困難である。特に表面のき裂先端を特定す
るのは困難である。ところが測定位置をき裂に近
付けると表面のき裂先端において特異点が現れる
ので、表面のき裂先端を決定することは容易とな
る。また、電位はき裂深さに比例することが分か
る。従つて、き裂に沿つてき裂の極近傍でき裂先
端の前方から電位分布を測定するか、き裂をはさ
んで電位差を測定すればき裂形状を決定できる。
ところがき裂のアスペクト比a/c(a:最大き
裂深さ 2c:表面におけるき裂長さ)を種々変え
てき裂深さと電位差との関係を詳細に調べた結
果、き裂深さと電位差との関係はアスペクト比の
影響を受けて、それぞれ異なる。従つてき裂形状
を電位差測定結果から精度良く判定するためには
有限要素法により電場を解析し、測定値と比較演
算して両者が一致したときの有限要素法で入力し
たき裂形状を実際のき裂形状とすることが必要で
ある。しかし、この方法は精度は良いけれども、
電場を解析するために有限要素法が適用可能なあ
る程度大型コンピユータが必要であるので、複雑
なき裂形状を精度良く求めなければならないとき
に好適な方法である。 Next, FIG. 2 shows the results of calculating the potential distribution around the crack. This was obtained for the crack shown in Figure 1, and from the crack 1, 2, 3, 4, 5,
This is the potential difference distribution based on the crack surface at a position 10 mm away. As can be seen from Figure 2, from the crack
It is possible to determine the crack shape to some extent even at a distance of 10 mm. However, accurate detection of the crack shape is difficult. In particular, it is difficult to identify the crack tip on the surface. However, when the measurement position is brought closer to the crack, a singular point appears at the tip of the crack on the surface, making it easier to determine the tip of the crack on the surface. It can also be seen that the potential is proportional to the crack depth. Therefore, the crack shape can be determined by measuring the potential distribution along the crack in the immediate vicinity of the crack and from in front of the crack tip, or by measuring the potential difference across the crack.
However, as a result of a detailed investigation of the relationship between crack depth and potential difference by varying the crack aspect ratio a/c (a: maximum crack depth, 2c: crack length at the surface), we found that the relationship between crack depth and potential difference was The relationships vary depending on the aspect ratio. Therefore, in order to accurately determine the crack shape from the potential difference measurement results, it is necessary to analyze the electric field using the finite element method, compare it with the measured value, and when the two match, calculate the actual crack shape input using the finite element method. It is necessary to have a crack shape of . However, although this method has good accuracy,
Since a fairly large computer capable of applying the finite element method is required to analyze the electric field, this method is suitable when complex crack shapes must be determined with high precision.
第3図は本発明に係わる欠陥検出装置の外観図
である。第3図では探傷ヘツドの駆動装置1はほ
ぼ平板に近い構造物表面のき裂または欠陥を検出
できる構造となつている。直流ポテンシヤル法に
よる探傷ヘツド20には直流電流供給用の給電端
子5と電位差測定用の測定端子10がそれぞれ2
列設けてある。探傷ヘツド20はステツピングモ
ータ25により表面に垂直な軸(Z軸)まわりに
回転可能とし、測定及び給電端子を部材表面に押
し付けるための空気シリンダー30を具備してい
る。更に、探傷ヘツド20を2次元平面上を移動
可能とするため、X軸51及びY軸56の駆動機
構を持ち、おのおのの座標軸はステツピングモー
タ52,57によつて駆動される。Y軸56は側
板60に固定され、側板60にはコンプレツサ6
1から供給される圧縮空気で作動する吸盤62が
取り付けてあり、部材表面に駆動装置1を固定す
る機能を持つ。従つて壁面状の欠陥のみならず天
井面の欠陥の検出も可能である。座標軸駆動用モ
ータ52,57は駆動制御装置65に接続されて
おり、駆動制御装置65はコンピユータ100に
よつて制御される。 FIG. 3 is an external view of the defect detection device according to the present invention. In FIG. 3, the flaw detection head driving device 1 has a structure capable of detecting cracks or defects on the surface of a nearly flat structure. The flaw detection head 20 using the DC potential method has two power supply terminals 5 for supplying DC current and two measurement terminals 10 for measuring potential difference.
There are lines. The flaw detection head 20 is rotatable around an axis (Z axis) perpendicular to the surface by a stepping motor 25, and is equipped with an air cylinder 30 for pressing measurement and power supply terminals against the surface of the member. Furthermore, in order to make the flaw detection head 20 movable on a two-dimensional plane, it is provided with drive mechanisms for an X-axis 51 and a Y-axis 56, and each coordinate axis is driven by stepping motors 52 and 57. The Y-axis 56 is fixed to a side plate 60, and a compressor 6 is attached to the side plate 60.
A suction cup 62 operated by compressed air supplied from 1 is attached, and has the function of fixing the drive device 1 to the surface of the member. Therefore, it is possible to detect not only wall-like defects but also ceiling-like defects. The coordinate axis drive motors 52 and 57 are connected to a drive control device 65, and the drive control device 65 is controlled by a computer 100.
第4図に電位差測定用の探傷ヘツド20の構造
を示す。探傷ヘツド20の基板21はベークライ
トまたはアクリルのような不導体で作られてい
る。直流電流供給用の給電端子5は等間隔に多数
配列したものを2列平行に、且つ、端子同士が向
かいあうように配置する。2列の測定端子10は
その中央が2列の給電端子5の中央に、且つそれ
ぞれが隣りあう給電端子の中間にくるように等間
隔で設ける。また、それぞれの給電端子対に独立
して直流電流66を設けると共に、スイツチング
装置67を設ける。スイツチング装置67は構造
物に印加する直流電流の極性を一定時間毎に切り
換えることにより測定端子10と構造物との間に
生じる熱起電力を相殺するためのものである。こ
の場合電位差の測定は直流電流が安定した後でな
ければならず、極性を切り換える直前が最適であ
る。 FIG. 4 shows the structure of a flaw detection head 20 for potential difference measurement. The substrate 21 of the flaw detection head 20 is made of a nonconductor such as Bakelite or acrylic. A large number of power supply terminals 5 for supplying direct current are arranged at equal intervals in two rows in parallel, with the terminals facing each other. The two rows of measurement terminals 10 are provided at equal intervals so that their centers are located at the center of the two rows of power supply terminals 5 and are located between adjacent power supply terminals. Further, a direct current 66 is provided independently to each pair of power supply terminals, and a switching device 67 is also provided. The switching device 67 is for canceling the thermoelectromotive force generated between the measurement terminal 10 and the structure by switching the polarity of the direct current applied to the structure at regular intervals. In this case, the potential difference must be measured after the DC current has stabilized, and the best time is just before switching the polarity.
次に、第5図に給電端子5と測定端子10の基
板21への取付け構造を示す。第5図では端子の
数を6個とした場合の1列の端子のみについて示
した。測定端子1及び給電端子5は構造物との間
に接触抵抗が生じない程度まで押し付けることが
必要であるし、構造物に多少の凹凸や湾曲があつ
ても全部が同じように接触していなければならな
い。また欠陥形状を精度よく求めようとすれば第
2図に示したように欠陥から1〜2mm以内のとこ
ろで電位分布を測定しなければならない。そのた
め測定端子10の先端は円錐形とし、その後方に
フランジを設け、フランジと基板21との間にコ
イルバネを入れ、探傷ヘツド20を構造物に押し
付けたとき、バネにより端子が均一に構造物に押
し付けられるようにし、また、測定端子距離は正
確であることが重要であるから、基板21にあけ
る穴は長くし、また案内面としての仕上げを施さ
なければならない。 Next, FIG. 5 shows a structure for attaching the power supply terminal 5 and the measurement terminal 10 to the substrate 21. FIG. 5 shows only one row of terminals when the number of terminals is six. It is necessary to press the measurement terminal 1 and the power supply terminal 5 to the structure to the extent that contact resistance does not occur between them, and even if the structure has some unevenness or curvature, they must all be in contact with each other in the same way. Must be. Furthermore, in order to accurately determine the shape of a defect, it is necessary to measure the potential distribution within 1 to 2 mm from the defect, as shown in FIG. Therefore, the tip of the measurement terminal 10 is made conical, a flange is provided behind it, and a coil spring is inserted between the flange and the substrate 21. When the flaw detection head 20 is pressed against the structure, the spring allows the terminal to be evenly attached to the structure. Since it is important that the measurement terminals be pressed against each other and that the distance between the measurement terminals be accurate, the holes drilled in the substrate 21 must be long and finished as guide surfaces.
以下、電位分布測定方法及び欠陥形状の決定法
について述べる。第1図において複数の直流電源
66からスイツチング装置67を介して探傷ヘツ
ド20に設けた給電端子5のそれぞれに等しく直
流電流を印加して、構造部材に均一な電場を形成
する。多数の測定端子対10の間に生じる電位差
はスキヤナー70を介して微小電位差計71に取
り込んで測定され、インターフエース72を通し
てコンピユータ100に入力され、駆動装置制御
装置65からの位置情報と合わせて電位差分布と
してコンピユータ100に接続された記録装置1
03に記憶される。記録された電位差分布からコ
ンピユータ100によりき裂位置を判定し、き裂
周辺の詳細な電位差分布を測定する。次に、電場
記憶装置102に記憶されている大型のコンピユ
ータにより種々のアスペクト比のき裂に対して解
析された電場のうち、き裂中央でき裂面に直角な
方向の電位分布を基に電位差測定端子間距離と被
測定構造部材の板厚との比に対応したき裂中央の
き裂深さと電位差比との関係を作成し、それらか
らき裂中央のき裂深さを決定し、ひいては全体の
き裂形状を決定するものである。 Below, a method for measuring potential distribution and a method for determining defect shape will be described. In FIG. 1, DC current is equally applied from a plurality of DC power supplies 66 to each of the power supply terminals 5 provided in the flaw detection head 20 via a switching device 67 to form a uniform electric field in the structural member. The potential difference generated between the many pairs of measurement terminals 10 is taken into the micropotentiometer 71 via the scanner 70 and measured, and is input to the computer 100 through the interface 72. A recording device 1 connected to a computer 100 as a distribution
03. The computer 100 determines the crack position from the recorded potential difference distribution, and measures the detailed potential difference distribution around the crack. Next, a potential difference is calculated based on the potential distribution in the direction perpendicular to the crack surface at the center of the crack among the electric fields analyzed for cracks with various aspect ratios by a large computer stored in the electric field storage device 102. Create a relationship between the crack depth at the crack center and the potential difference ratio corresponding to the ratio of the distance between the measurement terminals and the plate thickness of the structural member to be measured, determine the crack depth at the crack center from them, and then determine the overall This determines the crack shape.
第6図に直流ポテンシヤル法によるき裂形状判
定の流れ図を示す。初めに第1図に示した駆動装
置1で探傷ヘツド20を駆動装置内の全域を粗く
走査して電位分布を調べる。このときき裂の発生
する方向は構造部材で大体決つているので、き裂
面に直交して直流電流が流れるように探傷ヘツド
20の向きをステツピングモータ25で設定す
る。もしき裂があれば第3図に示したような電位
差分布が生じるので容易に検出できる。き裂から
10mm離れていても十分検出可能であるが、浅いき
裂の場合は見落とす恐れもある。5mm離れた位置
で測定するのが安全であるので、測定端子の間隔
は10mm以下にすれば十分である。き裂形状の測定
精度を上げようとすれば測定端子間距離は2mmが
最上であるが、逆に測定時間が増大するので、4
mm程度にするにが良い。実際の測定に当つては測
定端子と同じ測定間隔で電位差分布を測定してき
裂の大体の位置を判定する。第3図に示したよう
に電位差分布がき裂の周辺に生じるので、き裂が
ない場合の基準電位よりも大きい電位差が測定さ
れた付近にあると判定される。き裂形状を精度よ
く出すためには測定端子間の中央にき裂が来るよ
うに設定しなければならないので、電位差分布が
最大となつた位置付近で、測定ヘツド20をき裂
面に直角な方向に細かく走査して電位布分を測定
する。電位差が最大となつたとき測定端子間の中
央にき裂はある。次にその位置でき裂面に沿つて
電位差分布を詳細に測定する。 Figure 6 shows a flowchart of crack shape determination using the DC potential method. First, using the driving device 1 shown in FIG. 1, the flaw detection head 20 is roughly scanned over the entire area within the driving device to examine the potential distribution. At this time, since the direction in which the crack occurs is roughly determined by the structural member, the direction of the flaw detection head 20 is set by the stepping motor 25 so that a direct current flows orthogonally to the crack surface. If there is a crack, it can be easily detected because a potential difference distribution as shown in FIG. 3 will occur. from cracks
It is fully detectable even at a distance of 10 mm, but shallow cracks may be overlooked. Since it is safe to measure at a distance of 5 mm, it is sufficient to keep the distance between the measurement terminals at 10 mm or less. If you want to improve the measurement accuracy of crack shape, the best distance between the measurement terminals is 2mm, but this will increase the measurement time, so 4mm is the best distance.
It is best to set it to about mm. In actual measurement, the potential difference distribution is measured at the same measurement interval as the measurement terminal, and the approximate location of the crack is determined. As shown in FIG. 3, a potential difference distribution occurs around the crack, so it is determined that the potential difference is near where a potential difference larger than the reference potential when there is no crack is measured. In order to accurately determine the crack shape, the crack must be placed in the center between the measurement terminals, so the measurement head 20 should be placed perpendicular to the crack surface near the position where the potential difference distribution is maximum. Measure the potential distribution by scanning finely in the direction. There is a crack in the center between the measurement terminals when the potential difference is maximum. Next, the potential difference distribution is measured in detail along the crack surface at that location.
次に、電場記憶装置102に記憶されている各
種のアスペクト比を有するき裂のき裂面に直角な
方向の電位差分布を基に、測定端子間距離の板厚
に対する比に対応する位置における電位差比とき
裂深さの関係をコンピユータ100により求め
る。ここで予め大型コンピユータではアスペクト
比が例えば、1.0,0.5,0.25,0.125のき裂に対し
て電場を求めておく。この電位差比とき裂深さの
関係より各き裂深さに対する電位差比とアスペク
ト比の関係をコンピユータ100により求める。
この場合両者の関係は最もフイツテイングが良く
なるようにn次近似、例えば5次近似すると良
い。次に、この各き裂深さに対する電位差比とア
スペクト比の関係を用いて各アスペクト比に対す
るき裂深さと電位差の関係のマスターカーブを例
えばアスペクト比が0.125から1.0まで0.01毎に求
める。次に、測定された電位差分布から表面にお
けぬき裂長さ2c:を決定する。き裂の最深点に対
応する最大の電位差比V/V0maxを適当なアス
ペクト比a/cのマスターカーブに代入してき裂
深さa*を求め、a*/c*を計算する。a*/
c*=a/cとなるまでマスターカーブを変え、
一致したときのマスターカーブを用いて電位差分
布から全体のき裂形状を決定するものである。こ
のとき、き裂深さa*、表面におけるき裂長さ2c
*ともに板厚の補正をしなければならない。具体
的な方法について次に示す。 Next, based on the potential difference distribution in the direction perpendicular to the crack surface of cracks having various aspect ratios stored in the electric field storage device 102, the potential difference at a position corresponding to the ratio of the distance between the measurement terminals to the plate thickness is determined. The relationship between the ratio and the crack depth is determined by the computer 100. Here, electric fields are determined in advance for cracks with aspect ratios of, for example, 1.0, 0.5, 0.25, and 0.125 using a large computer. From this relationship between the potential difference ratio and the crack depth, the computer 100 determines the relationship between the potential difference ratio and the aspect ratio for each crack depth.
In this case, the relationship between the two should be approximated by n-th order approximation, for example, 5-th order approximation, for the best fitting. Next, using this relationship between the potential difference ratio and aspect ratio for each crack depth, a master curve of the relationship between the crack depth and potential difference for each aspect ratio is determined for each 0.01 aspect ratio, for example, from 0.125 to 1.0. Next, the crack length 2c on the surface is determined from the measured potential difference distribution. The maximum potential difference ratio V/V 0 max corresponding to the deepest point of the crack is substituted into a master curve with an appropriate aspect ratio a/c to obtain the crack depth a*, and a*/c* is calculated. a*/
Change the master curve until c*=a/c,
The overall crack shape is determined from the potential difference distribution using the master curve when they match. At this time, crack depth a*, crack length at the surface 2c
*Both plate thicknesses must be corrected. The specific method is shown below.
第7図,第8図,第9図,第10図はそれぞれ
アスペクト比a/cが1.0,0.5,0.25および0.125
の表面き裂を有する板厚20mmの板材について有限
要素法により電場を解析して得られたき裂の中央
でき裂面に垂直な方向の電位分布である。板厚で
基準化したき裂の深さa/tはき裂中央の最深点
0,0.125,0.25,0.375,0.5,0.625および0.75で
ある。き裂が無ければ電位差はき裂からの距離に
比例して増加するが、き裂があれば、き裂の周辺
の電場が乱れ、き裂が深い場合にはき裂から相当
離れたところでも電場は乱れる。また、アスペク
ト比が小さいほど電場の乱れが激しく、き裂をは
さんで測定される電位差は大きくなる。通常第1
図に示したような電位差分布測定装置の測定端子
間距離lは一定である。ところが、測定される部
材の板厚は様々である。第3図に示したように測
定位置によつて電位差あるいは電位差比とき裂深
さとの関係は異なるので、測定位置に対応する電
位差比とき裂深さとの関係を予め求めておくこと
が必要である。しかし、それは多大な労力と費用
を要する。それよりは第7図,第8図,第9図,
第10図のような基本電位差分布を電場記憶装置
102に記憶させておき、電位差測定の都度、測
定位置に対応する電位差比とき裂深さとの関係を
コンピユータ100で求める方が合理的である。
第7図,第8図,第9図,第10図の測定位置に
対応する位置の電位差から第11図に示すような
電位差比V/V0とき裂のアスペクト比a/cの
関係を各き裂深さa/tについて作成する。次
に、両者の関係をn次近似、例えば次式のように
5次近似する。 Figures 7, 8, 9, and 10 have aspect ratios a/c of 1.0, 0.5, 0.25, and 0.125, respectively.
This is the potential distribution in the direction perpendicular to the crack surface at the center of the crack, obtained by analyzing the electric field using the finite element method for a 20 mm thick plate material with a surface crack. The depth a/t of the crack standardized by plate thickness is the deepest point at the center of the crack: 0, 0.125, 0.25, 0.375, 0.5, 0.625, and 0.75. If there is no crack, the potential difference increases in proportion to the distance from the crack, but if there is a crack, the electric field around the crack will be disturbed, and if the crack is deep, the potential difference will increase in proportion to the distance from the crack. The electric field is disturbed. Furthermore, the smaller the aspect ratio, the more severe the disturbance of the electric field, and the larger the potential difference measured across the crack. Usually the first
The distance l between the measurement terminals of the potential difference distribution measuring device as shown in the figure is constant. However, the thickness of the member to be measured varies. As shown in Figure 3, the relationship between the potential difference or potential difference ratio and the crack depth varies depending on the measurement position, so it is necessary to determine the relationship between the potential difference ratio and the crack depth corresponding to the measurement position in advance. . However, it requires a lot of effort and cost. Rather than that, Figure 7, Figure 8, Figure 9,
It is more rational to store a basic potential difference distribution as shown in FIG. 10 in the electric field storage device 102, and to use the computer 100 to determine the relationship between the potential difference ratio corresponding to the measurement position and the crack depth each time the potential difference is measured.
From the potential differences at positions corresponding to the measurement positions in Figures 7, 8, 9, and 10, the relationship between the potential difference ratio V/V 0 and the crack aspect ratio a/c as shown in Figure 11 is determined for each case. Created for crack depth a/t. Next, the relationship between the two is approximated to the nth order, for example, to the fifth order as shown in the following equation.
V/V0=A0+A1a/c+A2a/c2+A3a/c3
+A4a/c4+A5a/c5
これを用いてアスペクト比a/c=0.01きざみ
で各き裂深さに対する電位差を求め、最終的には
第12図のように各アスペクト比に対する電位差
比V/V0とき裂深さa/tのマスターカーブを
作成する。この場合にも電位差V/V0とき裂深
さa/tのマスターカーブはn次近似、例えば次
式のように5次近似する。 V/V 0 =A 0 +A 1 a/c+A 2 a/c 2 +A 3 a/c 3 +A 4 a/c 4 +A 5 a/c 5Use this to set the aspect ratio a/c in steps of 0.01. The potential difference with respect to the crack depth is determined, and finally a master curve of the potential difference ratio V/V 0 and the crack depth a/t for each aspect ratio is created as shown in FIG. In this case as well, the master curve of the potential difference V/V 0 and the crack depth a/t is approximated to the nth order, for example, to the fifth order as shown in the following equation.
V/V0=B0+B1a/t+B2a/t2+B3a/t3
+B4a/t4+B5a/t5
ここではアスペクト比がa/c=0.125から
a/c=1.0までのき裂について電場を解析した
ので電位差比V/V0とき裂深さa/tのマスタ
ーカーブはa/c=0.125からa/c=1.0までの
間について作成するものとする。ただし、第12
図ではa/c=0.01毎のカーブを全て描くと繁雑
で分かり難くなるのでa/c=0.125,0.25,0.5
および1.0の4本だけ描いた。次に、測定された
電位差分布からのき裂形状の決定法である。表面
き裂の近傍で電位差を測定すれば、第3図のよう
な電位差分布が得られ、部材の表面におけるき裂
長さ2c*は電位差が急激な変化をする箇所として
捉えられ、容易に決定される。き裂の深さについ
ては、まず、き裂の最深点に相当すると思われる
電位差の最大値を用いてき裂のアスペクト比を決
定する。即ち、電位差比の最大値V/V0maxを
第12図に示したような適当なn次近似された電
位差比V/V0とき裂深さa/tのマスターカー
ブに代入して最深き裂深さa*を、次いでa*/
c*を求め、これをマスターカーブのアスペクト
比a/cと比較する。両者が一致していなけれ
ば、改めてa*/c*のマスターカーブにより最
深き裂深さa**を求め、更にa**/c*を求
めてマスターカーブのアスペクト比a/cと比較
する。この作業が両者が一致するまで繰り返して
一致したとき裂深さを最深き裂深さとする。そし
てこの一致したときのマスターカーブに各測定位
置における電位差比を代入することによりき裂全
体の形状を決定するものである。以下、具体例を
用いて説明する。 V/V 0 =B 0 +B 1 a/t+B 2 a/t 2 +B 3 a/t 3 +B 4 a/t 4 +B 5 a/t 5Here , the aspect ratio changes from a/c=0.125 to a/c= Since the electric field was analyzed for cracks up to 1.0, a master curve for the potential difference ratio V/V 0 and the crack depth a/t is created for the range from a/c=0.125 to a/c=1.0. However, the 12th
In the figure, if you draw all the curves for each a/c = 0.01, it will be complicated and difficult to understand, so a/c = 0.125, 0.25, 0.5
I drew only 4 pieces, 1.0 and 1.0. Next is a method for determining the crack shape from the measured potential difference distribution. If the potential difference is measured in the vicinity of a surface crack, a potential difference distribution as shown in Figure 3 will be obtained, and the crack length 2c* on the surface of the member can be understood as a point where the potential difference changes rapidly and can be easily determined. Ru. Regarding the depth of the crack, first, the aspect ratio of the crack is determined using the maximum value of the potential difference that is thought to correspond to the deepest point of the crack. That is, by substituting the maximum value of the potential difference ratio V/V 0 max into the master curve of the appropriate n-th order approximated potential difference ratio V/V 0 and crack depth a/t as shown in FIG. fissure depth a*, then a*/
Determine c* and compare it with the aspect ratio a/c of the master curve. If the two do not match, find the deepest crack depth a** again using the master curve of a*/c*, then find a**/c* and compare it with the aspect ratio a/c of the master curve. . This operation is repeated until the two match, and when they match, the crack depth is determined as the deepest crack depth. Then, the shape of the entire crack is determined by substituting the potential difference ratio at each measurement position into the master curve when they match. This will be explained below using a specific example.
第13図は内面にスリツトを有する直径12イン
チのステンレス鋼管を疲労試験したき裂を発生さ
せ、スリツトを旋削により除去した後、き裂周辺
で得られた電位差分布である。横軸はき裂中央に
相当すると思われる位置を原点とした表面方向の
測定位置x(mm)、縦軸は電位差V(μV)である。
ここでV0はき裂がないところでの電位差であり、
第13図で分かるようにき裂がないところでは
V0はほぼ一定である。き裂があるところでは第
3図と同様に電位差は大きくなる。第3図と同様
に表面でのき裂の先端で電位差分布に特異点が現
れるので、表面のき裂長さ2cは容易に決定され
る。表面のき裂長さ2cの決定法としては種々考え
られる。ここで電位差比が急激に立ち上がる前の
箇所と立ち上がつた後の箇所とを直線で結び、そ
れが電位差比V/V0=1.02と交差する地点、電位
差比が急激に立ち上がつた後の数箇所の電位差分
布をn次近似して、それと基準電位差V0との交
点、あるいはき裂に相当する位置の全体の電位差
分布n次近似して、それと基準電位差V0との交
点で決定する方法の3案を採用した。き裂の先端
付近を細かく測定していれば、どの方法でも表面
き裂長さは精度良く決定される。第13図ではき
裂に相当する位置の電位差分布を5次近似して、
それと基準電位差V0との交点で決定する方法を
採用した結果、2c=22.5mmである。次に、き裂の
アスペクト比a/c、言い換えれば最大き裂深さ
の推定である。電位差比が最大となるところがき
裂の最深点に対応する。最深点の電位差比はV/
V0max=38.0/24.75=1.535である。次に、電位
差測定位置に対応する0.01毎のアスペクト比に対
する電位差比とき裂深さの関係のマスターカーブ
の作成である。いま測定端子間距離はl=5mm
で、配管の板厚はt=15.7mmである。有限要素法
で得られたマスターカーブの対応する位置はl′=
5/15.7×20=6.4mmとなる。前述した第11図
と第12図は測定端子間距離l′=6.4mmにおける電
位差から得られたマスターカーブである。このマ
スターカーブの中最初にどれか1つの関係を用い
て最大き裂深さを計算する。例えば、a/c=
0.8のマスターカーブに最深点の電位差比V/
V0max=1.535を代入すると、き裂深さはa*=
6.32mmとなる。a*=6.32を板厚補正するとa*
=4.99mmとなり、a*/c*=4.99/11.25=0.44
である。これはマスターカーブのa/c=0.8と
は異なるので、改めてa/c=0.44のマスターカ
ーブにV/V0max=1.535を代入すると、き裂深
さはa**=5.17mm、板厚補正してa**=4.08
mmとなり、a**/c*=0.36である。これを繰
り返して最終的にはa/c=0.34でa=3.89mmと
なり、収束した。 FIG. 13 shows the potential difference distribution obtained around the crack after a fatigue test was performed on a 12-inch diameter stainless steel pipe with a slit on the inner surface, and the slit was removed by turning. The horizontal axis is the measurement position x (mm) in the surface direction with the origin at a position thought to correspond to the center of the crack, and the vertical axis is the potential difference V (μV).
Here, V 0 is the potential difference where there is no crack,
As you can see in Figure 13, where there are no cracks,
V 0 is almost constant. Where there is a crack, the potential difference increases as in FIG. 3. As in FIG. 3, a singular point appears in the potential difference distribution at the tip of the surface crack, so the surface crack length 2c can be easily determined. Various methods can be considered for determining the surface crack length 2c. Connect the point before the potential difference ratio suddenly rises with the point after it rises with a straight line, and the point where it intersects the potential difference ratio V/V 0 = 1.02, the point after the potential difference ratio suddenly rises. It is determined by the n-th approximation of the potential difference distribution at several locations and the intersection of this with the reference potential difference V 0 , or the n-th approximation of the entire potential difference distribution at the position corresponding to the crack, and the intersection of this and the reference potential difference V 0 . Three methods were adopted. Regardless of the method, the surface crack length can be determined with high accuracy as long as the vicinity of the crack tip is precisely measured. In Figure 13, the potential difference distribution at the position corresponding to the crack is approximated to the fifth order,
As a result of adopting a method of determining the intersection point between this and the reference potential difference V 0 , 2c = 22.5 mm. Next, the aspect ratio a/c of the crack, in other words, the maximum crack depth is estimated. The point where the potential difference ratio is maximum corresponds to the deepest point of the crack. The potential difference ratio at the deepest point is V/
V 0 max=38.0/24.75=1.535. Next, a master curve of the relationship between the potential difference ratio and the crack depth with respect to the aspect ratio of 0.01 corresponding to the potential difference measurement position is created. The distance between the measurement terminals is now l = 5mm.
The thickness of the pipe is t=15.7mm. The corresponding position of the master curve obtained by the finite element method is l′=
5/15.7×20=6.4mm. The above-mentioned FIGS. 11 and 12 are master curves obtained from the potential difference at a distance l' between the measurement terminals of 6.4 mm. First, calculate the maximum crack depth using any one of the relationships in this master curve. For example, a/c=
The potential difference ratio V/ at the deepest point on the master curve of 0.8
Substituting V 0 max=1.535, the crack depth is a*=
It becomes 6.32mm. When a*=6.32 is corrected for plate thickness, a*
=4.99mm, a*/c*=4.99/11.25=0.44
It is. This is different from the master curve's a/c = 0.8, so by substituting V/V 0 max = 1.535 into the master curve of a/c = 0.44, the crack depth is a** = 5.17 mm, plate thickness Corrected a**=4.08
mm, and a**/c*=0.36. This process was repeated until finally a/c=0.34 and a=3.89mm, converging.
次に、配管の内表面を旋盤により更に旋削して
板厚をt=14.4mmと薄くした後に、再び同じき裂
について電位差分布を測定した。その結果を第1
4図に示す。第13図と同じようにして表面き裂
長さ2c=22.5mm、最大電位差比V/V0max=
1.282が求まる。有限要素法で得られたマスター
カーブの対応する位置はl′=5/14.4×20=7.0mm
となる。第7図,第8図,第9図,第10図より
l=7.0mmにおける電位差から第15図の電位差
比V/V0とアスペクト比a/cの関係が得られ、
第15図よりa/c=0.01きざみで電位差V/V0
とき裂深さa/tの関係が第16図のように得ら
れる。最大の電位差比V/V0max=1.282を第1
6図のa/c=0.8のn次近似式に代入してa*
=5.05mm、板厚補正とてa*=3.64mmとなり、a
*/c*=0.32である。a/c=0.32のn次近似
式に代入してa**=3.88mmで、補正してa**
=2.79mm、a**/c*=0.25。a/c=0.24の
n次近似式に代入してa***=3.71mmで、補正
してa***=2.67mmでa***/c*=0.24と
なり、収束した。1回目の旋盤加工のときのき裂
深さa=3.89mmから2回目の旋盤加工の削り代
15.8−14.4=1.4mmを差し引くとa=2.49mmとな
り、a=2.67mmと良く一致する。 Next, the inner surface of the pipe was further turned using a lathe to reduce the plate thickness to t=14.4 mm, and the potential difference distribution was again measured for the same crack. The result is the first
Shown in Figure 4. In the same manner as in Fig. 13, the surface crack length 2c = 22.5 mm, the maximum potential difference ratio V/V 0 max =
1.282 is found. The corresponding position of the master curve obtained by the finite element method is l'=5/14.4×20=7.0mm
becomes. From FIGS. 7, 8, 9, and 10, the relationship between the potential difference ratio V/V 0 and the aspect ratio a/c in FIG. 15 is obtained from the potential difference at l=7.0 mm,
From Figure 15, the potential difference V/V 0 in steps of a/c = 0.01
The relationship between crack depth a/t is obtained as shown in FIG. The maximum potential difference ratio V/V 0 max = 1.282 is the first
Substitute into the n-th approximation formula of a/c = 0.8 in Figure 6 and get a*
= 5.05mm, with plate thickness correction a* = 3.64mm, a
*/c*=0.32. Substitute into the n-th approximation formula of a/c=0.32 and get a**=3.88mm, correct it and get a**
=2.79mm, a**/c*=0.25. By substituting into the n-th approximation formula of a/c=0.24, a****=3.71 mm was corrected, a****=2.67 mm, and a****/c*=0.24, which converged. From the crack depth a = 3.89 mm in the first lathe process, the cutting allowance in the second lathe process
Subtracting 15.8-14.4=1.4mm gives a=2.49mm, which agrees well with a=2.67mm.
次に、き裂の最深点から表面のき裂先端までの
き裂深さは最終的に最深点のき裂を求めたときの
電位差比とき裂深さの関係を用いて各測定点にお
ける電位差から決定した。その結果を第17図に
示す。図中、実線は電位差分布を測定したステン
レス鋼管と同じ形状のスリツトを入れたものを応
力条件を多少変えて疲労試験して得られた破面の
ビーチマークである。斜線部は放電加工によるス
リツトを示す。2本の破線は前述の旋盤加工前後
の電位差分布測定によるき裂形状である。2本の
破線はお互いに良く一致すると共に、5番目のビ
ーチマークとも良く一致する。表面のき裂先端付
近の一致がやや悪いが、これは電位差測定間隔が
粗かつたためであり、細かく測定すれば更に良く
一致すると思われる。 Next, the crack depth from the deepest point of the crack to the crack tip on the surface is calculated by using the relationship between the potential difference ratio and the crack depth when finally determining the crack at the deepest point. It was decided from. The results are shown in FIG. In the figure, the solid line is a beach mark on a fracture surface obtained by fatigue testing a stainless steel tube with a slit of the same shape as the one in which the potential difference distribution was measured, under slightly different stress conditions. The shaded area indicates the slit made by electrical discharge machining. The two broken lines are the crack shapes obtained by measuring the potential difference distribution before and after the lathe processing described above. The two dashed lines match well with each other and also match well with the fifth beach mark. The agreement near the crack tip on the surface is somewhat poor, but this is because the potential difference measurement interval was rough, and it is thought that the agreement would be even better if the measurements were made more closely.
このようにこの方法によれば大型コンピユータ
がなくても小型コンピユータで十分精度良く表面
き裂形状を検出することが可能である。 In this way, according to this method, it is possible to detect the surface crack shape with sufficient accuracy using a small computer without the need for a large computer.
以上説明したように本発明によれば電位差分布
測定により板状のあるいはパイプ状の部材に発生
した表面き裂の形状を大型コンピユータでなくと
も小型コンピユータで十分精度良く検出すること
ができるという効果がある。
As explained above, according to the present invention, the shape of a surface crack that has occurred in a plate-shaped or pipe-shaped member can be detected with sufficient accuracy using a small computer rather than a large computer by measuring the potential difference distribution. be.
第1図は解析によつて求めた表面き裂周辺の電
位分布、第2図は第1図に示した電位分布のき裂
近傍でのき裂に平行な電位差分布、第3図は本発
明に係わる欠陥検出装置の外観図、第4図は電位
差分布測定用の探傷ヘツドの構造を示す図、第5
図は端子形状及び基板への取付け状況、第6図は
簡易き裂形状判定の流れ図、第7図から第10図
は種々のアスペクト比のき裂を有する部材を有限
要素法により解析して得られた裂面に垂直な方向
の電位分布、第11図は測定端子間距離6.4mmに
対する電位差比とアスペクト比の関係、第12図
は第11図より得られた電位差比とき裂深さの関
係、第13図と第14図はステンレス鋼管の表面
き裂周辺で測定された電位差分布、第15図は測
定端子間距離7.0mmに対する電位差比とアスペク
ト比の関係、第16図は第15図より得られた電
位差比とき裂深さの関係、第17図は破断された
ステンレス鋼管の破面のビーチマークと電位差分
布測定によるき裂形状の比較を示す図である。
1…駆動装置、5…給電端子、10…測定端
子、20…探傷ヘツド、21…基板、25…ステ
ツピングモータ、30…空気シリンダ、51…X
軸、52…ステツピングモータ、53…減速機、
56…Y軸、57…ステツピングモータ、58…
減速機、60…側板、61…コンプレツサ、62
…吸盤、65…駆動制御装置、66…直流電源、
67…スイツチング装置、70…スキヤナー、7
1…微小電圧計、72…インターフエース、10
0…コンピユータ、102…電位分布記憶装置。
Figure 1 shows the potential distribution around the surface crack determined by analysis, Figure 2 shows the potential difference distribution in the vicinity of the crack in the potential distribution shown in Figure 1, and Figure 3 shows the potential difference according to the present invention. Fig. 4 is a diagram showing the structure of a flaw detection head for measuring potential difference distribution;
The figure shows the terminal shape and the mounting situation on the board, Figure 6 is a flowchart for simple crack shape determination, and Figures 7 to 10 are obtained by analyzing members with cracks of various aspect ratios using the finite element method. Figure 11 shows the relationship between the potential difference ratio and aspect ratio for the distance between the measurement terminals of 6.4 mm, and Figure 12 shows the relationship between the potential difference ratio and the crack depth obtained from Figure 11. , Figures 13 and 14 are the potential difference distribution measured around the surface crack of the stainless steel pipe, Figure 15 is the relationship between the potential difference ratio and aspect ratio for a distance of 7.0 mm between the measurement terminals, and Figure 16 is from Figure 15. FIG. 17 is a diagram showing the relationship between the potential difference ratio and the crack depth obtained, and a comparison of the beach mark on the fracture surface of a broken stainless steel pipe and the crack shape obtained by measuring the potential difference distribution. DESCRIPTION OF SYMBOLS 1... Drive device, 5... Power supply terminal, 10... Measurement terminal, 20... Flaw detection head, 21... Board, 25... Stepping motor, 30... Air cylinder, 51... X
shaft, 52...stepping motor, 53...reducer,
56...Y axis, 57...Stepping motor, 58...
Reducer, 60... Side plate, 61... Compressor, 62
... Suction cup, 65... Drive control device, 66... DC power supply,
67...Switching device, 70...Scanner, 7
1...Microvoltmeter, 72...Interface, 10
0...Computer, 102...Potential distribution storage device.
Claims (1)
の給電端子対により直流電流を印加し、該給電端
子対の間において電位差測定端子対を走査させて
電位分布を測定し、該電位分布から欠陥の形状を
検出する方法において、電位差分布を測定するた
めの測定端子を走査する装置と該装置を駆動する
制御装置と共に、記憶回路の中にアスペクト比の
種々異なるき裂形状についてき裂深さが異なる場
合の電位分布の解析結果を記憶させた演算装置に
より、測定された電位差分布から表面におけるき
裂長さを決定し、前記測定された電位差の内最大
の電位差を用いて記憶回路の中に記憶された種々
のアスペクト比のき裂に対する電位差とき裂深さ
との関係の内特定のアスペクト比に対するマスタ
ーカーブを用いてき裂深さを決定し、該き裂深さ
と表面のき裂長さの比からアスペクト比を求め、
該アスペクト比を前記のマスターカーブのアスペ
クト比と比較して、異なつていれば両者が一致す
るまで使用するマスターカーブのアスペクト比を
変えて計算し、一致したときのき裂深さを表面き
裂の最大き裂深さとし、該最大き裂深さから表面
のき裂先端までのき裂深さは各測定位置における
電位差から前記一致したときのマスターカーブを
用いて求めて、全体のき裂形状を決定することを
特徴とする表面き裂形状検出方法。 2 特許請求の範囲第1項記載の方法において、
記憶回路の中に記憶させるき裂のアスペクト比と
して1.0,0.5,0.25,0.125としたことを特徴とす
る表面き裂形状検出方法。 3 特許請求の範囲第1項記載の方法において、
アスペクト比が種々異なるき裂のき裂深さが種種
異なる場合のき裂中央のき裂面に直交する方向の
表面の電位差分布を記憶回路の中に記憶させてお
き、電位差測定端子間の距離を部材の板厚で基準
化した測定位置における電位差から各き裂深さに
対するアスペクト比と電位差比の関係を演算回路
で求め、該関係から任意のアスペクト比に対する
電位差比とき裂深さの関係を求め、該関係を用い
て最大電位差から最大き裂深さを決定し、各測定
位置における電位差比から各測定位置におけるき
裂深さを決定することによりき裂形状を求めるこ
とを特徴とする表面き裂形状検出方法。 4 特許請求の範囲第3項記載の方法において、
各き裂深さに対するアスペクト比と電位差比の関
係から電位差比とき裂深さの関係のマスターカー
ブをアスペクト比が0.01きざみで求め、測定され
た最大の電位差比を用いて任意の第一のアスペク
ト比に対するマスターカーブを用いて第一のき裂
深さを決定し、該き裂深さと表面のき裂長さの比
から第二のアスペクト比を求め、該アスソヘクト
比を前記マスターカーブのアスペクト比と比較し
て異なつていれば第二のアスペクト比のマスター
カーブを用いて第二のき裂深さを求め、再び第二
のき裂深さと表面のき裂長さの比から第三のアス
ペクト比を求め、該アスペクト比マスターカーブ
のアスペクト比と比較する、これを繰り返して両
者が一致したときのき裂深さを表面き裂の最大深
さとし、各測定位置におけるき裂深さは各測定位
置における電位差比を前記のアスペクト比が一致
したマスターカーブに代入することによりき裂形
状を求めることを特徴とする表面き裂形状検出方
法。 5 特許請求の範囲第1項,第3項又は第4項の
いずれかに記載の方法においてき裂に沿つて測定
された電位差比分布において電位差比が1.02とな
るところを表面におけるき裂先端と判定すること
を特徴とする表面き裂形状検出方法。 6 特許請求の範囲第1項,第3項又は第4項の
いずれかに記載の方法においてき裂に沿つて測定
された電位差比分布においてき裂付近の電位差比
分布をn次近似して得られた曲線と基準電位差と
の交点を表面におけるき裂先端と判定することを
特徴とする表面き裂形状検出方法。[Claims] 1. Direct current is applied to the surface of a member through one or more pairs of power supply terminals spaced apart from each other, and a potential distribution is measured by scanning a pair of potential difference measuring terminals between the pair of power supply terminals. In the method of detecting the shape of a defect from the potential distribution, a device for scanning a measurement terminal for measuring the potential difference distribution and a control device for driving the device are used to detect crack shapes with various aspect ratios in a memory circuit. The crack length at the surface is determined from the measured potential difference distribution by a calculation device that stores the analysis results of the potential distribution when the crack depths are different, and the maximum potential difference among the measured potential differences is used. The crack depth is determined using a master curve for a specific aspect ratio among the relationships between the potential difference and the crack depth for cracks with various aspect ratios stored in the memory circuit, and the crack depth and surface crack are determined using a master curve for a specific aspect ratio. Find the aspect ratio from the ratio of fissure lengths,
Compare this aspect ratio with the aspect ratio of the master curve described above, and if they are different, calculate by changing the aspect ratio of the master curve to be used until they match, and when they match, calculate the crack depth on the surface. The maximum crack depth of the crack is determined, and the crack depth from the maximum crack depth to the crack tip on the surface is determined from the potential difference at each measurement position using the master curve when they match. A surface crack shape detection method characterized by determining the shape. 2. In the method described in claim 1,
A surface crack shape detection method characterized in that the aspect ratios of cracks to be stored in a memory circuit are 1.0, 0.5, 0.25, and 0.125. 3. In the method described in claim 1,
The surface potential difference distribution in the direction perpendicular to the crack surface at the center of the crack when the crack depths of cracks with different aspect ratios are different is stored in a memory circuit, and the distance between the potential difference measurement terminals is calculated. The relationship between the aspect ratio and the potential difference ratio for each crack depth is determined by an arithmetic circuit from the potential difference at the measurement position, which is standardized by the thickness of the member, and from this relationship, the relationship between the potential difference ratio and the crack depth for any aspect ratio is determined. determining the maximum crack depth from the maximum potential difference using the relationship, and determining the crack shape at each measurement position from the potential difference ratio at each measurement position. Crack shape detection method. 4. In the method described in claim 3,
From the relationship between the aspect ratio and the potential difference ratio for each crack depth, a master curve of the relationship between the potential difference ratio and the crack depth is determined in steps of 0.01 aspect ratio, and the measured maximum potential difference ratio is used to calculate the arbitrary first aspect ratio. A first crack depth is determined using a master curve for the ratio, a second aspect ratio is determined from the ratio of the crack depth to the surface crack length, and the aspect ratio is the aspect ratio of the master curve. Compare and if they are different, use the second aspect ratio master curve to find the second crack depth, and then calculate the third aspect ratio again from the ratio of the second crack depth to the surface crack length. is determined and compared with the aspect ratio of the aspect ratio master curve.This is repeated and the crack depth when both match is the maximum depth of the surface crack, and the crack depth at each measurement position is A method for detecting a surface crack shape, characterized in that the crack shape is determined by substituting the potential difference ratio in the master curve having the same aspect ratio. 5 The point where the potential difference ratio is 1.02 in the potential difference ratio distribution measured along the crack by the method according to any one of claims 1, 3, or 4 is defined as the crack tip on the surface. A surface crack shape detection method characterized by determining the shape of a surface crack. 6. Obtained by nth-order approximation of the potential difference ratio distribution near the crack in the potential difference ratio distribution measured along the crack by the method according to any one of claims 1, 3, or 4. A method for detecting the shape of a surface crack, characterized in that the intersection point between the calculated curve and a reference potential difference is determined to be the tip of a crack on the surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13409385A JPS61292546A (en) | 1985-06-21 | 1985-06-21 | Method for detecting surface crack shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13409385A JPS61292546A (en) | 1985-06-21 | 1985-06-21 | Method for detecting surface crack shape |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61292546A JPS61292546A (en) | 1986-12-23 |
JPH0364830B2 true JPH0364830B2 (en) | 1991-10-08 |
Family
ID=15120268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13409385A Granted JPS61292546A (en) | 1985-06-21 | 1985-06-21 | Method for detecting surface crack shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61292546A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4904489B2 (en) * | 2006-01-31 | 2012-03-28 | 国立大学法人 岡山大学 | Damage detection apparatus and damage detection method |
JP7174526B2 (en) * | 2018-03-29 | 2022-11-17 | 三菱重工業株式会社 | Dense crack depth measurement device using electrical resistance method |
-
1985
- 1985-06-21 JP JP13409385A patent/JPS61292546A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61292546A (en) | 1986-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101122578B (en) | Magnetic Memory Detection Method for Fatigue Cracks and Stress Concentration in Ferromagnetic Metal Components | |
EP0276307A1 (en) | Composite analyzer tester. | |
EP0289615A1 (en) | Surface defect inspection method and surface defect inspection apparatus | |
US8704512B2 (en) | Nondestructive testing system for steel workpiece | |
TWI407126B (en) | Circuit pattern checking device and method thereof | |
US3636441A (en) | Method of measuring crack depths in electrically conductive metal workpieces using current probes with voltage probes located between current probes by measuring the minimum potential difference between the voltage and current probes | |
US11630081B2 (en) | Method for non-destructively examining an anode of an aluminium electrolysis cell | |
JPH0364830B2 (en) | ||
US6285183B1 (en) | Method and system for measuring the volume loss of a metal substrate | |
CN110836806A (en) | Magnetic-elastic grinding burn detection method for acid-corrosion-resistant steel gear | |
JPH0545141B2 (en) | ||
US6563309B2 (en) | Use of eddy current to non-destructively measure crack depth | |
CN114705726A (en) | Method and device for rapidly detecting welding defects in metal spot welding joint | |
JPH049470B2 (en) | ||
JPH1151906A (en) | Corrosion diagnostic equipment | |
JPH0545142B2 (en) | ||
JP4789502B2 (en) | Crack depth measurement technique and apparatus for deep cracks using potentiometric method | |
JPH05164667A (en) | Surface crack progress measuring method | |
JPH0470561A (en) | Method and apparatus for detecting heterogeneous layer in metal | |
JPH01237443A (en) | Grid plate inspection device | |
CN213658641U (en) | Metal material deformation crack detection device | |
JPS62501760A (en) | Method for determining the holding force characteristics of a device that holds processed products magnetically | |
JPH0850144A (en) | Electrode probe | |
JPS5850456A (en) | Detection of crack | |
Tian et al. | Eddy-current model and detection in a thick stainless steel plate |