[go: up one dir, main page]

JP7174526B2 - Dense crack depth measurement device using electrical resistance method - Google Patents

Dense crack depth measurement device using electrical resistance method Download PDF

Info

Publication number
JP7174526B2
JP7174526B2 JP2018063597A JP2018063597A JP7174526B2 JP 7174526 B2 JP7174526 B2 JP 7174526B2 JP 2018063597 A JP2018063597 A JP 2018063597A JP 2018063597 A JP2018063597 A JP 2018063597A JP 7174526 B2 JP7174526 B2 JP 7174526B2
Authority
JP
Japan
Prior art keywords
terminal
crack
measurement
input terminal
output terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018063597A
Other languages
Japanese (ja)
Other versions
JP2019174314A (en
Inventor
雄貴 久保田
清隆 青木
文稔 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2018063597A priority Critical patent/JP7174526B2/en
Publication of JP2019174314A publication Critical patent/JP2019174314A/en
Application granted granted Critical
Publication of JP7174526B2 publication Critical patent/JP7174526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本開示は、電気抵抗法を用いた密集亀裂深さ計測装置及び計測装置に関する。 The present disclosure relates to a dense crack depth measuring device and measuring device using an electrical resistance method.

従来、例えば、陸用ボイラの火炉壁管等で生じる溝状腐食亀裂の深さを非破壊で計測する方法として、デジタルX線検査(精度:±0.3mm)が用いられている。このデジタルX線検査では、X線源と検査対象物との間に空間を確保する必要がある他、X線源の位置調整や移動に時間を要するため広範囲の検査が困難であり、また、検査者以外の作業員を退室させる必要があるため他工事との並行作業ができないなど、一定の制約が生じる。 Conventionally, for example, digital X-ray inspection (accuracy: ±0.3 mm) is used as a method for non-destructively measuring the depth of groove-like corrosion cracks that occur in furnace wall tubes of land-use boilers. In this digital X-ray inspection, it is necessary to secure a space between the X-ray source and the object to be inspected, and it is difficult to inspect a wide range because it takes time to adjust the position and move the X-ray source. There are certain restrictions, such as not being able to work in parallel with other construction work because it is necessary to leave the workers other than the inspector.

X線を用いない亀裂深さの非破壊検査法として、電気抵抗法を用いた亀裂深さの計測法が知られている。例えば、特許文献1には、CT試験片に流す亀裂長さ測定電流を1秒以上の間欠通電とし、該間欠通電に基づくCT試験片の電気抵抗値から亀裂深さを求める方法が開示されている。また、特許文献2には、複数の接触針を持つプローブと、同接触針のうち所定の接触針に繋がれる電源を持つ本体とに、それぞれ表示照明手段を設けて通電状態を確認できるようにした亀裂深さ測定器が開示されている。 As a non-destructive crack depth inspection method that does not use X-rays, a crack depth measurement method using an electrical resistance method is known. For example, Patent Document 1 discloses a method of determining the crack depth from the electric resistance value of the CT test piece based on the intermittent energization of a crack length measurement current for 1 second or longer that is passed through the CT test piece. there is Further, in Patent Document 2, a probe having a plurality of contact needles and a main body having a power source connected to a predetermined contact needle among the contact needles are each provided with display illumination means so that the energized state can be confirmed. A crack depth gauge is disclosed.

特開平4-194741号公報JP-A-4-194741 実開平4-43256号公報Japanese Utility Model Laid-Open No. 4-43256

しかし、上記特許文献1及び特許文献2の何れにも、亀裂深さの計測に際して亀裂の長さや端子間に混入する亀裂の個数の影響が考慮されておらず、該亀裂の長さや個数による影響を考慮して亀裂深さを計測するために異なる測定位置で測定を行う構成について何ら開示されていない。 However, in both Patent Document 1 and Patent Document 2, the influence of the length of the crack and the number of cracks mixed between terminals are not considered when measuring the crack depth, and the influence of the length and number of cracks There is no disclosure of a configuration in which measurements are taken at different measurement positions to measure the crack depth in view of the above.

上述の事情に鑑みて、本開示の少なくとも一実施形態は、異なる測定位置における亀裂に関する情報を効率的に取得することを目的とする。 In view of the above circumstances, at least one embodiment of the present disclosure aims to efficiently obtain information about cracks at different measurement locations.

(1)本開示の少なくとも一実施形態に係る計測装置は、
電気抵抗法を用いた亀裂深さの計測装置であって、
測定対象物の部材表面にそれぞれ当接されて前記部材表面に生じた亀裂の両側に電源電圧を印加するための入力端子及び出力端子と、
前記亀裂の両側に当接可能に構成された複数の測定端子対と、
各々の前記測定端子対について測定端子間の電位差を検出するための電位差計と、
を備えている。
(1) A measuring device according to at least one embodiment of the present disclosure,
A crack depth measuring device using an electrical resistance method,
an input terminal and an output terminal for applying a power supply voltage to both sides of a crack formed on the surface of the member by contacting the surface of the member of the object to be measured;
a plurality of measurement terminal pairs configured to contact both sides of the crack;
a potentiometer for detecting a potential difference between the measurement terminals for each said measurement terminal pair;
It has

上記(1)の構成によれば、複数の測定端子対とこれらの測定端子間の電位差を検出可能な電位差計とを備えることにより、電気抵抗法を用いて、亀裂の両側の異なる測定位置において該亀裂に関する情報を効率的に取得することができる。 According to the above configuration (1), by providing a plurality of measurement terminal pairs and a potentiometer capable of detecting the potential difference between these measurement terminals, using the electrical resistance method, at different measurement positions on both sides of the crack Information about the crack can be obtained efficiently.

(2)幾つかの実施形態では、上記(1)の構成において、
複数の前記測定端子対は、夫々、前記入力端子と前記出力端子とを結ぶ方向と交差する方向に並んで配置されてもよい。
(2) In some embodiments, in the configuration of (1) above,
The plurality of measurement terminal pairs may be arranged side by side in a direction crossing a direction connecting the input terminal and the output terminal.

上記(2)の構成によれば、入力端子と出力端子とを結ぶ方向と交差する方向に並んで配置された測定端子対を、例えば、亀裂の長さ方向に沿うように配置することにより、亀裂の両側の電位差を、該亀裂の長さ方向における異なる複数の測定位置で計測することができる。よって、例えば、亀裂の最大深さに関する情報を効率的に取得することができる。 According to the above configuration (2), by arranging the measurement terminal pairs arranged side by side in a direction intersecting the direction connecting the input terminal and the output terminal, for example, along the length direction of the crack, The potential difference across the crack can be measured at different measurement locations along the length of the crack. Thus, for example, information regarding the maximum crack depth can be efficiently obtained.

(3)幾つかの実施形態では、上記(1)又は(2)の構成において、
少なくとも前記入力端子及び前記出力端子と、複数の前記測定端子対と、前記電位差計とが、前記部材表面に沿って前記入力端子と前記出力端子とを結ぶ方向に移動可能に構成されてもよい。
(3) In some embodiments, in the configuration of (1) or (2) above,
At least the input terminal and the output terminal, the plurality of measurement terminal pairs, and the potentiometer may be configured to be movable along the surface of the member in a direction connecting the input terminal and the output terminal. .

上記(3)の構成によれば、少なくとも入力端子及び出力端子と、複数の測定端子対と、電位差計とを、部材表面に沿って入力端子と出力端子とを結ぶ方向に移動させながら、亀裂の両側の電位差を順次測定することができる。従って、複数の亀裂を含む評価対象物における亀裂の電位差測定の作業効率を大幅に向上させることができる。 According to the above configuration (3), at least the input terminal and the output terminal, the plurality of measurement terminal pairs, and the potentiometer are moved along the member surface in the direction connecting the input terminal and the output terminal, and the crack is removed. can be measured sequentially. Therefore, it is possible to greatly improve the work efficiency of measuring the potential difference of cracks in an evaluation object including a plurality of cracks.

(4)幾つかの実施形態では、上記(1)乃至(3)の何れか一つに記載の構成において、
前記入力端子と該入力端子に電源を介して接続された前記出力端子とがそれぞれ車輪状に形成され、
複数の前記測定端子対は、それぞれ第1端子及び第2端子を含み、
複数の前記第1端子及び複数の前記第2端子は、前記部材表面に当接される各々の先端が周方向に沿って配置されるようにして各々放射状に構成され、
放射状に構成された複数の前記第1端子の中心と前記入力端子及び前記出力端子の何れか一方、及び、放射状に構成された複数の前記第2端子の中心と前記入力端子及び前記出力端子の何れか他方が、それぞれ車軸を介して接続され、
前記入力端子、前記出力端子、複数の前記第1端子及び複数の前記第2端子が、回転により前記入力端子と前記出力端子とを結ぶ方向に沿って移動可能に構成されていてもよい。
(4) In some embodiments, in the configuration described in any one of (1) to (3) above,
The input terminal and the output terminal connected to the input terminal via a power supply are formed in a wheel shape,
The plurality of measurement terminal pairs each include a first terminal and a second terminal,
the plurality of first terminals and the plurality of second terminals are each configured radially such that the tips thereof contacting the surface of the member are arranged along the circumferential direction,
Centers of the plurality of first terminals arranged radially and one of the input terminal and the output terminal, and centers of the plurality of second terminals arranged radially and between the input terminal and the output terminal either one or the other, each connected via an axle,
The input terminal, the output terminal, the plurality of first terminals, and the plurality of second terminals may be configured to be movable along a direction connecting the input terminal and the output terminal by rotation.

上記(4)の構成によれば、回転可能に構成された入力端子、出力端子及び測定端子対を、入力端子と出力端子とを結ぶ方向に沿って一体的に移動させることができる。具体的に、入力端子と出力端子とは、印加範囲を移動させながら常に部材表面に接して電源電圧を印加する。一方、複数の測定端子対は、部材表面に当接する第1端子及び第2端子を回転により切り替えつつ、入力端子及び出力端子の移動に追従して部材表面との当接箇所を変更し、変更された測定端子間の電位差が電位差計で検出される。このような構成により、入力端子と出力端子とを結ぶ方向に複数の亀裂が存在する場合にも、各亀裂の両側の電位差を順次測定することができるので、異なる測定位置における亀裂に関する情報を効率的に取得することができる。 With configuration (4) above, the rotatable input terminal, output terminal, and measurement terminal pair can be integrally moved along the direction connecting the input terminal and the output terminal. Specifically, the input terminal and the output terminal are always in contact with the surface of the member and apply the power supply voltage while moving the application range. On the other hand, the plurality of measurement terminal pairs change the contact points with the member surface by following the movement of the input terminal and the output terminal while switching the first terminal and the second terminal that contact the member surface by rotation. A potential difference between the measured terminals is detected by a potentiometer. With such a configuration, even if a plurality of cracks exist in the direction connecting the input terminal and the output terminal, the potential difference on both sides of each crack can be sequentially measured, so that information on cracks at different measurement positions can be efficiently obtained. can be obtained

(5)幾つかの実施形態では、上記(4)の構成において、
前記電源及び前記電位差計を搭載するとともに、前記車軸を介して前記入力端子、前記出力端子及び前記測定端子対を一体的に連結するフレームをさらに備えていてもよい。
(5) In some embodiments, in the configuration of (4) above,
A frame that mounts the power supply and the potentiometer and integrally connects the input terminal, the output terminal, and the measurement terminal pair via the axle may be further provided.

上記(5)の構成によれば、フレームを備えることにより、該フレームを介して入力端子、出力端子、電源、測定端子対及び電位差計を一体的に構成することができる。よって、複数の測定端子対を備えた亀裂深さの計測装置において、可搬性や操作性を向上させて取り扱い容易な計測装置を得ることができる。 According to the configuration (5) above, by providing the frame, the input terminal, the output terminal, the power source, the measuring terminal pair, and the potentiometer can be integrally configured through the frame. Therefore, in the crack depth measuring device provided with a plurality of measuring terminal pairs, it is possible to obtain a measuring device that is easy to handle with improved portability and operability.

(6)幾つかの実施形態では、上記(4)の構成において、
前記車軸は絶縁体を含んでもよい。
(6) In some embodiments, in the configuration of (4) above,
The axle may include an insulator.

上記(6)の構成によれば、入力端子又は出力端子と測定端子とを連結する車軸が絶縁体を含むことにより、該入力端子及び出力端子により印加される電圧が測定端子対に直接印加されずに評価対象物の部材表面に印加される。よって、例えば、部材表面に生じた亀裂の両側に入力端子と出力端子とがそれぞれ当接され、且つ、亀裂の両側に測定端子対の第1端子と第2端子とがそれぞれ当接されるようにして計測装置を配置することにより、亀裂の両側の電位差等の情報を適切に取得することができる。 According to the configuration (6) above, since the axle connecting the input terminal or the output terminal and the measurement terminal contains an insulator, the voltage applied by the input terminal and the output terminal is directly applied to the measurement terminal pair. applied to the member surface of the evaluation object without Therefore, for example, the input terminal and the output terminal are brought into contact with both sides of the crack generated in the surface of the member, and the first and second terminals of the measurement terminal pair are brought into contact with both sides of the crack. By arranging the measuring device in such a manner that the information such as the potential difference on both sides of the crack can be obtained appropriately.

(7)幾つかの実施形態では、上記(1)乃至(3)の何れか一つに記載の構成において、
前記入力端子及び前記出力端子、複数の前記測定端子対及び前記電位差計を搬送可能に搭載するキャリアをさらに備えていてもよい。
(7) In some embodiments, in the configuration described in any one of (1) to (3) above,
A carrier may be further provided on which the input terminal, the output terminal, the plurality of measurement terminal pairs, and the potentiometer are transportably mounted.

上記(7)の構成によれば、入力端子及び出力端子と複数の測定端子対と電位差計とを、キャリアによって容易に移動させることができる。従って、例えば、測定対象の亀裂が複数存在する場合、キャリアを移動させながらこれらの亀裂の両側の電位差を順次測定することができる。よって、電気抵抗法を用いて複数の亀裂の深さを計測する作業を効率的に行うことができる。 With configuration (7) above, the input terminal, the output terminal, the plurality of measurement terminal pairs, and the potentiometer can be easily moved by the carrier. Therefore, for example, when there are a plurality of cracks to be measured, the potential difference on both sides of these cracks can be sequentially measured while moving the carrier. Therefore, it is possible to efficiently perform the work of measuring the depth of a plurality of cracks using the electrical resistance method.

(8)幾つかの実施形態では、上記(1)乃至(7)の何れか一つに記載の構成において、
前記部材表面に沿って前記入力端子と前記出力端子とを結ぶ方向に延在し、前記入力端子及び前記出力端子、複数の前記測定端子対及び前記電位差計を案内するためのガイド部をさらに備えていてもよい。
(8) In some embodiments, in the configuration described in any one of (1) to (7) above,
A guide portion extending along the surface of the member in a direction connecting the input terminal and the output terminal and for guiding the input terminal, the output terminal, the plurality of measurement terminal pairs, and the potentiometer. may be

上記(8)の構成によれば、入力端子及び出力端子、複数の測定端子対及び電位差計をガイド部に沿って案内することができる。 With configuration (8) above, the input terminal, the output terminal, the plurality of measurement terminal pairs, and the potentiometer can be guided along the guide portion.

(9)幾つかの実施形態では、上記(8)の構成において、
前記ガイド部に沿って移動可能に配置され、前記亀裂の長さ及び個数の少なくとも一方を計測するように構成された亀裂計測部をさらに備えていてもよい。
(9) In some embodiments, in the configuration of (8) above,
A crack measuring unit may be further provided movably arranged along the guide unit and configured to measure at least one of length and number of the cracks.

上記(9)の構成によれば、亀裂の長さ及び個数の少なくとも一方を亀裂計測部で計測することができる。つまり、電気抵抗法を用いた亀裂深さの計測において、測定精度に与える亀裂の長さの測定値又は個数の測定値の少なくとも一方による影響を考慮して、亀裂深さを高精度に測定することができる。従って、亀裂深さの計測に、例えばX線等の放射線を用いた測定装置を用いる必要がなく、亀裂深さの検査を他の作業と並行して行うことができるので、作業効率を大幅に向上させることができる。 With configuration (9) above, at least one of the length and the number of cracks can be measured by the crack measuring unit. In other words, in measuring the crack depth using the electrical resistance method, the crack depth is measured with high accuracy, considering the influence of at least one of the measured value of the length of the crack and the measured value of the number of cracks on the measurement accuracy. be able to. Therefore, it is not necessary to use a measuring device using radiation such as X-rays to measure the crack depth, and the inspection of the crack depth can be performed in parallel with other work, which greatly improves work efficiency. can be improved.

(10)幾つかの実施形態では、上記(1)乃至(9)の何れか一つに記載の構成において、
前記ガイド部に沿って移動可能に配置され、前記部材表面を清掃可能に構成された表面処理部をさらに備えていてもよい。
(10) In some embodiments, in the configuration described in any one of (1) to (9) above,
It may further include a surface treatment section arranged movably along the guide section and configured to be able to clean the surface of the member.

上記(10)の構成によれば、表面処理部により、電位差測定に悪影響を及ぼす恐れのある部材表面の汚れを落とすことができる。よって、測定誤差を抑制して亀裂の両側の電位差、延いては、測定対象の亀裂の深さをより高精度に測定することができる。 According to the configuration (10) above, the surface treatment section can remove stains on the surface of the member that may adversely affect potential difference measurement. Therefore, the potential difference on both sides of the crack and the depth of the crack to be measured can be measured with higher accuracy by suppressing the measurement error.

(11)幾つかの実施形態では、上記(1)乃至(3)の何れか一つに記載の構成において、
複数の前記測定端子対のうち、測定対象の亀裂の両端の電位差測定に用いる測定端子対を切り替えるためのリレースイッチをさらに備えていてもよい。
(11) In some embodiments, in the configuration described in any one of (1) to (3) above,
A relay switch may be further provided for switching, among the plurality of measurement terminal pairs, the measurement terminal pair used for measuring the potential difference between both ends of the crack to be measured.

上記(11)の構成によれば、複数の測定端子対のうち、測定対象である亀裂の特性に応じて、電位差測定に用いる測定端子をリレースイッチにより切り替えることができる。これにより、一度の計測作業において、様々な亀裂に適切に対応して該亀裂の両端の電位差を計測することができるため、作業時間の短縮が図られる。 According to the above configuration (11), among the plurality of measurement terminal pairs, the measurement terminal used for the potential difference measurement can be switched by the relay switch according to the characteristics of the crack to be measured. As a result, in one measurement operation, it is possible to measure the potential difference between both ends of the crack appropriately corresponding to various cracks, thereby shortening the operation time.

(12)幾つかの実施形態では、上記(1)乃至(11)の何れか一つに記載の構成において、
前記測定対象物は火炉壁管を含んでもよい。
(12) In some embodiments, in the configuration described in any one of (1) to (11) above,
The measurement object may include a furnace wall tube.

上記(12)の構成によれば、火炉壁管の表面に生じた亀裂の深さを、電気抵抗法を用いて効率的に求めることができる。これにより、火炉壁管に関する亀裂深さの計測に、例えばX線等の放射線を用いた測定装置を用いる必要がなく、該亀裂深さの検査を他の作業と並行して行うことができるので、作業効率を大幅に向上させることができる。 According to the above configuration (12), the depth of the crack generated on the surface of the furnace wall tube can be efficiently obtained using the electrical resistance method. As a result, it is not necessary to use a measuring device using radiation such as X-rays to measure the crack depth of the furnace wall pipe, and inspection of the crack depth can be performed in parallel with other work. , the work efficiency can be greatly improved.

本開示の少なくとも一実施形態によれば、異なる測定位置における亀裂に関する情報を効率的に取得することができる計測装置が提供される。 According to at least one embodiment of the present disclosure, a metrology device is provided that can efficiently obtain information about cracks at different measurement locations.

本開示の一実施形態に係る亀裂深さ計測装置の構成を概略的に示す図である。It is a figure showing roughly composition of a crack depth measuring device concerning one embodiment of this indication. 電気抵抗法を用いた亀裂深さの測定原理を説明するための概略図である。It is the schematic for demonstrating the measuring principle of the crack depth using an electrical resistance method. 電気抵抗法を用いた亀裂深さの測定原理を説明するための概略図であり、(a)は亀裂14の上方からみた平面図、(b)は亀裂の長さL1方向からみた図を示す。It is a schematic diagram for explaining the principle of measuring the crack depth using the electrical resistance method, (a) is a plan view seen from above the crack 14, (b) is a view seen from the crack length L1 direction. . 図2と同様の図であり、図2よりも亀裂長さが短い場合を示す。FIG. 3 is a view similar to FIG. 2, showing a case where the crack length is shorter than in FIG. 2; 図3と同様の図であり、図3よりも亀裂長さが短い場合を示す。FIG. 4 is a view similar to FIG. 3 and shows a case where the crack length is shorter than in FIG. 3; 入力端子、出力端子及び測定端子対を直列に配置して電位差を測定する状態を示す斜視図である。FIG. 4 is a perspective view showing a state in which an input terminal, an output terminal, and a pair of measurement terminals are arranged in series to measure a potential difference; 入力端子、出力端子及び測定端子対を直列に配置して電位差を測定する状態を示し、(a)は測定端子間に亀裂が1個、(b)は測定端子間に亀裂が2個、(c)は測定端子間及び測定端子と入力端子との間にそれぞれ亀裂が1個存在する状態を示す。The input terminal, output terminal and measuring terminal pair are arranged in series to measure the potential difference, (a) shows one crack between the measuring terminals, (b) shows two cracks between the measuring terminals, ( c) shows a state in which one crack exists between the measuring terminals and between the measuring terminal and the input terminal. 入力端子と出力端子及び測定端子対を並列に配置して電位差を測定する状態を示す斜視図である。FIG. 4 is a perspective view showing a state in which an input terminal, an output terminal, and a pair of measurement terminals are arranged in parallel to measure a potential difference; 入力端子と出力端子及び測定端子対を並列に配置して電位差を測定する状態を示し、(a)は測定端子間に亀裂が1個、(b)は測定端子間に亀裂が2個、(c)は測定端子間及び測定端子対の外側にそれぞれ亀裂が1個存在する状態を示す。The input terminal, the output terminal, and the measurement terminal pair are arranged in parallel to measure the potential difference, (a) shows one crack between the measurement terminals, (b) shows two cracks between the measurement terminals, ( c) shows a state in which one crack exists between the measuring terminals and the outside of the measuring terminal pair. 本開示の一実施形態に係る亀裂深さの計測方法による亀裂深さの推定値と実測値との関係を示す図である。FIG. 4 is a diagram showing a relationship between an estimated crack depth value and an actual measurement value obtained by a crack depth measuring method according to an embodiment of the present disclosure; 測定端子間に含まれる亀裂の数と電位差との関係を示す図である。It is a figure which shows the relationship between the number of cracks contained between measurement terminals, and a potential difference. 他の実施形態に係る計測装置の構成を示す図であり、(a)は平面図、(b)は側面図である。It is a figure which shows the structure of the measuring device which concerns on other embodiment, (a) is a top view, (b) is a side view. 他の実施形態に係る測定装置の構成を示す斜視図である。It is a perspective view showing composition of a measuring device concerning other embodiments.

以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
また例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Several embodiments of the present disclosure will now be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention, and are merely illustrative examples. do not have.
For example, expressions denoting relative or absolute arrangements such as "in a direction", "along a direction", "parallel", "perpendicular", "center", "concentric" or "coaxial" are strictly not only represents such an arrangement, but also represents a state of relative displacement with a tolerance or an angle or distance to the extent that the same function can be obtained.
Further, for example, expressions representing shapes such as a square shape and a cylindrical shape not only represent shapes such as a square shape and a cylindrical shape in a geometrically strict sense, but also within the range where the same effect can be obtained, such as uneven parts and Shapes including chamfers and the like are also represented.
On the other hand, the expressions "comprising", "comprising", "having", "including", or "having" one component are not exclusive expressions excluding the presence of other components.

図1は、本開示の一実施形態に係る亀裂深さの計測装置1の構成を概略的に示す図である。
図1に示すように、本開示の少なくとも一実施形態に係る計測装置1は、電気抵抗法を用いた亀裂深さDの計測装置1であって、測定対象物10の部材表面12にそれぞれ当接されて部材表面12に生じた亀裂14の両側に電源電圧を印加するための入力端子2及び出力端子4と、亀裂14の両側に当接可能に構成された複数の測定端子対6,6と、各々の測定端子対6,6について測定端子6間の電位差Vを検出するための電位差計8と、を備えている。
FIG. 1 is a diagram schematically showing the configuration of a crack depth measuring device 1 according to an embodiment of the present disclosure.
As shown in FIG. 1, a measuring device 1 according to at least one embodiment of the present disclosure is a measuring device 1 for crack depth D using an electrical resistance method, and is applied to a member surface 12 of an object 10 to be measured. An input terminal 2 and an output terminal 4 for applying a power supply voltage to both sides of a crack 14 formed in the member surface 12 by contact, and a plurality of measurement terminal pairs 6, 6 configured to be able to contact both sides of the crack 14. and a potentiometer 8 for detecting the potential difference V between the measuring terminals 6 for each measuring terminal pair 6,6.

まず、電気抵抗法を用いた亀裂深さDの測定原理について説明する。なお、当該原理については従来周知であるためその細部については詳述せず、本開示に関する点のみ説明する。
図2、電気抵抗法を用いた亀裂深さDの測定原理を説明するための概略図であり、亀裂14の長さL1方向に直交する方向からみた図である。図3は、電気抵抗法を用いた亀裂深さDの測定原理を説明するための概略図であり、(a)は亀裂14の上方からみた平面図、(b)は亀裂14の長さL1方向からみた図である。なお、図2では、亀裂14の深さD1を評価する対象である評価対象物10として、例えば、管軸方向Aからみた配管の一部を示している。
図2及び図3に示すように、例えば、管軸方向Aと直交する方向に生じた亀裂14の深さDを求める場合、管軸方向Aにおいて該亀裂14の一方側にあたる評価対象物10の部材表面12に電源電圧の入力端子2を、亀裂14の他方側の部材表面12に電源電圧の出力端子4をそれぞれ当接させる。そして、入力端子2及び出力端子4間に電圧を印加すると、亀裂14の下方(部材表面12からの距離が亀裂14の深部よりも深い箇所)を通るルートで入力端子2から出力端子4に一定の電流が流れる(例えば、図3(b)参照)。そして、電位差計8にそれぞれ接続された測定端子対6,6を上記亀裂14の一方側と他方側とにそれぞれ当接させることにより、亀裂14の両側(上記一方側及び他方側)の電位差Vが電位差計8で計測される。この電位差Vと亀裂14とは直線関係で表わされるため、上記の電位差Vを計測することで亀裂14の深さDが求められるものである。
First, the principle of measuring the crack depth D using the electrical resistance method will be described. Since the principle is well known in the art, the details thereof will not be described in detail, and only the points related to the present disclosure will be described.
FIG. 2 is a schematic diagram for explaining the principle of measuring the crack depth D using the electrical resistance method, and is a diagram viewed from a direction orthogonal to the length L1 direction of the crack 14. FIG. FIG. 3 is a schematic diagram for explaining the principle of measuring the crack depth D using the electrical resistance method, (a) is a plan view from above the crack 14, (b) is the length L1 of the crack 14 It is the figure seen from the direction. In addition, FIG. 2 shows, for example, a part of the pipe viewed from the pipe axial direction A as the evaluation object 10 for which the depth D1 of the crack 14 is to be evaluated.
As shown in FIGS. 2 and 3, for example, when obtaining the depth D of a crack 14 generated in the direction perpendicular to the pipe axis direction A, the depth of the evaluation object 10 corresponding to one side of the crack 14 in the pipe axis direction A is The input terminal 2 of the power supply voltage is brought into contact with the member surface 12 , and the output terminal 4 of the power supply voltage is brought into contact with the member surface 12 on the other side of the crack 14 . Then, when a voltage is applied between the input terminal 2 and the output terminal 4, a constant voltage is applied from the input terminal 2 to the output terminal 4 along a route that passes below the crack 14 (where the distance from the member surface 12 is deeper than the depth of the crack 14). current flows (see, for example, FIG. 3(b)). Then, by bringing the pair of measuring terminals 6, 6 connected to the potentiometer 8 into contact with one side and the other side of the crack 14, respectively, the potential difference V on both sides (the one side and the other side) of the crack 14 is measured. is measured by the potentiometer 8 . Since the potential difference V and the crack 14 are represented by a linear relationship, the depth D of the crack 14 can be obtained by measuring the potential difference V.

ここで、本発明者らによる鋭意研究により、電気抵抗法を用いた亀裂14の深さの計測においては、亀裂14の長さL(例えば、上記L1又はL2)や個数によって測定誤差が生じ得ることが明らかになった。
図4は図2と同様の図であり、図2に示す亀裂長さL1よりも亀裂14の長さL2が短い場合(L1>L2)を示す。図5は図3と同様の図であり、図3に示す亀裂長さL1よりも亀裂14の長さL2が短い場合を示す。
図4及び図5に示すように、亀裂14の長さLが短い場合、該亀裂14の側方を迂回する電流の経路(例えば、図5(a)及び図5(b)参照)が生じて電位差Vすなわち電気抵抗値が低く観測される(R=V/I)。したがって、亀裂長さLを考慮せずに、電位差計8で計測された電位差Vのみに基づき亀裂深さDを推定した場合は、亀裂深さDの実測値との測定誤差の割合が大きくなる。一方、電位差計8で計測された電位差Vに亀裂長さLを考慮して亀裂深さDを推定した場合は誤差の割合が大幅に低減され亀裂深さDの実測値との測定誤差が、例えば、デジタルX線検査と同程度である±0.3mmの範囲内に概ね収まることが明らかとなったものである(例えば、図10参照)。
Here, as a result of intensive research by the present inventors, in measuring the depth of cracks 14 using the electrical resistance method, measurement errors may occur depending on the length L of cracks 14 (for example, L1 or L2 above) and the number of cracks 14. It became clear.
FIG. 4 is a view similar to FIG. 2 and shows the case where the length L2 of the crack 14 is shorter than the crack length L1 shown in FIG. 2 (L1>L2). FIG. 5 is similar to FIG. 3 and shows the case where the length L2 of the crack 14 is shorter than the crack length L1 shown in FIG.
As shown in FIGS. 4 and 5, when the length L of the crack 14 is short, a current path bypassing the side of the crack 14 (see, for example, FIGS. 5(a) and 5(b)) is generated. Therefore, the potential difference V, that is, the electrical resistance value is observed to be low (R=V/I). Therefore, if the crack depth D is estimated based only on the potential difference V measured by the potentiometer 8 without considering the crack length L, the ratio of the measurement error from the measured value of the crack depth D will increase. . On the other hand, when the crack depth D is estimated by considering the crack length L in the potential difference V measured by the potentiometer 8, the ratio of the error is greatly reduced, and the measurement error from the measured value of the crack depth D is For example, it has been clarified that it is generally within the range of ±0.3 mm, which is about the same as digital X-ray inspection (see, for example, FIG. 10).

図6は、入力端子2、出力端子4及び測定端子対6,6を直列に配置して電位差Vを測定する状態を示す斜視図である。図7は、入力端子2、出力端子4及び測定端子対6,6を直列に配置して電位差Vを測定する状態を示し、(a)は測定端子6,6間に亀裂が1個、(b)は測定端子6,6間に亀裂が2個、(c)は測定端子6,6間及び測定端子6と入力端子2との間にそれぞれ亀裂が1個存在する状態を示す。
図6及び図7に示すように、電源電圧の入出力端子2,4や測定端子6,6間に存在する亀裂14の個数が増加すると(例えば、図7(a)及び図7(b)参照)、電気抵抗が増加するため電位差計8で計測される電位差Vが増加する。このため、亀裂深さDの測定精度に影響が生じ得る(例えば、図11参照)。
従って、上記のような測定誤差を低減するには亀裂14の長さLや個数を考慮することが有効であるという知見が得られたものである。
なお、個々の亀裂14の幅は、例えば、約2.5mm程度であってもよい。また、亀裂14の長さL又は個数の少なくとも一方と、亀裂14の長さL方向に直交する方向における該亀裂14の一方側及び他方側間の電位差Vと、亀裂14の深さDとの相関を示す評価式は、亀裂14の長さLや測定端子対6,6の間に含まれる亀裂14の個数、或いは、評価対象物10として用いる材料等に応じて、予め測定することで取得してもよい。
入力端子2、出力端子4及び測定端子6,6は、例えば、キャリア24に搭載された可搬型のプローブとして設けられていてもよい(例えば、図2、図10(a)及び図10(b)参照)。なお、測定端子対6,6の中央位置は、入出力端子対2,4の中央位置を通る亀裂14の長さL方向に沿う線から、入出力端子対2,4を結ぶ方向において、例えば、±10%の位置に配置されるように構成されてもよい。また、測定端子6,6間の距離は、入出力端子対2,4間の距離の、例えば、0.7~1.5倍であってもよい。
FIG. 6 is a perspective view showing a state in which the input terminal 2, the output terminal 4, and the measuring terminal pair 6, 6 are arranged in series and the potential difference V is measured. FIG. 7 shows a state in which the input terminal 2, the output terminal 4 and the measuring terminal pair 6, 6 are arranged in series to measure the potential difference V. (a) shows one crack between the measuring terminals 6, 6, ( b) shows a state in which two cracks exist between the measuring terminals 6 and 6, and (c) shows a state in which one crack exists between the measuring terminals 6 and 6 and between the measuring terminal 6 and the input terminal 2 respectively.
As shown in FIGS. 6 and 7, when the number of cracks 14 existing between the input/output terminals 2, 4 and the measurement terminals 6, 6 of the power supply voltage increases (for example, FIGS. 7(a) and 7(b) ), the electrical resistance increases, so the potential difference V measured by the potentiometer 8 increases. Therefore, the measurement accuracy of the crack depth D may be affected (see FIG. 11, for example).
Therefore, the inventors have found that it is effective to consider the length L and the number of cracks 14 in order to reduce the measurement error as described above.
The width of each crack 14 may be, for example, approximately 2.5 mm. Also, at least one of the length L or the number of cracks 14, the potential difference V between one side and the other side of the crack 14 in the direction orthogonal to the length L direction of the crack 14, and the depth D of the crack 14 The evaluation formula showing the correlation is obtained by measuring in advance according to the length L of the crack 14, the number of cracks 14 included between the measurement terminal pairs 6, 6, or the material used as the evaluation object 10. You may
The input terminal 2, the output terminal 4 and the measurement terminals 6, 6 may be provided, for example, as a portable probe mounted on a carrier 24 (for example, FIGS. 2, 10(a) and 10(b)). )reference). Note that the center position of the measurement terminal pair 6, 6 is located in the direction connecting the input/output terminal pair 2, 4 from the line along the length L direction of the crack 14 passing through the center position of the input/output terminal pair 2, 4, for example , ±10%. Also, the distance between the measurement terminals 6,6 may be, for example, 0.7 to 1.5 times the distance between the input/output terminal pair 2,4.

上記の構成によれば、複数の測定端子対6,6とこれらの測定端子6間の電位差Vを検出可能な電位差計8とを備えることにより、電気抵抗法を用いて、亀裂14の両側の異なる測定位置において該亀裂14に関する情報を効率的に取得することができる。なお、亀裂14に関する情報は、例えば、亀裂14の長さL、幅、個数、亀裂14の両側の電位差V、深さD等の他、種々の情報が含まれ得る。 According to the above configuration, by providing the plurality of measuring terminal pairs 6, 6 and the potentiometer 8 capable of detecting the potential difference V between these measuring terminals 6, the electric resistance method can be used to Information about the crack 14 can be efficiently obtained at different measurement locations. Information about the crack 14 may include, for example, the length L, width, number of cracks 14, potential difference V between both sides of the crack 14, depth D, and various other information.

幾つかの実施形態では、例えば、図1に示すように、複数の前記測定端子対6,6は、夫々、入力端子2と出力端子4とを結ぶ方向(図1に非限定的に示す例では、例えば管軸方向A)と交差する方向に並んで配置されてもよい。その際、例えば、複数の前記測定端子対6,6が、管軸方向Aと直交する方向に並んで配置されてもよい。 In some embodiments, for example, as shown in FIG. 1, the plurality of measurement terminal pairs 6, 6 are arranged in a direction connecting the input terminal 2 and the output terminal 4 (a non-limiting example shown in FIG. 1). Then, for example, they may be arranged side by side in a direction intersecting with the tube axis direction A). In that case, for example, the plurality of measurement terminal pairs 6, 6 may be arranged side by side in a direction perpendicular to the tube axis direction A.

上記の構成によれば、入力端子2と出力端子4とを結ぶ方向と交差する方向に並んで配置された測定端子対6,6を、例えば、亀裂14の長さ方向に沿うように配置することにより、亀裂14の両側の電位差Vを、該亀裂14の長さ方向における異なる複数の測定位置で計測することができる。よって、例えば、亀裂14の最大深さに関する情報を効率的に取得することができる。
なお、複数の前記測定端子対は、複数の第1端子と複数の第2端子とが、前記亀裂の長さ方向に直交する方向からみてそれぞれ円弧状に配置され得るように構成してもよい。このようにすれば、測定対象として、例えば、配管の表面等に生じた亀裂14を計測する際に、測定対象物10である配管の表面に全ての測定端子6が当接するように配置することができる。
According to the above configuration, the pair of measurement terminals 6, 6 arranged in a direction crossing the direction connecting the input terminal 2 and the output terminal 4 are arranged along the length direction of the crack 14, for example. Thereby, the potential difference V on both sides of the crack 14 can be measured at a plurality of different measurement positions along the length of the crack 14 . Therefore, for example, information regarding the maximum depth of the crack 14 can be efficiently obtained.
Note that the plurality of measurement terminal pairs may be configured such that the plurality of first terminals and the plurality of second terminals are arranged in an arc when viewed from a direction perpendicular to the length direction of the crack. . In this way, when measuring, for example, a crack 14 generated on the surface of a pipe as a measurement object, all the measurement terminals 6 can be arranged so as to contact the surface of the pipe, which is the measurement object 10. can be done.

幾つかの実施形態では、例えば、図10(a)及び図10(b)に示すように、少なくとも入力端子2及び出力端子4と、複数の測定端子対6,6と、電位差計8とが、部材表面12に沿って入力端子2と出力端子4とを結ぶ方向(例えば管軸方向A)に移動可能に構成されてもよい。移動方式としては、例えば、モノレール式、クローラ式、車輪式、歩行式などを適用し得る。このように構成すれば、少なくとも入力端子2及び出力端子4と、複数の測定端子対6,6と、電位差計8とを、部材表面12に沿って入力端子2と出力端子4とを結ぶ方向に移動させながら、亀裂14の両側の電位差Vを順次測定することができる。従って、複数の亀裂14を含む測定対象物10における亀裂14の電位差測定の作業効率を大幅に向上させることができる。
なお、測定対象物10の被測定面が上下方向に延在(例えば、鉛直面又は傾斜面等、水平以外の面)する場合の移動方式としては、例えば、吸着式(真空利用)や磁石式などを適用してもよい。さらに、計測装置1と接続したケーブ等を巻き取りドラムで巻き取る構成を用いて計測装置の移動を補助しても良い。
In some embodiments, at least an input terminal 2 and an output terminal 4, a plurality of measurement terminal pairs 6, 6, and a potentiometer 8, for example, as shown in FIGS. 10(a) and 10(b). , along the member surface 12 in the direction connecting the input terminal 2 and the output terminal 4 (for example, the tube axis direction A). As a movement system, for example, a monorail system, a crawler system, a wheel system, a walking system, or the like can be applied. With this configuration, at least the input terminal 2 and the output terminal 4, the plurality of measuring terminal pairs 6, 6, and the potentiometer 8 are connected along the member surface 12 in the direction connecting the input terminal 2 and the output terminal 4. , the potential difference V on both sides of the crack 14 can be measured sequentially. Therefore, it is possible to significantly improve the working efficiency of potential difference measurement of the cracks 14 in the measurement object 10 including a plurality of cracks 14 .
When the surface to be measured of the measurement object 10 extends in the vertical direction (for example, a surface other than a horizontal surface such as a vertical surface or an inclined surface), the movement method may be, for example, an adsorption method (using a vacuum) or a magnetic method. etc. may be applied. Furthermore, the movement of the measuring device may be assisted by using a configuration in which a cable or the like connected to the measuring device 1 is wound by a winding drum.

幾つかの実施形態では、例えば、図10に示すように、入力端子2及び出力端子4、複数の測定端子対6,6及び電位差計8を搬送可能に搭載する端子保持部としてのキャリア24をさらに備えていてもよい。キャリア24は、上下に(すなわち、測定対象物10との距離を変更可能な方向に)移動可能な機構を有していてもよく、計測対象部位に各端子2,4,6を接触させて電気抵抗を計測してもよい。このように構成すれば、入力端子2及び出力端子4と複数の測定端子対6,6と電位差計8とを、キャリア24によって容易に移動させることができる。従って、例えば、測定対象の亀裂14が複数存在する場合、キャリア24を移動させながらこれらの亀裂14の両側の電位差Vを順次測定することができる。よって、電気抵抗法を用いて複数の亀裂14の深さDを計測する作業を効率的に行うことができる。なお、キャリア24に電源16も搭載する構成としてもよい。 In some embodiments, for example, as shown in FIG. 10, a carrier 24 is provided as a terminal holding section on which the input terminal 2 and the output terminal 4, the plurality of measuring terminal pairs 6, 6 and the potentiometer 8 are transportably mounted. You may have more. The carrier 24 may have a mechanism that can move up and down (that is, in a direction in which the distance to the measurement object 10 can be changed). Electrical resistance may be measured. With this configuration, the input terminal 2, the output terminal 4, the plurality of measuring terminal pairs 6, 6, and the potentiometer 8 can be easily moved by the carrier 24. FIG. Therefore, for example, when there are a plurality of cracks 14 to be measured, the potential difference V on both sides of these cracks 14 can be sequentially measured while moving the carrier 24 . Therefore, the work of measuring the depth D of the plurality of cracks 14 can be efficiently performed using the electrical resistance method. Note that the carrier 24 may also be configured to mount the power source 16 .

幾つかの実施形態では、例えば、図10に示すように、部材表面12に沿って入力端子2と出力端子4とを結ぶ方向に延在し、入力端子2及び出力端子4、複数の測定端子対6,6及び電位差計8を案内するためのガイド部26をさらに備えていてもよい。このように構成すれば、入力端子2及び出力端子4、複数の測定端子対6,6及び電位差計8をガイド部26に沿って案内することができる。 In some embodiments, for example, as shown in FIG. 10, the input terminal 2, the output terminal 4, and the plurality of measurement terminals extend along the member surface 12 in the direction connecting the input terminal 2 and the output terminal 4. A guide part 26 for guiding the pair 6, 6 and the potentiometer 8 may also be provided. With this configuration, the input terminal 2, the output terminal 4, the plurality of measuring terminal pairs 6, 6, and the potentiometer 8 can be guided along the guide portion 26. FIG.

幾つかの実施形態では、例えば、図10に示すように、ガイド部26に沿って移動可能に配置され、亀裂14の長さ及び個数の少なくとも一方を計測するように構成された亀裂計測部28をさらに備えていてもよい。亀裂計測部28は、例えばレーザー散乱法により傷(例えば亀裂14)の長さを求めるように構成され得る。キャリア24、亀裂計測部28又は表面処理部30は、例えば、位置決め機構等によってガイド部26における任意の位置に移動して位置決め可能に構成されていてもよい。このように亀裂計測部28を備えた構成すれば、亀裂14の長さL及び個数の少なくとも一方を亀裂計測部28で計測することができる。つまり、電気抵抗法を用いた亀裂深さDの計測において、測定精度に与える亀裂14の長さの測定値又は個数の測定値の少なくとも一方による影響を考慮して、亀裂深さDを高精度に測定することができる。従って、亀裂深さDの計測に、例えばX線等の放射線を用いた測定装置を用いる必要がなく、亀裂深さDの検査を他の作業と並行して行うことができるので、作業効率を大幅に向上させることができる。 In some embodiments, for example, as shown in FIG. 10, a crack measuring portion 28 is movably disposed along the guide portion 26 and configured to measure at least one of the length and number of cracks 14. may further comprise Crack metrology unit 28 may be configured to determine the length of a flaw (eg, crack 14) by, for example, laser scattering techniques. The carrier 24, the crack measuring section 28, or the surface treatment section 30 may be configured to be movable to any position on the guide section 26 and positioned by a positioning mechanism or the like, for example. With the configuration including the crack measuring unit 28 in this way, at least one of the length L and the number of the cracks 14 can be measured by the crack measuring unit 28 . That is, in the measurement of the crack depth D using the electrical resistance method, considering the influence of at least one of the measured value of the length of the crack 14 and the measured value of the number of cracks 14 on the measurement accuracy, the crack depth D can be measured with high accuracy. can be measured to Therefore, it is not necessary to use a measuring device using radiation such as X-rays to measure the crack depth D, and the crack depth D can be inspected in parallel with other work, improving work efficiency. can be greatly improved.

幾つかの実施形態において、計測装置1は、例えば、図10に示すように、ガイド部26に沿って移動可能に配置され、部材表面12を清掃可能に構成された表面処理部30をさらに備えていてもよい。
表面処理部30は、計測装置1による亀裂深さDの計測や亀裂計測部28による亀裂の長さL又は個数の計測に先行して測定対象物10の表面を清掃するための前処理部(前処理装置)として機能する。従って、この表面処理部30は、計測装置1においてガイド部26に沿う移動方向の前部に配置され得る。かかる表面処理部30は、例えば、高圧水ノズルやブラスターを含んで構成され得る。
このように表面処理部30を備えた構成によれば、表面処理部30により、電位差測定に悪影響を及ぼす恐れのある部材表面12の汚れを事前に除去することができる。よって、測定誤差を抑制して亀裂14の両側の電位差V、延いては、測定対象の亀裂の深さDをより高精度に測定することができる。
In some embodiments, for example, as shown in FIG. 10 , the measuring device 1 further includes a surface treatment section 30 arranged movably along the guide section 26 and configured to clean the member surface 12 . may be
The surface treatment unit 30 is a pretreatment unit ( function as a pretreatment device). Therefore, the surface treatment section 30 can be arranged at the front in the moving direction along the guide section 26 in the measuring device 1 . Such a surface treatment section 30 can be configured including, for example, a high-pressure water nozzle or a blaster.
According to the configuration including the surface treatment section 30 in this manner, the surface treatment section 30 can previously remove dirt on the member surface 12 that may adversely affect the potential difference measurement. Therefore, the potential difference V on both sides of the crack 14 and the depth D of the crack to be measured can be measured with higher accuracy by suppressing measurement errors.

幾つかの実施形態では、例えば、図13に示すように、入力端子2と該入力端子2に電源16を介して接続された出力端子4とがそれぞれ車輪状に形成され、複数の測定端子対6,6は、それぞれ第1端子6A及び第2端子6Bを含み、複数の第1端子6A及び複数の第2端子6Bは、部材表面12に当接される各々の先端が周方向に沿って配置されるようにして各々放射状に構成され、放射状に構成された複数の第1端子6Aの中心と入力端子2及び出力端子4の何れか一方、及び、放射状に構成された複数の第2端子6Bの中心と入力端子2及び出力端子4の何れか他方が、それぞれ車軸20を介して接続され、入力端子2、出力端子4、複数の第1端子6A及び複数の第2端子6Bが、回転により入力端子2と出力端子4とを結ぶ方向に沿って移動可能に構成されていてもよい。 In some embodiments, for example, as shown in FIG. 13, an input terminal 2 and an output terminal 4 connected to the input terminal 2 via a power supply 16 are each formed in a wheel shape, and a plurality of measurement terminal pairs are provided. 6 and 6 each include a first terminal 6A and a second terminal 6B, and each of the plurality of first terminals 6A and the plurality of second terminals 6B has a tip that contacts the member surface 12 along the circumferential direction. The center of the plurality of radially arranged first terminals 6A, one of the input terminal 2 and the output terminal 4, and the plurality of radially arranged second terminals 6B and the other of the input terminal 2 and the output terminal 4 are connected via axles 20, respectively, and the input terminal 2, the output terminal 4, the plurality of first terminals 6A and the plurality of second terminals 6B are connected to each other. may be configured to be movable along the direction connecting the input terminal 2 and the output terminal 4.

上記の構成によれば、回転可能に構成された入力端子2、出力端子4及び測定端子対6,6を、入力端子2と出力端子4とを結ぶ方向に沿って一体的に移動させることができる。具体的に、入力端子2と出力端子4とは、印加範囲を移動させながら常に部材表面12に接して電源電圧を印加する。一方、複数の測定端子対6,6は、部材表面12に当接する第1端子6A及び第2端子6Bを回転により切り替えつつ、入力端子2及び出力端子4の移動に追従して部材表面12との当接箇所を変更し、変更された測定端子6間の電位差Vが電位差計8で検出される。このような構成により、入力端子2と出力端子4とを結ぶ方向に複数の亀裂14が存在する場合にも、各亀裂14の両側の電位差Vを順次測定することができるので、異なる測定位置における亀裂14に関する情報を効率的に取得することができる。 According to the above configuration, the rotatable input terminal 2, output terminal 4, and measuring terminal pair 6, 6 can be integrally moved along the direction connecting the input terminal 2 and the output terminal 4. can. Specifically, the input terminal 2 and the output terminal 4 are always in contact with the member surface 12 and apply the power supply voltage while moving the application range. On the other hand, the plurality of measurement terminal pairs 6, 6 follow the movement of the input terminal 2 and the output terminal 4 while switching between the first terminal 6A and the second terminal 6B in contact with the member surface 12 by rotation. are changed, and the potential difference V between the changed measuring terminals 6 is detected by the potentiometer 8 . With such a configuration, even when a plurality of cracks 14 exist in the direction connecting the input terminal 2 and the output terminal 4, the potential difference V on both sides of each crack 14 can be sequentially measured. Information about the crack 14 can be efficiently obtained.

幾つかの実施形態では、例えば、図13に示すように、電源16及び電位差計8を搭載するとともに、車軸20を介して入力端子2、出力端子4及び測定端子対6,6を一体的に連結するフレーム22をさらに備えていてもよい。このように構成すれば、フレーム22を備えることにより、該フレーム22を介して入力端子2、出力端子4、電源16、測定端子対6,6及び電位差計8を一体的に構成することができる。よって、複数の測定端子対6,6を備えた亀裂深さの計測装置1において、可搬性や操作性を向上させて取り扱い容易な計測装置1を得ることができる。 In some embodiments, for example, as shown in FIG. A connecting frame 22 may be further provided. With this configuration, by providing the frame 22, the input terminal 2, the output terminal 4, the power source 16, the measuring terminal pair 6, 6, and the potentiometer 8 can be integrally configured through the frame 22. . Therefore, in the crack depth measuring device 1 provided with a plurality of measuring terminal pairs 6, 6, it is possible to obtain the measuring device 1 that is easy to handle with improved portability and operability.

幾つかの実施形態において、車軸20は絶縁体を含んでもよい。このようにすれば、入力端子2又は出力端子4と測定端子6とを連結する車軸20が絶縁体を含むことにより、該入力端子2及び出力端子4により印加される電圧が測定端子対6,6に直接印加されずに測定対象物10の部材表面12に印加される。よって、例えば、部材表面12に生じた亀裂14の両側に入力端子2と出力端子4とがそれぞれ当接され、且つ、亀裂14の両側に測定端子対6,6の第1端子6Aと第2端子6Bとがそれぞれ当接されるようにして計測装置1を配置することにより、亀裂14の両側の電位差等の情報を適切に取得することができる。なお、車軸20の全体が絶縁体で構成されるようにしてもよい。 In some embodiments, axle 20 may include insulation. In this way, since the axle 20 connecting the input terminal 2 or the output terminal 4 and the measuring terminal 6 contains an insulator, the voltage applied by the input terminal 2 and the output terminal 4 is reduced to the measuring terminal pair 6, 6 is applied to the member surface 12 of the measurement object 10 . Therefore, for example, the input terminal 2 and the output terminal 4 are brought into contact with both sides of the crack 14 generated in the member surface 12 , and the first terminal 6 A and the second terminal 6 A of the measuring terminal pair 6 , 6 are placed on both sides of the crack 14 . Information such as the potential difference on both sides of the crack 14 can be obtained appropriately by arranging the measuring device 1 so that the terminals 6B are in contact with each other. Alternatively, the entire axle 20 may be made of an insulator.

幾つかの実施形態では、上記(1)乃至(3)の何れか一つに記載の構成において、
複数の前記測定端子対6,6のうち、測定対象の亀裂14の両端の電位差測定に用いる測定端子対6,6を切り替えるためのリレースイッチ32をさらに備えていてもよい。このようなリレースイッチ32は、計測の際に端子間の干渉を回避するために用いられ得る。このようにリレースイッチ32を備えた構成によれば、複数の測定端子対6,6のうち、測定対象である亀裂14の特性に応じて、電位差測定に用いる測定端子6をリレースイッチ32で切り替えることができる。これにより、一度の計測作業において、様々な亀裂14に適切に対応して該亀裂14の両端の電位差を計測することができるため、作業時間の短縮が図られる。
なお、幾つかの実施形態では、上述した全ての端子を使用するのではなく、亀裂計測部28での計測結果に応じて、使用する端子を選択しても良い。
In some embodiments, in the configuration described in any one of (1) to (3) above,
A relay switch 32 may be further provided for switching, among the plurality of measurement terminal pairs 6, 6, the measurement terminal pair 6, 6 used for measuring the potential difference across the crack 14 to be measured. Such a relay switch 32 can be used to avoid interference between terminals during measurement. According to the configuration including the relay switch 32 in this manner, the relay switch 32 switches the measuring terminal 6 used for potential difference measurement among the plurality of measuring terminal pairs 6, 6 according to the characteristics of the crack 14 to be measured. be able to. As a result, in a single measurement operation, the potential difference between both ends of the crack 14 can be measured appropriately corresponding to various cracks 14, so that the operation time can be shortened.
In some embodiments, instead of using all the terminals described above, the terminals to be used may be selected according to the measurement results of the crack measuring section 28 .

幾つかの実施形態において、測定対象物10は火炉壁管10Aを含んでもよい。このようにすれば、火炉壁管10Aの表面に生じた亀裂14の深さを、電気抵抗法を用いて効率的に求めることができる。これにより、火炉壁管10Aに関する亀裂深さの計測に、例えばX線等の放射線を用いた測定装置を用いる必要がなく、該亀裂深さの検査を他の作業と並行して行うことができるので、作業効率を大幅に向上させることができる。 In some embodiments, the measurement object 10 may include a furnace wall tube 10A. By doing so, the depth of the crack 14 generated on the surface of the furnace wall tube 10A can be efficiently obtained using the electric resistance method. As a result, it is not necessary to use a measuring device using radiation such as X-rays to measure the crack depth of the furnace wall pipe 10A, and inspection of the crack depth can be performed in parallel with other work. Therefore, work efficiency can be greatly improved.

幾つかの実施形態において、計測装置1は、上述した何れかの構成又はそれらの何れかを組み合わせて備えることにより、測定対象物10の表面の亀裂14長さL又は亀裂深さDを自動で計測し得るように構成されていてもよい(亀裂長さ又は亀裂深さの自動計測装置)。このようにすれば、亀裂長さL又は亀裂深さDの検査の作業効率をより一層向上させることができる。 In some embodiments, the measurement device 1 automatically measures the crack 14 length L or the crack depth D of the surface of the measurement object 10 by including any of the configurations described above or any combination thereof. It may also be configured for measurement (automated measuring device for crack length or crack depth). By doing so, the working efficiency of the crack length L or crack depth D inspection can be further improved.

以上述べた構成によれば、異なる測定位置における亀裂14に関する情報を効率的に取得することができる。 According to the configuration described above, it is possible to efficiently acquire information about the crack 14 at different measurement positions.

本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present invention is not limited to the above-described embodiments, and includes modifications of the above-described embodiments and modes in which these modes are combined as appropriate.

1 計測装置(亀裂深さ計測装置)
2 入力端子
4 出力端子
6 測定端子(測定端子対)
6A 測定端子(第1端子)
6B 測定端子(第2端子)
8 電位差計
10 測定対象物(配管/火炉壁管)
12 部材表面
14 亀裂
16 電源
20 車軸(絶縁体)
22 フレーム
24 キャリア
26 ガイド部(レール)
28 亀裂計測部
30 表面処理部
32 リレースイッチ
A 管軸方向
D 亀裂深さ
L1,L2 亀裂長さ
1 Measuring device (crack depth measuring device)
2 Input terminal 4 Output terminal 6 Measurement terminal (measurement terminal pair)
6A measurement terminal (first terminal)
6B measurement terminal (second terminal)
8 Potentiometer 10 Measurement object (pipe/furnace wall tube)
12 Member surface 14 Crack 16 Power supply 20 Axle (insulator)
22 frame 24 carrier 26 guide part (rail)
28 Crack measurement unit 30 Surface treatment unit 32 Relay switch A Tube axis direction D Crack depths L1, L2 Crack length

Claims (10)

電気抵抗法を用いた亀裂深さの計測装置であって、
測定対象物の部材表面にそれぞれ当接されて前記部材表面に生じた亀裂の両側に電源電圧を印加するための入力端子及び出力端子と、
前記亀裂の両側に当接可能に構成された複数の測定端子対と、
各々の前記測定端子対について測定端子間の電位差を検出するための電位差計と、
前記部材表面に沿って前記入力端子と前記出力端子とを結ぶ方向に延在し、前記入力端子及び前記出力端子、複数の前記測定端子対及び前記電位差計を案内するためのガイド部と、
前記入力端子、前記出力端子、前記複数の測定端子対及び前記電位差計を搭載したキャリアと連結されて、前記ガイド部に沿って移動可能に配置され、前記亀裂の長さ及び個数を計測するように構成された亀裂計測部と、
を備え、
前記電位差計によって計測された前記電位差、及び、前記亀裂計測部によって計測された前記亀裂の長さ及び個数に基づいて前記亀裂深さを求めるように構成されることを特徴とする計測装置。
A crack depth measuring device using an electrical resistance method,
an input terminal and an output terminal for applying a power supply voltage to both sides of a crack formed on the surface of the member by contacting the surface of the member of the object to be measured;
a plurality of measurement terminal pairs configured to contact both sides of the crack;
a potentiometer for detecting a potential difference between the measurement terminals for each said measurement terminal pair;
a guide portion extending in a direction connecting the input terminal and the output terminal along the surface of the member and guiding the input terminal and the output terminal, the plurality of measurement terminal pairs, and the potentiometer;
A carrier mounted with the input terminal, the output terminal, the plurality of measurement terminal pairs, and the potentiometer is connected to the carrier and arranged movably along the guide section to measure the length and number of the cracks. a crack measurement unit configured as
with
A measuring device configured to determine the crack depth based on the potential difference measured by the potentiometer and the length and number of cracks measured by the crack measuring unit.
複数の前記測定端子対は、夫々、前記入力端子と前記出力端子とを結ぶ方向と交差する方向に並んで配置される
ことを特徴とする請求項1に記載の計測装置。
2. The measurement apparatus according to claim 1, wherein the plurality of measurement terminal pairs are arranged in a direction crossing a direction connecting the input terminal and the output terminal.
少なくとも前記入力端子及び前記出力端子と、複数の前記測定端子対と、前記電位差計とが、前記部材表面に沿って前記入力端子と前記出力端子とを結ぶ方向に移動可能に構成されている
ことを特徴とする請求項1又は2に記載の計測装置。
At least the input terminal and the output terminal, the plurality of measurement terminal pairs, and the potentiometer are configured to be movable along the surface of the member in a direction connecting the input terminal and the output terminal. The measuring device according to claim 1 or 2, characterized by:
前記入力端子と該入力端子に電源を介して接続された前記出力端子とがそれぞれ車輪状に形成され、
複数の前記測定端子対は、それぞれ第1端子及び第2端子を含み、
複数の前記第1端子及び複数の前記第2端子は、前記部材表面に当接される各々の先端が周方向に沿って配置されるようにして各々放射状に構成され、
放射状に構成された複数の前記第1端子の中心と前記入力端子及び前記出力端子の何れか一方、及び、放射状に構成された複数の前記第2端子の中心と前記入力端子及び前記出力端子の何れか他方が、それぞれ車軸を介して接続され、
前記入力端子、前記出力端子、複数の前記第1端子及び複数の前記第2端子が、回転により前記入力端子と前記出力端子とを結ぶ方向に沿って移動可能に構成されている
ことを特徴とする請求項1乃至3の何れか一項に記載の計測装置。
The input terminal and the output terminal connected to the input terminal via a power supply are formed in a wheel shape,
The plurality of measurement terminal pairs each include a first terminal and a second terminal,
the plurality of first terminals and the plurality of second terminals are each configured radially such that the tips thereof contacting the surface of the member are arranged along the circumferential direction,
Centers of the plurality of first terminals arranged radially and one of the input terminal and the output terminal, and centers of the plurality of second terminals arranged radially and between the input terminal and the output terminal either one or the other, each connected via an axle,
The input terminal, the output terminal, the plurality of first terminals, and the plurality of second terminals are configured to be movable along a direction connecting the input terminal and the output terminal by rotation. The measuring device according to any one of claims 1 to 3.
前記電源及び前記電位差計を搭載するとともに、前記車軸を介して前記入力端子、前記出力端子及び前記測定端子対を一体的に連結するフレームをさらに備える
ことを特徴とする請求項4に記載の計測装置。
5. The measurement according to claim 4, further comprising a frame that mounts the power supply and the potentiometer and integrally connects the input terminal, the output terminal and the measurement terminal pair via the axle. Device.
前記車軸は絶縁体を含む
ことを特徴とする請求項4に記載の計測装置。
5. The metrology device of claim 4, wherein said axle includes an insulator.
前記入力端子及び前記出力端子、複数の前記測定端子対及び前記電位差計を搬送可能に搭載するキャリアをさらに備える
ことを特徴とする請求項1乃至6の何れか一項に記載の計測装置。
7. The measuring apparatus according to any one of claims 1 to 6, further comprising a carrier on which the input terminal, the output terminal, the plurality of measurement terminal pairs, and the potentiometer are transportably mounted.
前記ガイド部に沿って移動可能に配置され、前記部材表面を清掃可能に構成された表面処理部をさらに備える
ことを特徴とする請求項1乃至7の何れか一項に記載の計測装置。
The measuring device according to any one of claims 1 to 7, further comprising a surface treatment section arranged movably along the guide section and configured to be able to clean the surface of the member.
複数の前記測定端子対のうち、測定対象の亀裂の両端の電位差測定に用いる測定端子対を切り替えるためのリレースイッチをさらに備える
ことを特徴とする請求項1乃至3の何れか一項に記載の計測装置。
4. The method according to any one of claims 1 to 3, further comprising a relay switch for switching, among the plurality of measurement terminal pairs, the measurement terminal pair used for measuring the potential difference across the crack to be measured. measuring device.
前記測定対象物は火炉壁管を含む
ことを特徴とする請求項1乃至9の何れか一項に記載の計測装置。
10. The measuring device according to any one of claims 1 to 9, wherein the object to be measured includes a furnace wall tube.
JP2018063597A 2018-03-29 2018-03-29 Dense crack depth measurement device using electrical resistance method Active JP7174526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018063597A JP7174526B2 (en) 2018-03-29 2018-03-29 Dense crack depth measurement device using electrical resistance method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018063597A JP7174526B2 (en) 2018-03-29 2018-03-29 Dense crack depth measurement device using electrical resistance method

Publications (2)

Publication Number Publication Date
JP2019174314A JP2019174314A (en) 2019-10-10
JP7174526B2 true JP7174526B2 (en) 2022-11-17

Family

ID=68166847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018063597A Active JP7174526B2 (en) 2018-03-29 2018-03-29 Dense crack depth measurement device using electrical resistance method

Country Status (1)

Country Link
JP (1) JP7174526B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739685A (en) * 2021-09-07 2021-12-03 北京建筑大学 Train component crack length detection method and device
JP7402270B2 (en) * 2022-05-18 2023-12-20 北海道電力株式会社 Metal cylindrical resistance measurement jig, resistance measurement system, resistance measurement method, and plate thickness evaluation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174380A (en) 1999-12-15 2001-06-29 Toshiba Corp Method and apparatus for predicting remaining life of structural material
JP2005308544A (en) 2004-04-21 2005-11-04 Tokyo Electric Power Co Inc:The Crack development monitoring device and method by potential difference method
US20070250277A1 (en) 2006-03-06 2007-10-25 Technion Dr&D Foundation Ltd. Of Technion City System and method for depth determination of cracks in conducting structures
JP2009175110A (en) 2008-01-25 2009-08-06 Mitsubishi Heavy Ind Ltd Method for evaluating lifetime
JP2016161562A (en) 2015-03-05 2016-09-05 非破壊検査株式会社 Eddy current inspection device and eddy current inspection method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292546A (en) * 1985-06-21 1986-12-23 Hitachi Ltd Detection for shape of surface crack
JPS623654A (en) * 1985-06-29 1987-01-09 Nippon Kokan Kk <Nkk> Measuring instrument for crack depth in tube
JP3565970B2 (en) * 1995-02-23 2004-09-15 トヨタ自動車株式会社 Non-destructive inspection method of crack depth and non-destructive inspection method of crack number

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174380A (en) 1999-12-15 2001-06-29 Toshiba Corp Method and apparatus for predicting remaining life of structural material
JP2005308544A (en) 2004-04-21 2005-11-04 Tokyo Electric Power Co Inc:The Crack development monitoring device and method by potential difference method
US20070250277A1 (en) 2006-03-06 2007-10-25 Technion Dr&D Foundation Ltd. Of Technion City System and method for depth determination of cracks in conducting structures
JP2009175110A (en) 2008-01-25 2009-08-06 Mitsubishi Heavy Ind Ltd Method for evaluating lifetime
JP2016161562A (en) 2015-03-05 2016-09-05 非破壊検査株式会社 Eddy current inspection device and eddy current inspection method

Also Published As

Publication number Publication date
JP2019174314A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP7174526B2 (en) Dense crack depth measurement device using electrical resistance method
KR101843890B1 (en) Apparatus for Diagnosis Defect of Steel Structures and Weld
JP2007192803A (en) Corrosion evaluation apparatus and corrosion evaluation method
KR101522487B1 (en) Non-destructive testing device
KR102331285B1 (en) Magnetizing electrode device for nondestructive inspecting equipment with adjustable spacing between electrodes
JP6058343B2 (en) Eddy current flaw detector and eddy current flaw detection method
JP4822545B2 (en) Nugget diameter measuring method and nugget diameter measuring apparatus
JP2008032508A (en) Piping inspection device and piping inspection method
JP2013113708A (en) Inspection apparatus
JP2004279045A (en) Magnetic particle inspection device of magnetic pipe and manufacturing method of magnetic pipe
KR102067531B1 (en) Residual Stress Measurement Apparatus for Tubular Type Electric Power Transmission Tower
CN105277613B (en) A kind of ultrasonic flaw detection positioning measuring device and its application method
JP2014077764A (en) Eddy current flaw detection device
CA2953295C (en) Apparatus and method for detection of imperfections by detecting changes in flux of a magnetized body
JP4756224B1 (en) Spot welding inspection equipment
JP7116570B2 (en) Dense Crack Depth Measurement Method Using Electric Resistance Method
JP2004251839A (en) Pipe inner surface flaw inspection device
JP2016133408A (en) Concrete resistivity measuring apparatus
CN212301420U (en) Hand-held type eddy current test probe
EP2159534A1 (en) Eccentricity gauge for wire and cable and method for measuring concentricity
JP2013185951A (en) Magnetic flaw detection probe
JP2013160729A (en) Method for determining different material of weld part
KR101912712B1 (en) Eddy current test probe device for boiler header stub tubes in a power plant and eddy current test device using this
JP2005156184A (en) Eddy current flaw detector for bent pipe, and eddy current flaw detecting method
JP4789502B2 (en) Crack depth measurement technique and apparatus for deep cracks using potentiometric method

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221107

R150 Certificate of patent or registration of utility model

Ref document number: 7174526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150