JPH0358180B2 - - Google Patents
Info
- Publication number
- JPH0358180B2 JPH0358180B2 JP57117969A JP11796982A JPH0358180B2 JP H0358180 B2 JPH0358180 B2 JP H0358180B2 JP 57117969 A JP57117969 A JP 57117969A JP 11796982 A JP11796982 A JP 11796982A JP H0358180 B2 JPH0358180 B2 JP H0358180B2
- Authority
- JP
- Japan
- Prior art keywords
- guard ring
- surface portion
- layer
- conductivity type
- ring layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 claims description 29
- 239000012535 impurity Substances 0.000 claims description 28
- 239000004065 semiconductor Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 39
- 229920002120 photoresistant polymer Polymers 0.000 description 18
- 239000000463 material Substances 0.000 description 15
- 230000002265 prevention Effects 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Element Separation (AREA)
Description
【発明の詳細な説明】
この発明は半導体集積回路装置の製造方法に係
り、特にその各素子の分離手法におけるガードリ
ング層の形成に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor integrated circuit device, and particularly to the formation of a guard ring layer in a method for separating each element.
従来、半導体集積回路装置特にMOS型半導体
集積回路装置に於ける各素子間の分離い於ては、
基板平面上に基板と同一導電型の高濃度不純物層
(ガードリング不純物層)と、該不純物層上に選
択酸化を用いて厚い酸化膜(フイールド酸化膜)
を配したガードリング領域が用いられてきた。こ
の手法に於ては選択酸化時にフイールド酸化膜及
びガードリング不純物層の素子領域内へのくい込
みが生ずるため、超高集積素子に対しては不利で
ある。 Conventionally, when separating each element in a semiconductor integrated circuit device, especially a MOS type semiconductor integrated circuit device,
A highly concentrated impurity layer (guard ring impurity layer) of the same conductivity type as the substrate is formed on the substrate plane, and a thick oxide film (field oxide film) is formed using selective oxidation on the impurity layer.
Guard ring areas have been used. In this method, the field oxide film and the guard ring impurity layer penetrate into the device region during selective oxidation, which is disadvantageous for ultra-highly integrated devices.
これを解決する方法として、素子領域とガード
リング領域を基板主表面に対して垂直に分離する
方法がある。該垂直分離構造に於て、インターナ
シヨナル・エレクトロン・デバイス・ミーテイン
グ(International Electron Devices Meeting)
第380頁(1981)に報告されている如く、垂直に
分離した側面に於て所望されない側面チヤンネル
が形成され、素子のカツト・オフ(Cut−OFF)
特性に悪影響を及ぼす。 One way to solve this problem is to separate the element region and the guard ring region perpendicularly to the main surface of the substrate. In this vertical separation structure, International Electron Devices Meeting
As reported on page 380 (1981), undesired lateral channels are formed on the vertically separated sides, leading to cut-off of the device.
adversely affect characteristics.
又該垂直分離構造を実現する一手法が
International Elctron Devices Meeting第384頁
(1981)に示されている。該手法に於て側面チヤ
ンネル防止のための基板と同一導電型不純物層の
形成を低部の高濃度ガードリング不純物層と同時
にイオン注入法で形成している。該方法では基板
面内の任意の個所に配置された傾斜を持たない垂
直側面構造を有する場合には、側面に側面チヤン
ネル防止用としての基板と導一同電型不純物層を
導入することは困難である。一方、熱拡散で低部
と側部にガードリング層を同時に形成すると低部
の表面濃度が高く出来ず、このために素子間の距
離を長くした分離構造が必要となり、高集積度化
に適さない。 Also, one method to realize the vertical separation structure is
International Elctron Devices Meeting, page 384 (1981). In this method, an impurity layer of the same conductivity type as the substrate for preventing side channels is formed by ion implantation at the same time as a low-level high concentration guard ring impurity layer. In this method, if the substrate has a vertical side surface structure without an inclination placed at an arbitrary location within the surface of the substrate, it is difficult to introduce an impurity layer having the same conductivity as the substrate to prevent a side channel on the side surface. be. On the other hand, if a guard ring layer is simultaneously formed on the lower part and the side part by thermal diffusion, the surface concentration in the lower part cannot be high, which requires an isolation structure with a long distance between elements, making it unsuitable for high integration. do not have.
本発明の目的は、チヤンネル防止のためのガー
ドリング層を形成する好ましい方法を有する半導
体集積回路装置の製造方法を提供することであ
る。 An object of the present invention is to provide a method for manufacturing a semiconductor integrated circuit device having a preferable method for forming a guard ring layer for channel prevention.
本発明の特徴は、一導電型の半導体基板の一主
表面上に酸化膜を形成し、該酸化膜上にフオトレ
ジスト層を選択的に形成する工程と、前記フオト
レジスト層をマスクとして前記酸化膜を選択的に
エツチング除去し、かつ該フオトレジスト層をマ
スクとして前記半導体基板を選択的に除去して該
半導体基板に該フオトレジスト層の下の高い表面
部とその囲りの低い表面部とを形成する工程と、
前記フオトレジスト層をマスクとして一導電型の
イオンを注入することにより前記半導体基板の低
い表面部に一導電型の高濃度のガードリング層を
形成する工程と、しかる後に前記フオトレジスト
層を除去する工程と、次に一導電型の不純物を熱
拡散して前記半導体基板の前記高い表面部と低い
表面部との間の側面部に一導電型の低濃度のガー
ドリング層を形成する工程と、前記半導体基板の
低い表面部上に前記高い表面部とほぼ同じ高さと
なる絶縁層を形状形成する工程と、逆導電性のソ
ースおよびドレイン領域が前記低濃度のガードリ
ング層に接し、かつ、前記高濃度のガードリング
層に接しないように前記高い表面部より形成する
半導体集積回路装置の製造方法にある。本発明に
よれば側面部および低い表面部にそれぞれ適した
表面濃度のガードリング層が形成できる。側面部
のガードリング層は低濃度であるからソース、ド
レイン領域の耐圧が不所望に低下することはな
い。一方低い表面部のガードリング層は高濃度で
あるから素子間の距離を短かくしても寄生チヤン
ネルによりリーク電流が発生することはなく、高
集積度化に適している。又、本発明ではフオトレ
ジスト層を酸化膜の除去のためのマスク、半導体
基板のエツチングのためのマスクおよび低い表面
部へのガードリング層の形成の際のイオン注入の
ためのマスクとして三重に使用している。したが
つて本発明のようにガードリング層の形成のため
に2つの工程を必要とする場合も、それにより全
体の目合せ工程が増加することはない。 The present invention is characterized by forming an oxide film on one main surface of a semiconductor substrate of one conductivity type, selectively forming a photoresist layer on the oxide film, and using the photoresist layer as a mask to form the oxide film on the main surface of a semiconductor substrate of one conductivity type. The film is selectively etched away, and the semiconductor substrate is selectively removed using the photoresist layer as a mask to form a high surface area under the photoresist layer and a low surface area surrounding the semiconductor substrate. a step of forming;
forming a high-concentration guard ring layer of one conductivity type on the lower surface portion of the semiconductor substrate by implanting ions of one conductivity type using the photoresist layer as a mask, and then removing the photoresist layer. a step of thermally diffusing impurities of one conductivity type to form a low concentration guard ring layer of one conductivity type on a side surface between the high surface portion and the low surface portion of the semiconductor substrate; a step of forming an insulating layer on a low surface portion of the semiconductor substrate to have approximately the same height as the high surface portion; and a step in which source and drain regions of opposite conductivity are in contact with the low concentration guard ring layer; The present invention provides a method of manufacturing a semiconductor integrated circuit device in which the high surface portion is formed so as not to contact the high concentration guard ring layer. According to the present invention, a guard ring layer having a surface concentration suitable for each of the side surface portion and the lower surface portion can be formed. Since the guard ring layer on the side surface has a low concentration, the breakdown voltage of the source and drain regions will not be undesirably lowered. On the other hand, since the guard ring layer in the lower surface area has a high concentration, even if the distance between elements is shortened, leakage current will not occur due to parasitic channels, making it suitable for high integration. Furthermore, in the present invention, the photoresist layer is triple-used as a mask for removing an oxide film, a mask for etching the semiconductor substrate, and a mask for ion implantation when forming a guard ring layer in the lower surface area. are doing. Therefore, even if two steps are required to form the guard ring layer as in the present invention, the overall number of alignment steps does not increase.
次に本発明の一実施例の図を参照に説明する。 Next, an embodiment of the present invention will be explained with reference to the drawings.
第1図に示す如く、比抵抗10〜15Ω・cmのP型
シリコン基板10の一主表面上に酸化膜11を
700〓成長させフオトレジスト材12を塗布写真
蝕刻法を用いてガードリングとなる領域を開口さ
せ、CF4系ガスを用いた反応スパツタ装置で露光
された酸化膜をエツチングし、引き続き同装置で
Ccl4系ガスを用いて垂直分離構造を造るべく露出
されたシリコン基板表面を0.8μmエツチングし第
2図の構造を得る。 As shown in FIG. 1, an oxide film 11 is formed on one main surface of a P-type silicon substrate 10 with a specific resistance of 10 to 15 Ω·cm.
700〓 Grow, apply photoresist material 12, open the area that will become the guard ring using photolithography, etch the exposed oxide film with a reaction sputtering device using CF 4 gas, and continue using the same device.
The exposed surface of the silicon substrate is etched by 0.8 μm using Ccl 4 gas to create a vertical isolation structure, resulting in the structure shown in FIG.
しかる後、基板と同一導電型不純物を加速エネ
ルギー100Kev、ドーズ量1012〜1013ion/cm2でフ
オトレジスト材12をマスク材とし、イオン注入
しガードリング不純物層13を基板表面の低部に
形成し、フオトレジスト材12を除去した後、低
部に隣接した凸部形状の表面領域の上面部および
側面部のうち上面部は酸化膜11をマスクとして
不純物は拡散かれないようにして側面部10aの
表面領域のみに、浅く低濃度に基板と同一導電型
不純物を熱拡散し、側面チヤネル防止用不純物層
14を形成し、該熱拡散で堆積した不純物ガラス
層を除去し第3図を得る。 Thereafter, impurities of the same conductivity type as the substrate are ion-implanted at an acceleration energy of 100 Kev and a dose of 10 12 to 10 13 ions/cm 2 using the photoresist material 12 as a mask material to form a guard ring impurity layer 13 in the lower part of the substrate surface. After the photoresist material 12 is removed, the upper surface and side surfaces of the convex-shaped surface region adjacent to the lower portion are covered with the oxide film 11 as a mask to prevent impurities from diffusing into the side surfaces. Impurities of the same conductivity type as the substrate are thermally diffused in a shallow and low concentration only in the surface region 10a to form a side channel prevention impurity layer 14, and the impurity glass layer deposited by the thermal diffusion is removed to obtain the structure shown in FIG. .
次にフイールド絶縁膜となる酸化膜15をプラ
ズマ法又は気相成長を用いて1.0μm成長させた
後、900℃O2雰囲気で熱処理を処して、フオトレ
ジスト材16を塗布し第4図の構造を得る。ここ
でフオトレジスト材は凹凸を持つ基板表面に対
し、高部に薄く、低部に厚くコーテイングされ
て、表面を平滑化し、続く全面エツチングに利用
するものである。 Next, an oxide film 15 that will become a field insulating film is grown to a thickness of 1.0 μm using a plasma method or vapor phase growth, and then heat treated in an O 2 atmosphere at 900°C, and a photoresist material 16 is applied, resulting in the structure shown in FIG. get. Here, the photoresist material is coated thinly on the high parts and thickly on the low parts of the uneven substrate surface to smooth the surface and use it for subsequent etching of the entire surface.
該平滑化された表面をCF4系のガスの反応スパ
ツタ装置を用いて酸化膜11を露出させるまで全
面エツチングし第5図を得る。この反応スパツタ
エツチングに際しフオトレジスト材と堆積された
酸化膜とがほぼ等しいエツチング速度でエツチン
グされるガス等のエツチング条件を選ぶことが望
ましい。 The entire surface of the smoothed surface is etched using a reactive sputtering device using a CF 4 gas until the oxide film 11 is exposed, as shown in FIG. During this reactive sputter etching, it is desirable to select etching conditions such as a gas that etches the photoresist material and the deposited oxide film at approximately the same etching rate.
しかる残存された薄い酸化膜11を除去した後
通常のシリコンゲートMOS製造方法に従つてゲ
ート酸化膜17、多結晶シリコンゲート電極1
8、ソース及びドレインを形成する基板と逆導電
型不純物層21、層間絶縁膜19を形成し電極取
り出し部を開口した後、Al配線電極20を形成
し第6図に示すMOS型半導体集積回路装置を得
る。第6図はチヤンネルと垂直な方向での切断面
を示したが、チヤンネルを平行な切断面は第7図
に示す。 After removing the remaining thin oxide film 11, a gate oxide film 17 and a polycrystalline silicon gate electrode 1 are formed according to a normal silicon gate MOS manufacturing method.
8. After forming a substrate for forming a source and a drain, a reverse conductivity type impurity layer 21, and an interlayer insulating film 19 and opening an electrode extraction part, an Al wiring electrode 20 is formed to form a MOS type semiconductor integrated circuit device as shown in FIG. get. Although FIG. 6 shows a cut plane in a direction perpendicular to the channel, FIG. 7 shows a cut plane parallel to the channel.
この発明に於て上述に説明した如く、チヤンネ
ル領域又は基板と逆導電型領域に接するのは浅い
低濃度の不純物層のみで、該領域は高濃度ガード
リング不純物層とは完全に分離されており、ガー
ドリング領域を非常に狭くとつてもその不純物濃
度は自由に選択でき、しこも側面チヤンネル防止
不純物層が導入されているので超高密度半導体集
積回路装置が得られるものである。 As explained above in this invention, only the shallow low concentration impurity layer is in contact with the channel region or the substrate and the opposite conductivity type region, and this region is completely separated from the high concentration guard ring impurity layer. Even if the guard ring region is made very narrow, its impurity concentration can be freely selected, and since a side channel prevention impurity layer is introduced, an ultra-high density semiconductor integrated circuit device can be obtained.
以上の実施例に於て、半導体基板及び種々の半
導体不純物層の導電型は必要に応じて任意に変更
可能であり、又第2図に於て必要に応じ酸化膜1
1とフオトレジスト材の間に別のマスク材、例え
ばシリコン窒化膜を挿入してもよく、第3図の側
面チヤンネル防止不純物層の形成は、該不純物を
含んだ堆積絶縁酸化膜15からの熱拡散であつて
もよい。さらに第4図で説明したフオトレジスト
材16は、表面平滑作用があり、しかも続く全面
エツチング装置で堆積酸化膜15とほぼ等しいエ
ツチング速度を有する物質例えばシリカフイルム
等であつてもよい。 In the above embodiments, the conductivity types of the semiconductor substrate and various semiconductor impurity layers can be changed as necessary, and the oxide film 1 can be changed as necessary in FIG.
Another mask material, such as a silicon nitride film, may be inserted between the photoresist material 1 and the photoresist material, and the formation of the side channel prevention impurity layer shown in FIG. It may be diffusion. Further, the photoresist material 16 described in FIG. 4 may be a material, such as a silica film, which has a surface smoothing effect and has an etching rate substantially equal to that of the deposited oxide film 15 in a subsequent whole-surface etching device.
第1図〜第6図はこの発明の一実施例の各工程
に於けるMOS型半導体集積回路装置のチヤンネ
ルに垂直な一断面図であつて、第7図は該装置の
チヤンネルに平行な一断面図である。
図中に於て、10……半導体基板、11……マ
スク材酸化膜、12……マスク材フオトレジス
ト、13……ガードリング不純物層、14……側
面チヤネル防止不純物層、15……フイールド絶
縁酸化膜、16……表面平滑用フオトレジスト
材、17……ゲート酸化物、18……多結晶シリ
コンゲート電極、19……層間絶縁酸化膜、20
……Al配線電極、21……ソース及びドレーン
不純物層、を表わす。
1 to 6 are cross-sectional views perpendicular to the channel of a MOS type semiconductor integrated circuit device in each step of an embodiment of the present invention, and FIG. 7 is a cross-sectional view parallel to the channel of the device. FIG. In the figure, 10...Semiconductor substrate, 11...Mask material oxide film, 12...Mask material photoresist, 13...Guard ring impurity layer, 14...Side channel prevention impurity layer, 15...Field insulation Oxide film, 16... Photoresist material for surface smoothing, 17... Gate oxide, 18... Polycrystalline silicon gate electrode, 19... Interlayer insulation oxide film, 20
. . . Al wiring electrode, 21 . . . source and drain impurity layer.
Claims (1)
除去して該半導体基板に高い表面部とその囲りの
低い表面部とを形成する工程と、前記高い表面部
をマスクした状態で前記半導体基板に一導電型の
不純物をイオン注入しかつ一導電型の不純物を熱
拡散することにより、該半導体基板の前記低い表
面部には一導電型の高不純物濃度の第1のガード
リング層を形成し該低い表面部と該高い表面部と
間の側面部には該第1のガードリング層よりも低
い不純物濃度の第2のガードリング層を形成する
工程と、前記半導体基板の低い表面部上に前記高
い表面部とほぼ同じ高さとなる絶縁層を形状形成
する工程と、逆導電型のソースおよびドレイン領
域が低濃度の前記第2のガードリング層に接し、
かつ、高濃度の前記第1のガードリング層に接し
ないように前記高い表面部より形成することを特
徴とする半導体集積回路装置の製造方法。1. A step of selectively etching a semiconductor substrate of one conductivity type to form a high surface portion and a surrounding low surface portion on the semiconductor substrate, and etching the semiconductor substrate with the high surface portion masked. By ion-implanting impurities of one conductivity type and thermally diffusing the impurities of one conductivity type, a first guard ring layer of high impurity concentration of one conductivity type is formed in the low surface portion of the semiconductor substrate. forming a second guard ring layer having an impurity concentration lower than that of the first guard ring layer on a side surface between the low surface portion and the high surface portion; a step of forming an insulating layer to have a shape that is approximately the same height as the high surface portion; source and drain regions of opposite conductivity types are in contact with the second guard ring layer having a low concentration;
A method for manufacturing a semiconductor integrated circuit device, characterized in that the first guard ring layer is formed from the higher surface portion so as not to be in contact with the first guard ring layer having a high concentration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11796982A JPS598353A (en) | 1982-07-07 | 1982-07-07 | Semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11796982A JPS598353A (en) | 1982-07-07 | 1982-07-07 | Semiconductor integrated circuit device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS598353A JPS598353A (en) | 1984-01-17 |
JPH0358180B2 true JPH0358180B2 (en) | 1991-09-04 |
Family
ID=14724753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11796982A Granted JPS598353A (en) | 1982-07-07 | 1982-07-07 | Semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS598353A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2016449C (en) * | 1989-07-28 | 1996-06-25 | Steven J. Hillenius | Planar isolation technique for integrated circuits |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5226182A (en) * | 1975-08-25 | 1977-02-26 | Hitachi Ltd | Manufacturing method of semi-conductor unit |
-
1982
- 1982-07-07 JP JP11796982A patent/JPS598353A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5226182A (en) * | 1975-08-25 | 1977-02-26 | Hitachi Ltd | Manufacturing method of semi-conductor unit |
Also Published As
Publication number | Publication date |
---|---|
JPS598353A (en) | 1984-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5019522A (en) | Method of making topographic pattern delineated power MOSFET with profile tailored recessed source | |
US4895810A (en) | Iopographic pattern delineated power mosfet with profile tailored recessed source | |
US5182234A (en) | Profile tailored trench etch using a SF6 -O2 etching composition wherein both isotropic and anisotropic etching is achieved by varying the amount of oxygen | |
JPH0680724B2 (en) | Method of manufacturing isolated CMOS FET integrated device | |
JPS6118147A (en) | Method of forming semiconductor device | |
JP2000332246A (en) | Process for forming a MOS gate device having a self-aligned trench | |
US5480816A (en) | Method of fabricating a bipolar transistor having a link base | |
US5089434A (en) | Mask surrogate semiconductor process employing dopant-opaque region | |
US5256583A (en) | Mask surrogate semiconductor process with polysilicon gate protection | |
US20040209433A1 (en) | Method for manufacturing and structure of semiconductor device with shallow trench collector contact region | |
JPH0358180B2 (en) | ||
JPH0363210B2 (en) | ||
JPS63227059A (en) | Semiconductor device and manufacture thereof | |
JPH0334656B2 (en) | ||
JPH09139382A (en) | Method for manufacturing semiconductor device | |
JPH07273183A (en) | Semiconductor device and its fabrication | |
JPH04368125A (en) | Semiconductor device and manufacture thereof | |
JPH01251669A (en) | Method of manufacturing field effect transistor | |
JP3224432B2 (en) | Method for manufacturing semiconductor device | |
KR0147255B1 (en) | MOSFET manufacturing method | |
JPH07283300A (en) | Semiconductor device and manufacturing method thereof | |
JPH0481339B2 (en) | ||
JPH0235458B2 (en) | ||
JPS58175843A (en) | Manufacture of semiconductor integrated circuit | |
JPH01112770A (en) | Manufacture of semiconductor device |