[go: up one dir, main page]

JPH01112770A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01112770A
JPH01112770A JP62269258A JP26925887A JPH01112770A JP H01112770 A JPH01112770 A JP H01112770A JP 62269258 A JP62269258 A JP 62269258A JP 26925887 A JP26925887 A JP 26925887A JP H01112770 A JPH01112770 A JP H01112770A
Authority
JP
Japan
Prior art keywords
film
insulating film
exposed
etching
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62269258A
Other languages
Japanese (ja)
Inventor
Hiroomi Nakajima
博臣 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62269258A priority Critical patent/JPH01112770A/en
Publication of JPH01112770A publication Critical patent/JPH01112770A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00126Static structures not provided for in groups B81C1/00031 - B81C1/00119
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0156Lithographic techniques
    • B81C2201/0159Lithographic techniques not provided for in B81C2201/0157
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2037Exposure with X-ray radiation or corpuscular radiation, through a mask with a pattern opaque to that radiation
    • G03F7/2039X-ray radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/167X-ray
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/167X-ray
    • Y10S430/168X-ray exposure process

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To make it possible to convert to reactive plasma etching by hot phosphoric acid water solution by providing a secondary insulation film between an oxidation resistant insulation film on a primary insulation film and a primary conductor film when forming an overhung section by side-etching the oxidation resistant insulation film to form an external base region. CONSTITUTION:An oxide film 6 is formed over the entire surface of a silicon substrate and a silicon nitride film 7 is deposited as an oxidation resistant insulation film all over there including a trench region and an insulation film region for separation. Then a CVD silicon oxide film 8 is accumulated as a secondary insulation film thereover. After a polycrystalline silicon film 9 is grown all over as a primary conductor film, boron is ion-implanted thereover and the silicon film 9 is eliminated by etching. The secondary oxide film 8 for surface treatment is successively eliminated thereafter until the silicon nitride film 7 for surface treatment of the secondary oxide film is exposed. Then the silicon nitride film 7 of the opening is eliminated by using thermal oxide films 19, 29 formed on the upper and side surface of the film 9 as masks until the primary oxide film 6 is exposed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は半導体装置の製造方法にかかり、特にベース
領域とエミッタ領域を制御性良く自己整合的に形成する
高性能のバイポーラトランジスタの製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device, and in particular to a high-performance bipolar device in which a base region and an emitter region are formed in a self-aligned manner with good controllability. The present invention relates to a method for manufacturing a transistor.

(従来の技術) 高性能バイポーラトランジスタ装置は、g子計算機、光
通信、各種アナログ回路等の様々な応用分野で要求され
る。最近ベース領域とエミッタ領域の自己整合技術がい
くつか提案され、試作されたバイポーラトランジスタの
遮断周波数は30GHzに達しようとしている。(例え
ば、■IEEE Trans。
(Prior Art) High-performance bipolar transistor devices are required in various application fields such as g-son computers, optical communications, and various analog circuits. Recently, several self-alignment techniques for base and emitter regions have been proposed, and the cutoff frequency of prototype bipolar transistors is about to reach 30 GHz. (For example, ■IEEE Trans.

on Electron Device、 vol、 
HD−33,No、4. Apr。
on Electron Device, vol.
HD-33, No, 4. Apr.

1986、 p、 526.■特開昭58−7862号
公報、■IEDM’86.1986. p、 420)
 、以下に代表的な従来技術を説明し、その問題点を明
らかにする6第3図(a)〜(d)は従来例の製造工程
を工程順に示すいずれも断面図である。P型シリコン基
板101にn十型埋め込み層102を介してn型エピタ
キシャル層103を形成したウェーハを用いている。こ
のウェーハの素子分離領域にはチャネル・ストッパとな
るp型1104が形成され、また選択酸化による酸化膜
105が形成される。二のウェーハの素子領域表面に薄
い熱酸化膜106を形成した後、全面に耐酸化性マスク
となる窒化膜(Si2N3膜)107を堆積し、続いて
第一の多結晶シリコン膜108を堆積する。この第一の
多結晶シリコン膜108のうち素子分離領域上の不要な
部分は熱酸化により酸化膜109に変える。次いで、第
一の多結晶シリコンv4108にボロンをイオン注入し
て添加し、ホトエツチングによりエミッタ形成領域上の
第一の多結晶シリコン膜108をエツチングして開口を
設ける。(第3図(a))。
1986, p. 526. ■Unexamined Japanese Patent Publication No. 58-7862, ■IEDM'86.1986. p. 420)
A typical conventional technique will be explained below and its problems will be clarified. 6. FIGS. 3(a) to 3(d) are sectional views showing the manufacturing process of the conventional example in order of process. A wafer is used in which an n-type epitaxial layer 103 is formed on a p-type silicon substrate 101 with an n-type buried layer 102 interposed therebetween. A p-type layer 1104 serving as a channel stopper is formed in the element isolation region of this wafer, and an oxide film 105 is formed by selective oxidation. After forming a thin thermal oxide film 106 on the surface of the element region of the second wafer, a nitride film (Si2N3 film) 107 serving as an oxidation-resistant mask is deposited on the entire surface, and then a first polycrystalline silicon film 108 is deposited. . An unnecessary portion of the first polycrystalline silicon film 108 on the element isolation region is converted into an oxide film 109 by thermal oxidation. Next, boron is added to the first polycrystalline silicon v4108 by ion implantation, and the first polycrystalline silicon film 108 on the emitter formation region is etched by photoetching to form an opening. (Figure 3(a)).

その後、酸化性雰囲気中で熱処理して多結晶シリコン膜
108の表面に酸化膜110を形成し、この酸化膜11
0をマスクとして開口部の窒化膜107を加熱リン酸水
溶液でエツチング除去する。そして露出した酸化膜10
6をNH4F水溶液で除去してウェーハ面を露出させる
。このとき開口部の窒化膜107のエツチングを意図的
にオーバー・エツチングすることによって、オーバーハ
ング部111を形成し、第一の多結晶シリコン膜108
の一部を露出させる(第3図(b))。
Thereafter, an oxide film 110 is formed on the surface of the polycrystalline silicon film 108 by heat treatment in an oxidizing atmosphere, and this oxide film 11
Using 0 as a mask, the nitride film 107 in the opening is removed by etching with a heated phosphoric acid aqueous solution. And the exposed oxide film 10
6 is removed with an NH4F aqueous solution to expose the wafer surface. At this time, by intentionally over-etching the nitride film 107 in the opening, an overhang part 111 is formed, and the first polycrystalline silicon film 108 is
(Fig. 3(b)).

次いで第二の多結晶シリコン膜112を全面に堆積して
オーバーハング部111の下の空洞部も埋め込み、その
後第二の多結晶シリコン膜をエツチングして酸化膜10
6および開口部のウェーハ面を露出させる(第3図(c
)) 。
Next, a second polycrystalline silicon film 112 is deposited on the entire surface to fill the cavity under the overhang part 111, and then the second polycrystalline silicon film is etched to form an oxide film 10.
6 and expose the wafer surface of the opening (Figure 3(c)
)).

続いて露出させたウェーハ表面および多結晶シリコン膜
の側面に熱酸化による酸化膜113を形成するにのとき
第一の多結晶シリコン膜108に予めドープしておいた
ボロンを、前記オーバーハング部111の第二の多結晶
シリコン膜112を介してウェーハに拡散させ、p型の
外部ベースJim 114を形成する。この後、ボロン
のイオン注入によりp型の内部ベースl 115を形成
する。次いで、 CVD絶縁膜116と第三の多結晶シ
リコン膜117を堆積し、反応性イオンエツチングによ
りこれらをエツチングして開口部側壁にのみこれらを残
し、第三の多結晶シリコン膜117をマスクとして開口
部のウェーハ表面の酸化膜を除去する。そして高濃度に
砒素をイオン注入した第四の多結晶シリコン膜118を
堆積し、熱処理により砒素を拡散させてn型エミッター
層119を形成して完成する(第3図(d))。
Next, when forming an oxide film 113 by thermal oxidation on the exposed wafer surface and side surfaces of the polycrystalline silicon film, boron, which has been doped in advance into the first polycrystalline silicon film 108, is added to the overhang portion 111. is diffused into the wafer through the second polycrystalline silicon film 112 to form a p-type extrinsic base Jim 114. Thereafter, a p-type internal base 115 is formed by boron ion implantation. Next, a CVD insulating film 116 and a third polycrystalline silicon film 117 are deposited, and these are etched by reactive ion etching, leaving them only on the side walls of the opening, and the opening is opened using the third polycrystalline silicon film 117 as a mask. Remove the oxide film on the wafer surface. Then, a fourth polycrystalline silicon film 118 into which arsenic is ion-implanted at a high concentration is deposited, and the arsenic is diffused by heat treatment to form an n-type emitter layer 119, thereby completing the process (FIG. 3(d)).

第一、第二の多結晶シリコン膜108.112はベース
電極として用いられ、第四の多結晶シリコン膜118は
エミッタ電極として用いられる。
The first and second polycrystalline silicon films 108 and 112 are used as base electrodes, and the fourth polycrystalline silicon film 118 is used as an emitter electrode.

取上の従来の方法によると、ベースとエミッタが自己整
合で形成され、しかもエミッタ拡散窓から幅0.35μ
mという微細構造が可能になる。これにより、高速動作
可能なバイポーラトランジスタが得られる。しかしなが
らこの方法では、第3図(b)に示したオーバーハング
の大きさを制御することが藩しいという壁点がある。取
上のようにこのオーバーハング形成の工程は、加熱リン
酸水溶液により窒化膜をエツチングする工程であるが。
According to the conventional method, the base and emitter are formed in self-alignment, and the width is 0.35μ from the emitter diffusion window.
A fine structure of m is possible. As a result, a bipolar transistor capable of high-speed operation is obtained. However, this method has the disadvantage that it is difficult to control the size of the overhang shown in FIG. 3(b). As mentioned above, the process of forming this overhang is a process of etching the nitride film with a heated aqueous phosphoric acid solution.

温度、リン酸濃度、撹拌状態等の制御が難かしい。It is difficult to control temperature, phosphoric acid concentration, stirring conditions, etc.

このため、ウェーハ間およびウェーハ内でオーバーハン
グの大きさにばらつきが生じ、素子特性のばらつきの原
因と、なる。
Therefore, the size of the overhang varies between wafers and within a wafer, which causes variations in device characteristics.

(発明が解決しようとする問題点) 取上の如く、従来の高性能バイポーラトランジスタの製
造方法では構造寸法をきめるオーバーエツチングが加熱
リン酸水溶液によるエツチング量に依存していた。この
加熱リン酸水溶液によるエツチングは、そのエツチング
レートが温度によって大きく変わり、また、濃度によっ
て変化するため、オーバーエツチングによってエツチン
グの大きさを制御することは再現性において極めて困難
である。このため、安定に高速性能を発揮するバイポー
ラトランジスタが得られないという重大な問題があった
(Problems to be Solved by the Invention) As mentioned above, in the conventional manufacturing method of high-performance bipolar transistors, the over-etching which determines the structural dimensions depends on the amount of etching by the heated aqueous phosphoric acid solution. In this etching with a heated aqueous phosphoric acid solution, the etching rate varies greatly depending on the temperature and also varies depending on the concentration, so it is extremely difficult to control the size of etching by over-etching in terms of reproducibility. For this reason, there has been a serious problem that a bipolar transistor that stably exhibits high-speed performance cannot be obtained.

この発明は上に述べた従来の問題点に鑑み、改良された
バイポーラトランジスタが得られる半導体装置の製造方
法を提供することを目的としている。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, it is an object of the present invention to provide a method for manufacturing a semiconductor device that provides an improved bipolar transistor.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) この発明にかかる半導体装置の製造方法は、素子分離領
域によって分離された第一導電型のコレクタ層を有する
半導体基板上に第一の絶縁膜、耐酸化性絶縁膜、第二の
絶縁膜、第一の導体膜を順次積層して被着する工程と、
前記第一の導体膜に第二の導電型不純物原子を高濃度に
添加しエミッタ領域形成予定域の前記第一の導体膜を第
二の絶縁膜が露出するまで除去し開口部を形成する工程
と、前記開口部の第二の絶縁膜を除去し前記耐酸化性絶
縁膜を露出させる工程と、前記第一の導体膜の露出部を
第三の絶縁膜に変える工程と、前記第三の絶縁膜をマス
クに露出した前記耐酸化性絶縁膜を第一の絶縁膜が露出
するまでエツチング除去したのちさらにベース領域形成
予定域にオーバーエツチングして第一の導体膜とその下
に残置している第二の絶縁膜の下方に空洞を形成する工
程と、露出した第一の絶縁膜を半導体基板が露出するま
でエツチング除去すると同時に前記空洞上部に露出した
第二の絶縁膜を第一の導体膜が露出するまでエツチング
除去する工程と、前記空洞内にベース電極の一部となる
第二の導体膜を選択的に埋め込む工程と、前記開口部に
露出した半導体基板、および第二の導体膜の側壁部に熱
酸化膜を形成すると同時に、前記第一の導体膜に予め添
加された第二の導電型不純物原子を前記コレクタ層に拡
散させ第二導電型の外部ベース層を形成する工程と、前
記半導体基板の開口部における露出部に第二導電型の不
純物原子を添加して第二導電型の内部ベース層を形成す
る工程と、前記内部ベース層が形成された開口部に半導
体基板を露出させここにエミッタ電極の一部となる第三
の導体膜を被着する工程と、前記第三の導体膜を介して
不純物原子を半導体基板に拡散させて第一導電型のエミ
ッタ層を形成する工程を含むものであり、また、耐酸化
性絶縁膜のエツチング除去を、第一の絶縁膜および第二
の絶縁膜をマスクにして反応性プラズマエツチングによ
り施すことを特徴とする。
(Means for Solving the Problems) A method for manufacturing a semiconductor device according to the present invention includes a first insulating film, an oxidation-resistant a step of sequentially laminating and depositing an insulating film, a second insulating film, and a first conductive film;
A step of adding impurity atoms of a second conductivity type to the first conductive film at a high concentration and removing the first conductive film in the area where the emitter region is to be formed until the second insulating film is exposed to form an opening. a step of removing the second insulating film in the opening to expose the oxidation-resistant insulating film; a step of changing the exposed portion of the first conductive film to a third insulating film; The oxidation-resistant insulating film exposed using the insulating film as a mask is removed by etching until the first insulating film is exposed, and then further over-etched in the area where the base region is to be formed, leaving the first conductive film and therebelow. forming a cavity under the second insulating film, etching away the exposed first insulating film until the semiconductor substrate is exposed, and at the same time etching the second insulating film exposed above the cavity into a first conductor. a step of etching away the film until it is exposed; a step of selectively embedding a second conductor film that will become a part of the base electrode in the cavity; and a step of removing the semiconductor substrate exposed to the opening and the second conductor film. forming a thermally oxidized film on the side wall portion of the conductor film, and at the same time, diffusing impurity atoms of a second conductivity type added in advance to the first conductor film into the collector layer to form an external base layer of a second conductivity type; , adding impurity atoms of a second conductivity type to the exposed portion of the opening of the semiconductor substrate to form an internal base layer of the second conductivity type; and placing the semiconductor substrate in the opening in which the internal base layer is formed. A step of exposing and depositing a third conductor film thereon to become a part of the emitter electrode, and diffusing impurity atoms into the semiconductor substrate through the third conductor film to form an emitter layer of the first conductivity type. The method is characterized in that the oxidation-resistant insulating film is etched away by reactive plasma etching using the first insulating film and the second insulating film as masks.

(作 用) この発明は第一の絶縁膜上の耐酸化性絶縁膜と第一の導
体膜間に第二の絶縁膜を設けている。これにより、上記
耐酸化性絶縁膜をサイドエツチングするにあたって、絶
縁膜と耐酸化性絶縁膜の選択性のあるエツチングであれ
ば可能で、反応性プラズマエツチングを用いる事ができ
、従来のような加熱リン酸水溶液を用いる必要がなくな
った。
(Function) This invention provides a second insulating film between the oxidation-resistant insulating film on the first insulating film and the first conductor film. As a result, side etching of the oxidation-resistant insulating film can be performed as long as it is selective between the insulating film and the oxidation-resistant insulating film, reactive plasma etching can be used, and conventional heating is not required. It is no longer necessary to use an aqueous phosphoric acid solution.

加熱リン酸水溶液による工、ツチングは、エツチングレ
ートが温度によって大きく変わり、水溶液の濃度によっ
ても変化するため、オーバーエツチングの大きさを制御
する事は極めて困雅であったが、本発明によって、加熱
リン酸水溶液によるエツチングを制御性の良い反応性プ
ラズマエツチングに変える事ができる。
In etching using a heated aqueous phosphoric acid solution, the etching rate varies greatly depending on the temperature and also on the concentration of the aqueous solution, making it extremely difficult to control the magnitude of overetching. Etching using phosphoric acid aqueous solution can be changed to reactive plasma etching with good controllability.

(実施例) 以下、この発明の一実施例につき図面を参照して説明す
る。
(Example) An example of the present invention will be described below with reference to the drawings.

第1図は一実施例のバイポーラトランジスタの製造方法
を工程順に断面図で示す。
FIG. 1 is a cross-sectional view showing a method for manufacturing a bipolar transistor according to an embodiment in the order of steps.

まずバイポーラトランジスタの素子分離としては、p型
シリコン基板にn型の高濃度不純物層2を形成し、さら
にn型の比較的低濃度層(〜1×10”an″′3)の
エピタキシャル層3を気相成長法で形成した後、トレン
チ技術及び選択酸化技術を用いて、素子間分離としてト
レンチ領域4及びベースエミッタ領域とコレクタコンタ
クト部を分離する電極間分離領域に絶縁酸化膜5を形成
する。またn型の高不純物層2はコレクタコンタクトに
接続されており(図示せず)従って低濃度エピタキシャ
ル層から成るエピタキシャル層3はコレクタの一部を形
成している。シリコン基板全面に熱酸化により厚さ50
0人程サイ酸化膜6を形成し、さらにその上にトレンチ
領域及び分離用絶縁膜の領域を含めて全面に耐酸化性絶
縁膜としてシリコン窒化膜7 (Si、N、膜)を10
00人堆積する。さらにその上に、第二の絶縁膜として
CvDシリコン酸化膜8を500人堆積する。次いで、
全面に第一の導体膜として多結晶シリコン[9を厚さ4
000人程度成長させる(第1図(a))。
First, for device isolation of bipolar transistors, an n-type high concentration impurity layer 2 is formed on a p-type silicon substrate, and an n-type relatively lightly doped layer (~1×10"an"'3) epitaxial layer 3 is formed. After forming by a vapor phase growth method, an insulating oxide film 5 is formed in a trench region 4 as an element isolation and in an electrode isolation region separating a base emitter region and a collector contact portion using a trench technique and a selective oxidation technique. . Further, the n-type highly impurity layer 2 is connected to a collector contact (not shown), so the epitaxial layer 3 made of a lightly doped epitaxial layer forms a part of the collector. Thermal oxidation is applied to the entire surface of the silicon substrate to a thickness of 50 mm.
A silicon oxide film 6 is formed on the silicon nitride film 7 (Si, N, film) as an oxidation-resistant insulating film over the entire surface including the trench region and isolation insulating film region.
00 people deposited. Furthermore, 500 CvD silicon oxide films 8 are deposited thereon as a second insulating film. Then,
Polycrystalline silicon [9 is a thickness of 4] is used as the first conductor film on the entire surface.
000 people (Figure 1(a)).

次に、前記多結晶シリコン膜9にボロンを50KeV、
 5 X 101scs−”の条件でイオン注入する。
Next, boron was applied to the polycrystalline silicon film 9 at 50 KeV.
Ion implantation is performed under the condition of 5 x 101 scs-''.

ひき続き後にエミッタ拡散領域に対応していく領域上の
多結晶シリコン膜9を写真蝕刻法及びエツチング法によ
り除去する。その後、下地の第二の酸化膜8も連続して
除去し、第二の酸化膜の下地のシリコン窒化膜7が露出
するまで行なう(第1図(b))。
Subsequently, the polycrystalline silicon film 9 on the region that will later correspond to the emitter diffusion region is removed by photolithography and etching. Thereafter, the underlying second oxide film 8 is also successively removed until the silicon nitride film 7 underlying the second oxide film is exposed (FIG. 1(b)).

その後、900℃ウェット酸化を行ない多結晶シリコン
膜9の上面及び側面に熱酸化膜19.29を4000人
程度形成する。次に、この熱酸化[19,29をマスク
に開口部のシリコン窒化膜7を反応性プラズマエツチン
グにより下地の第一の酸化B’J sが露出するまで除
去する。このエツチングは下地の前記第1の酸化膜6が
露出した後もさらに意図的にオーバーエツチングを行な
い、シリコン窒化膜7を2000人程度サイドエツチン
グし、多結晶シリコン膜9の直下に空洞10を形成する
。その後、露出した第一のシリコン酸化膜6と第二のシ
リコン酸化膜8をN H4’F溶液などでエツチングし
除去する(第1図(c))。
Thereafter, wet oxidation at 900° C. is performed to form a thermal oxide film 19.29 on the top and side surfaces of the polycrystalline silicon film 9 by about 4,000 layers. Next, using the thermal oxidation [19, 29 as a mask, the silicon nitride film 7 in the opening is removed by reactive plasma etching until the underlying first oxidation B'Js is exposed. After the underlying first oxide film 6 is exposed, this etching is further intentionally over-etched, and the silicon nitride film 7 is side-etched by about 2000 steps to form a cavity 10 directly under the polycrystalline silicon film 9. do. Thereafter, the exposed first silicon oxide film 6 and second silicon oxide film 8 are removed by etching with an NH4'F solution or the like (FIG. 1(c)).

次に、第二の導体膜として多結晶シリコン膜11を全面
に3000人被着全2オーパーツ)ング部に露出してい
る多結晶シリコン直下の空洞10(第1図(C))を完
全に埋め込み第二の多結晶シリコン膜を、オーバーハン
グ部の多結晶シリコン膜11を残したまま、酸化膜9及
びシリコン基板の表面が露出するまで反応性プラズマエ
ツチングにより除去する(第1図(d))。
Next, a polycrystalline silicon film 11 is applied to the entire surface as a second conductor film, and the cavity 10 directly under the polycrystalline silicon (Fig. 1 (C)) exposed in the ring part is completely covered. The embedded second polycrystalline silicon film is removed by reactive plasma etching until the oxide film 9 and the surface of the silicon substrate are exposed, leaving the polycrystalline silicon film 11 in the overhang part (see FIG. 1(d)). )).

次に、露出したシリコン基板の表面と多結晶シリコン膜
11の側壁部にウェット酸化を行し1、膜厚700人の
シリコン酸化[31を形成する。このとき、あらかじめ
第一の電導性材料に添加しておしまたボロンをオーバー
ハング部の多結晶シリコン膜11を通じて下地のシリコ
ン基板に拡散しp型の外部ベース領域12を形成する。
Next, wet oxidation is performed on the exposed surface of the silicon substrate and the side wall portion of the polycrystalline silicon film 11 to form a silicon oxide [31] with a thickness of 700 nm. At this time, boron is added to the first conductive material in advance and diffused into the underlying silicon substrate through the polycrystalline silicon film 11 in the overhang portion to form a p-type external base region 12.

そしてボロンを20KeV 。And boron at 20KeV.

2X10”am’″2の条件でイオン注入を行−?ju
M、p型の内部ベース領域13をシリコン基板に形成す
る。
Perform ion implantation under the condition of 2×10"am'"2-? ju
An M,p-type internal base region 13 is formed in the silicon substrate.

つづいて、前記開口部に形成した熱酸化膜19を方向性
エツチングにより除去し、シリコン基板表面を露出させ
、エミッタ開口14を形成する。その後、第三の導体膜
として多結晶シリコン膜15を厚さ2000人程度全面
に被着したのち、砒素を50KeV、 lX1()”a
n−”の条件でイオン注入し、前記開口部を覆うように
第三の導体膜である多結晶シリコン膜15を写真蝕刻法
及びエツチング法にて形成する。
Subsequently, the thermal oxide film 19 formed in the opening is removed by directional etching to expose the silicon substrate surface and form an emitter opening 14. After that, a polycrystalline silicon film 15 was deposited on the entire surface to a thickness of about 2000 as a third conductive film, and then arsenic was heated at 50 KeV, lX1()"a.
Ion implantation is performed under conditions of n-'', and a polycrystalline silicon film 15, which is a third conductive film, is formed by photolithography and etching so as to cover the opening.

さらに所望の熱処理を施して、第三の導体膜であるポリ
シリコンに添加した砒素をシリコン基板に拡散して、n
型のエミッタ領域1′6を形成すると同時に、最終的な
外部ベース領域12と内部ベース領域13とを形成する
(第1図(e))。
Furthermore, by performing a desired heat treatment, arsenic added to the polysilicon, which is the third conductor film, is diffused into the silicon substrate.
At the same time as forming the emitter region 1'6 of the mold, the final external base region 12 and internal base region 13 are formed (FIG. 1(e)).

その後、写真蝕刻法及びエツチング法を用いて第一の多
結晶シリコンにベースコンタクトを形成し、さらにアル
ミニウム電極配線を形成してバイポーラトランジスタを
形成する(図示せず)。
Thereafter, a base contact is formed on the first polycrystalline silicon using photolithography and etching, and aluminum electrode wiring is further formed to form a bipolar transistor (not shown).

上記実施例では、内部ベース層の形成はシリコン窒化膜
7.およびシリコン酸化膜6をエツチング除去し、改め
て薄い熱酸化膜を形成した状態で行なったが、シリコン
窒化膜7を除去した後、或いはシリコン酸化膜6を除去
した後にイオイ注入して形成することもできる。
In the above embodiment, the internal base layer is formed using a silicon nitride film 7. Although the silicon oxide film 6 was removed by etching and a thin thermal oxide film was formed again, it is also possible to form it by implanting sulfur after removing the silicon nitride film 7 or after removing the silicon oxide film 6. can.

エミッタ耐圧改善等を目的として外部ベース層拡散領域
とエミッタ層拡散領域の大きさの関係を制御したい場合
、またエミッタ接合容量をより小さくするため或いはエ
ミッタ・クラウデイング効果をより小さくするためにエ
ミッタ拡散幅を小さくする場合には次のようにすればよ
い。すなわち、第2図に示すように内部ベース層13を
形成した後、前記開口部の側壁に多結晶シリコン膜17
を選択的に残置させて開口を狭める。この状態は、内部
ベース層13を形成するイオン注入を行なった後、所定
厚みの多結晶シリコン膜を堆積し、これを反応性イオン
二′ツチングにより全面エツチングすることにより得ら
れる。これにより狭いエミッタ拡散用開口部が得られる
。また、開口部側壁に残置する材料に比誘電率の小さい
材料を選択することによりエミッタ・ベース間の寄生容
量を小さくできる。
When you want to control the relationship between the size of the external base layer diffusion region and the emitter layer diffusion region for the purpose of improving the emitter breakdown voltage, etc., or to further reduce the emitter junction capacitance or the emitter crowding effect, use emitter diffusion. To reduce the width, do the following: That is, after forming the internal base layer 13 as shown in FIG. 2, a polycrystalline silicon film 17 is formed on the side wall of the opening.
selectively remain to narrow the aperture. This state can be obtained by performing ion implantation to form the internal base layer 13, depositing a polycrystalline silicon film of a predetermined thickness, and etching the entire surface using reactive ion etching. This provides a narrow emitter diffusion opening. Furthermore, by selecting a material with a low dielectric constant as the material left on the side wall of the opening, the parasitic capacitance between the emitter and the base can be reduced.

また、上記実施例では、エミッタ層を第三の導体膜であ
る多結晶シリコン膜からの固相拡散により形成したが、
直接イオン注入により形成することもできる。その場合
、内部ベース層形成の際にイオン注入のバッファ層とし
て用いた250人程サイシリコン酸化膜をそのまま用い
て、この酸化膜を通してエミッタ層形成のイオン注入を
行なってもよいし、この酸化膜を除去してイオン注入を
行なってもよい。また、イオン注入の加速電圧を調整し
て、エミッタ形成用の第三の導体膜なる多結晶シリコン
膜を通してイオン注入を行なってもよい。
Further, in the above embodiment, the emitter layer was formed by solid phase diffusion from the polycrystalline silicon film which is the third conductor film.
It can also be formed by direct ion implantation. In that case, the silicon oxide film used as a buffer layer for ion implantation when forming the internal base layer may be used as is, and ions may be implanted to form the emitter layer through this oxide film. The ion implantation may be performed after removing the . Alternatively, the acceleration voltage for ion implantation may be adjusted to perform ion implantation through a polycrystalline silicon film serving as a third conductor film for forming an emitter.

以上の実施例では、第一ないし第三の導体膜として全て
多結晶シリコン膜を用いた。これらは不純物の同相拡散
源として用いるのでなければ、他の材料を用いることが
できる。但し上記実施例の構造では、第1および第2の
導体膜は熱酸化により表面に熱酸化膜が形成できるもの
であることが必要で、例えばモリブデン・シリサイド、
タングステン・シリサイドなどの高融点金属シリサイド
が有用である。
In the above embodiments, polycrystalline silicon films were used as the first to third conductor films. Other materials can be used as long as these materials are not used as in-phase diffusion sources for impurities. However, in the structure of the above embodiment, the first and second conductive films must be made of a material that can form a thermal oxide film on the surface by thermal oxidation, such as molybdenum silicide,
Refractory metal silicides such as tungsten silicide are useful.

その池水発明はその趣旨を逸脱しない範囲で種々変形し
て実施することができる。
The pond water invention can be implemented with various modifications without departing from the spirit thereof.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、外部ベース領域を形
成する為に耐酸化性絶縁膜をサイドエツチングしてオー
バーハング部を形成するとき、従来のような加熱りん酸
処理というきわめて制御性。
As described above, according to the present invention, when side-etching an oxidation-resistant insulating film to form an overhang portion in order to form an external base region, it is possible to perform extremely controllable processing using heated phosphoric acid treatment as in the conventional method.

再現性の悪い工程によらず反応性プラズマエツチングと
いう容易かつ精密に制御することができる工程を用いる
ことが可能になった。従って接合耐圧や遮断周波数等の
諸特性に優れ、またこれらの特性のばらつきが少ない高
性能のバイポーラトランジスタが得られる。
It has become possible to use reactive plasma etching, a process that can be easily and precisely controlled, without using processes with poor reproducibility. Therefore, a high-performance bipolar transistor with excellent characteristics such as junction breakdown voltage and cut-off frequency, and with little variation in these characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)はこの発明にかかる一実施例のバ
イポーラトランジスタの製造工程を工程順に示すいずれ
も断面図、第2図は別の実施例のエミッタ領域の開口部
の形成工程を説明するための断面図、第3図(a)〜(
d)は従来例のバイポーラトランジスタの製造工程を工
程順に示すいずれも断面図である。 1・・・p型シリコン基板 2・・・n十型埋め込み層 3・・・n型エピタキシャル層(コレクタ層)4.5・
・・トレンチ領域、絶縁酸化膜(分離用シリコン酸化膜
) 6、・・・シリコン酸化膜(第1の絶縁膜)7・・・シ
リコン窒化膜(耐酸化性絶縁膜)8・・・CvD・シリ
コン酸化膜(第2の絶縁膜)9・・・多結晶シリコン膜
(第1の導体膜)19、29・・・熱酸化膜(第三の絶
縁膜)10・・・空洞(オーバーハング部) 11・・・多結晶シリコン膜(第二の導体膜)31、4
1・・・シリコン酸化膜(熱酸化膜)12、22・・・
外部ベース領域 13・・・内部ベース領域 15・・・多結晶シリコン収(第三の導体膜)16・・
・エミッタ領域 代理人 弁理士  井 上 −男 (αλ 7:  シリコン!4乙[’7:;’r、’リンリコン
ル笑第  1  図 C’%ql) /’/:(上面の)メ拵17’l笈イ乙ル勇  2f:
(#’1山の2徊占釘6月旋第  1  図  (モΦ
2) 第  1  図  (子f)3) 。 17;  多礁青晶シリコンル匙 @2図 稟  3  図  (篭め1ン c″f、) /10:  sit、月’1      m:  オー
バーバンク°’47s第  3  図  (キめ2ン //9   //、!;   //lt−第3図(ンΦ
j)
FIGS. 1(a) to (e) are cross-sectional views showing the manufacturing process of a bipolar transistor according to an embodiment of the present invention in order of process, and FIG. 2 is a process of forming an opening in an emitter region of another embodiment. 3(a) to (3) are cross-sectional views for explaining the
d) is a cross-sectional view showing the manufacturing process of a conventional bipolar transistor in order of process. 1...p-type silicon substrate 2...n-type buried layer 3...n-type epitaxial layer (collector layer) 4.5.
...Trench region, insulating oxide film (silicon oxide film for isolation) 6, ... silicon oxide film (first insulating film) 7... silicon nitride film (oxidation-resistant insulating film) 8... CvD. Silicon oxide film (second insulating film) 9... Polycrystalline silicon film (first conductor film) 19, 29... Thermal oxide film (third insulating film) 10... Cavity (overhang part) ) 11... Polycrystalline silicon film (second conductor film) 31, 4
1... Silicon oxide film (thermal oxide film) 12, 22...
External base region 13...inner base region 15...polycrystalline silicon layer (third conductor film) 16...
・Emitter area agent Patent attorney Inoue-man (αλ 7: Silicon! 4 Otsu ['7:;'r,'Rinrikonle lol 1st figure C'%ql) /'/: (Top) Mekoshira 17' 2F:
(#'1 Mountain 2-way fortune-telling June rotation Figure 1 (MoΦ
2) Figure 1 (Child f) 3). 17; Multi-reef blue crystal silicon spoon @ 2 fig. 3 fig. /,!; //lt-Figure 3 (nΦ
j)

Claims (2)

【特許請求の範囲】[Claims] (1)素子分離領域によって分離された第一導電型のコ
レクタ層を有する半導体基板上に第一の絶縁膜、耐酸化
性絶縁膜、第二の絶縁膜、第一の導体膜を順次積層して
被着する工程と、前記第一の導体膜に第二の導電型不純
物原子を高濃度に添加しエミッタ領域形成予定域の前記
第一の導体膜を第二の絶縁膜が露出するまで除去し開口
部を形成する工程と、前記開口部の第二の絶縁膜を除去
し前記耐酸化性絶縁膜を露出させる工程と、前記第一の
導体膜の露出部を第三の絶縁膜に変える工程と、前記第
三の絶縁膜をマスクに露出した前記耐酸化性絶縁膜を第
一の絶縁膜が露出するまでエッチング除去したのちさら
にベース領域形成予定域にオーバーエッチングして第一
の導体膜とその下に残置している第二の絶縁膜の下方に
空洞を形成する工程と、露出した第一の絶縁膜を半導体
基板が露出するまでエッチング除去すると同時に前記空
洞上部に露出した第二の絶縁膜を第一の導体膜が露出す
るまでエッチング除去する工程と、前記空洞内にベース
電極の一部となる第二の導体膜を選択的に埋め込む工程
と、前記開口部に露出した半導体基板、および第二の導
体膜の側壁部に熱酸化膜を形成すると同時に、前記第一
の導体膜に予め添加された第二の導電型不純物原子を前
記コレクタ層に拡散させ第二導電型の外部ベース層を形
成する工程と、前記半導体基板の開口部における露出部
に第二導電型の不純物原子を添加して第二導電型の内部
ベース層を形成する工程と、前記内部ベース層が形成さ
れた開口部に半導体基板を露出させここにエミッタ電極
の一部となる第三の導体膜を被着する工程と、前記第三
の導体膜を介して不純物原子を半導体基板に拡散させて
第一導電型のエミッタ層を形成する工程を含む半導体装
置の製造方法。
(1) A first insulating film, an oxidation-resistant insulating film, a second insulating film, and a first conductive film are sequentially laminated on a semiconductor substrate having a first conductivity type collector layer separated by an element isolation region. adding impurity atoms of a second conductivity type to the first conductive film at a high concentration, and removing the first conductive film in the area where the emitter region is to be formed until the second insulating film is exposed. forming an opening, removing the second insulating film in the opening to expose the oxidation-resistant insulating film, and converting the exposed portion of the first conductive film into a third insulating film. The third insulating film is used as a mask to remove the oxidation-resistant insulating film exposed by etching until the first insulating film is exposed, and then over-etching the region where the base region is to be formed to form a first conductor film. forming a cavity below the second insulating film remaining thereunder; etching away the exposed first insulating film until the semiconductor substrate is exposed; and simultaneously forming a second insulating film exposed above the cavity. a step of etching away the insulating film until the first conductor film is exposed; a step of selectively embedding a second conductor film that will become a part of the base electrode in the cavity; and a step of removing the semiconductor substrate exposed in the opening. , and at the same time forming a thermal oxide film on the side wall portion of the second conductor film, impurity atoms of the second conductivity type added in advance to the first conductor film are diffused into the collector layer to form an external layer of the second conductivity type. a step of forming a base layer; a step of adding impurity atoms of a second conductivity type to an exposed portion of the opening of the semiconductor substrate to form an internal base layer of a second conductivity type; and forming the internal base layer. exposing the semiconductor substrate through the opening and depositing thereon a third conductor film that will become a part of the emitter electrode; and diffusing impurity atoms into the semiconductor substrate through the third conductor film. A method for manufacturing a semiconductor device including a step of forming a conductive emitter layer.
(2)耐酸化性絶縁膜のエッチング除去を、第一の絶縁
膜および第二の絶縁膜をマスクにして反応性プラズマエ
ッチングにより施すことを特徴とする特許請求の範囲第
1項記載の半導体装置の製造方法。
(2) The semiconductor device according to claim 1, wherein the oxidation-resistant insulating film is etched away by reactive plasma etching using the first insulating film and the second insulating film as masks. manufacturing method.
JP62269258A 1987-10-27 1987-10-27 Manufacture of semiconductor device Pending JPH01112770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62269258A JPH01112770A (en) 1987-10-27 1987-10-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62269258A JPH01112770A (en) 1987-10-27 1987-10-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01112770A true JPH01112770A (en) 1989-05-01

Family

ID=17469848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62269258A Pending JPH01112770A (en) 1987-10-27 1987-10-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01112770A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129318A (en) * 1991-09-30 1993-05-25 Samsung Electron Co Ltd Manufacture of bipolar transistor
JP2007306025A (en) * 2000-08-03 2007-11-22 Agere Systems Guardian Corp Method for fabricating bipolar transistor having low-K material in emitter-base spacer region

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129318A (en) * 1991-09-30 1993-05-25 Samsung Electron Co Ltd Manufacture of bipolar transistor
JP2007306025A (en) * 2000-08-03 2007-11-22 Agere Systems Guardian Corp Method for fabricating bipolar transistor having low-K material in emitter-base spacer region

Similar Documents

Publication Publication Date Title
US4978629A (en) Method of making a metal-oxide-semiconductor device having shallow source and drain diffused regions
US4839305A (en) Method of making single polysilicon self-aligned transistor
JP2581652B2 (en) Method of manufacturing bipolar transistor structure
JP2629644B2 (en) Method for manufacturing semiconductor device
US5071780A (en) Reverse self-aligned transistor integrated circuit
JPH01112770A (en) Manufacture of semiconductor device
JPH06177377A (en) Insulated-gate field-effect transistor
JP2622047B2 (en) Semiconductor device and method of manufacturing the same
JPH02153534A (en) Manufacturing method of semiconductor device
JPH03163832A (en) Semiconductor device
JP3063122B2 (en) Semiconductor device and manufacturing method thereof
JPS62141768A (en) Semiconductor device and manufacture thereof
KR950008251B1 (en) Method for manufacturing PSA bipolar device
JPH01155660A (en) Manufacture of semiconductor device
JP3609906B2 (en) Bipolar transistor manufacturing method
JP2677258B2 (en) Semiconductor device and manufacturing method thereof
JP2712889B2 (en) Method for manufacturing semiconductor device
JP3142303B2 (en) Manufacturing method of high-speed bipolar transistor
JP2674568B2 (en) Method for manufacturing semiconductor device
JPS63119264A (en) Semiconductor device
JPH11289082A (en) Semiconductor device and its manufacture
JPH034539A (en) Semiconductor device and its manufacture
JPH02304931A (en) Semiconductor device and manufacture thereof
JPH04208534A (en) Manufacture of semiconductor device
JPS63254768A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091018

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091018

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111018

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121018

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131018

Year of fee payment: 11