[go: up one dir, main page]

JPH0355783B2 - - Google Patents

Info

Publication number
JPH0355783B2
JPH0355783B2 JP24006585A JP24006585A JPH0355783B2 JP H0355783 B2 JPH0355783 B2 JP H0355783B2 JP 24006585 A JP24006585 A JP 24006585A JP 24006585 A JP24006585 A JP 24006585A JP H0355783 B2 JPH0355783 B2 JP H0355783B2
Authority
JP
Japan
Prior art keywords
diffusion part
diffusion
oxide film
resin
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24006585A
Other languages
Japanese (ja)
Other versions
JPS6298246A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP24006585A priority Critical patent/JPS6298246A/en
Publication of JPS6298246A publication Critical patent/JPS6298246A/en
Publication of JPH0355783B2 publication Critical patent/JPH0355783B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、二重拡散により形成される縦型の
MOS型半導体素子の封止に用いる樹脂の評価、
主に樹脂中の不純物イオンの量を評価する技術に
関する。
[Detailed Description of the Invention] [Technical Field] This invention relates to a vertical type formed by double diffusion.
Evaluation of resins used for sealing MOS type semiconductor devices,
Mainly related to technology for evaluating the amount of impurity ions in resin.

〔背景技術〕[Background technology]

従来は封止樹脂中の不純物による影響を見るた
めに第2図に示すようにソース電極1とドレイン
電極2間のゲート電極3の一部を削除した形の
MOS型半導体素子が使用され、リーク電流によ
り不純物量を検知することが行なわれていた。
Conventionally, in order to examine the influence of impurities in the sealing resin, a part of the gate electrode 3 between the source electrode 1 and the drain electrode 2 was removed, as shown in Fig. 2.
MOS type semiconductor elements were used, and the amount of impurities was detected by leakage current.

図示例のMOS型半導体素子は、P型のシリコ
ン基板8と使用したNチヤンネルMOS型半導体
素子で、4はドレイン領域、5はソース領域、6
は表面の酸化膜であり、ベース領域7上に設けら
れた電極3のソース例半分が削除され、その表面
全体を樹脂7封止した構造をもつ。
The illustrated example MOS type semiconductor element is an N channel MOS type semiconductor element using a P type silicon substrate 8, in which 4 is a drain region, 5 is a source region, and 6 is a drain region.
is an oxide film on the surface, and has a structure in which half of the source of the electrode 3 provided on the base region 7 is removed and the entire surface is sealed with a resin 7.

ゲート電極3に正の電圧を加えるとき、電界の
向きは図中矢印の如く酸化膜6の表面に向かい樹
脂7中に不純物イオン、例えばNa+が存在すると
き、ソース電極1側の酸化膜6表面に広がり、こ
の表面に集つた正イオンによりゲート電極3のな
い部分にもチヤネルが伸び、ゲート電極3のない
部分にも電圧が加わつたように作用し、ドレイン
電極2とソース電極1間にリーク電流が流れるこ
とにより、リーク電流の大小により樹脂7中の不
純物イオン量を評価するものである。
When applying a positive voltage to the gate electrode 3, the direction of the electric field is directed toward the surface of the oxide film 6 as shown by the arrow in the figure, and when impurity ions such as Na + are present in the resin 7, the direction of the electric field is directed toward the surface of the oxide film 6 on the source electrode 1 side. The positive ions that spread over the surface and gather on this surface cause a channel to extend to the area where the gate electrode 3 is not present, acting as if a voltage is applied to the area where the gate electrode 3 is not present, and causing a voltage to be applied between the drain electrode 2 and the source electrode 1. As the leakage current flows, the amount of impurity ions in the resin 7 is evaluated based on the magnitude of the leakage current.

しかし、このMOS型半導体素子では微小なリ
ーク電流の検出が困難であるという欠点があつ
た。
However, this MOS type semiconductor device has a drawback in that it is difficult to detect minute leakage currents.

〔発明の目的〕[Purpose of the invention]

本発明は、二重拡散により形成される縦型の
MOS型半導体素子の封止に用いる樹脂の評価、
主に樹脂中の不純物イオンの量を評価するのに用
いるMOS型半導体素子を提供することを目的と
する。
The present invention is a vertical type formed by double diffusion.
Evaluation of resins used for sealing MOS type semiconductor devices,
The object of the present invention is to provide a MOS type semiconductor element mainly used for evaluating the amount of impurity ions in a resin.

〔発明の開示〕[Disclosure of the invention]

この発明の要旨とするところは、第1図実施例
に示さるる如く、裏面にドレイン電極2を有する
第1伝導型の半導体基板8の表面上に、第1伝導
型とは逆の性質を有する第2伝導型の深い第1拡
散部4を形成し、この第1拡散部4の上面部中に
第1伝導型の第2拡散部5を周囲を第1拡散部4
で囲むソース領域として形成、第1拡散部4と
第2拡散部5をソース電極1で接続し、ゲート電
極3を、酸化膜6を介して半導体基板8の表面よ
り第1拡散部4上まで第2拡散部5との間に間隔
をへだてるようにして設け、表面を樹脂7で封止
して成るMOS型半導体素子である。
The gist of the present invention is that, as shown in the embodiment of FIG. A deep first diffusion part 4 of the second conductivity type is formed, and a second diffusion part 5 of the first conductivity type is formed in the upper surface of the first diffusion part 4.
The first diffusion part 4 and the second diffusion part 5 are connected by the source electrode 1, and the gate electrode 3 is formed from the surface of the semiconductor substrate 8 to above the first diffusion part 4 via the oxide film 6. This is a MOS type semiconductor element which is provided with a space between it and the second diffusion part 5 and whose surface is sealed with resin 7.

以下この発明を第1図に示す実施例に基づいて
説明する。
The present invention will be explained below based on the embodiment shown in FIG.

図示例は二重拡散により形成される縦型のNチ
ヤンネル型のMOS型半導体素子である。N-型シ
リコン基板を第1伝導型の半導体基板8とし、そ
の上面側に第2伝導型としてP型の第1拡散部4
を形成し、第1拡散部4の上面中に外周を第1拡
散部4で囲まれるようにN+型の第2拡散部5を
ソース領域として形成して成るものである。半
導体基板8の裏面側はN+層9が形成され、ここ
にドレイン電極2が設けられている。
The illustrated example is a vertical N-channel MOS semiconductor element formed by double diffusion. An N - type silicon substrate is used as a first conduction type semiconductor substrate 8, and a P type first diffusion portion 4 is provided as a second conduction type on the upper surface side.
, and an N + type second diffusion part 5 is formed as a source region in the upper surface of the first diffusion part 4 so that the outer periphery is surrounded by the first diffusion part 4. An N + layer 9 is formed on the back side of the semiconductor substrate 8, and a drain electrode 2 is provided here.

6は酸化膜で半導体基板8から第2拡散部5の
表面を被覆しており、第1拡散部4の中央部上に
は開口している。この酸化膜6の第2拡散部5上
にソース電極1が設けられている。
An oxide film 6 covers the surface of the second diffusion part 5 from the semiconductor substrate 8, and is open above the center of the first diffusion part 4. A source electrode 1 is provided on the second diffusion portion 5 of this oxide film 6.

10は酸化膜で、酸化膜6上に半導体基板8の
表面から第1拡散部4の外周に至る部分及び酸化
膜6の開口部上を被覆している。このようにして
第1拡散部4の内周側と第2拡散部5の外周側の
部分は酸化膜10で被覆されないままになつてい
る。以上のような状態で、酸化膜6と10の表面
上は樹脂7で封止されている。
Reference numeral 10 denotes an oxide film that covers the oxide film 6 from the surface of the semiconductor substrate 8 to the outer periphery of the first diffusion portion 4 and over the opening of the oxide film 6. In this way, the inner peripheral side of the first diffusion part 4 and the outer peripheral side of the second diffusion part 5 remain uncovered with the oxide film 10. In the above state, the surfaces of the oxide films 6 and 10 are sealed with the resin 7.

而してゲート電極3に電圧を加えると電界が矢
印で示すようにゲート電極3の上面より第1拡散
部4の第2拡散部5上の露出した酸化膜6に向か
い、封止した樹脂7中の正イオンがこの酸化膜6
の表面上に集まり れに対応してドレイン領域で
ある半導体基板8とソース領域である第2拡散部
5間の酸化膜6下にはチヤネルが形成され、リー
ク電流が流れる。このようにしてソース電極1と
ドレイン電極2間が導通する。従つてこのリーク
電流量を検知することにより樹脂7中の不純物イ
オン量を知ることができる。
When a voltage is applied to the gate electrode 3, the electric field is directed from the upper surface of the gate electrode 3 to the exposed oxide film 6 on the second diffusion part 5 of the first diffusion part 4, as shown by the arrow, and the sealed resin 7 The positive ions inside this oxide film 6
Correspondingly, a channel is formed under the oxide film 6 between the semiconductor substrate 8, which is the drain region, and the second diffusion region 5, which is the source region, and a leakage current flows. In this way, the source electrode 1 and the drain electrode 2 are electrically connected. Therefore, by detecting the amount of leakage current, the amount of impurity ions in the resin 7 can be known.

尚、上記実施例では、封止樹脂中の正イオン量
を評価する場合を示したが、負イオン量を評価す
る場合は、PチヤンネルMOS型半導体素子とし
て本発明を実施し、シリコン基板8に正電圧を、
ゲート電極3に負電圧を加えるようにすればよ
い。
In the above example, a case was shown in which the amount of positive ions in the sealing resin was evaluated, but when evaluating the amount of negative ions, the present invention was implemented as a P-channel MOS type semiconductor element, and the silicon substrate 8 was positive voltage,
A negative voltage may be applied to the gate electrode 3.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明のMOS型半導体素子にあ
つては、第2伝導型の第1拡散部が第1伝導型の
第2拡散部を囲むように形成されているためドレ
イン領域となる第1拡散部とソース領域となる第
2拡散部間に形成されるチヤネル長さに対してチ
ヤネル幅が大きくなり、不純物量が少なくても大
きなリーク電流が流れ、高感度で封止樹脂中の不
純物イオン量を検知することができるのである。
As described above, in the MOS type semiconductor device of the present invention, since the first diffusion part of the second conductivity type is formed to surround the second diffusion part of the first conductivity type, the first diffusion part becomes the drain region. The channel width is larger than the length of the channel formed between the diffusion part and the second diffusion part which becomes the source region, and even if the amount of impurities is small, a large leakage current flows, and impurity ions in the sealing resin are detected with high sensitivity. The amount can be detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す図で、aは
断面図、bはaのA−A矢視図、第2図は従来例
を示す図で、aは断面図、b平面図である。 1……ソース電極、2……ドレイン電極、3…
…ゲート電極、4……第1拡散部、5……第2拡
散部、6……酸化膜、7……樹脂、8……半導体
基板、9……N+層、10……酸化膜。
Fig. 1 is a diagram showing an embodiment of the present invention, where a is a sectional view, b is a view taken along the line A-A of a, and Fig. 2 is a diagram showing a conventional example, where a is a sectional view and b is a plan view. It is. 1... Source electrode, 2... Drain electrode, 3...
... Gate electrode, 4 ... First diffusion part, 5 ... Second diffusion part, 6 ... Oxide film, 7 ... Resin, 8 ... Semiconductor substrate, 9 ... N + layer, 10 ... Oxide film.

Claims (1)

【特許請求の範囲】[Claims] 1 裏面にドレイン電極2を有する第1伝導型の
半導体基板8の表面上に、第1伝導型とは逆の性
質を有する第2伝導型の深い第1拡散部4を形成
し、この第1拡散部4の上面部中に第1伝導型の
第2拡散部5を周囲を第1拡散部4で囲むソース
領域として形成し、第1拡散部4と第2拡散部
5をソース電極1で接続し、ゲート電極3を、酸
化膜6を介して半導体基板8の表面より第1拡散
部4上まで第2拡散部5との間に間隔をへだてる
ようにして設け、表面を樹脂7で封止して成る
MOS型半導体素子。
1. A deep first diffusion region 4 of a second conductivity type having properties opposite to that of the first conductivity type is formed on the surface of a semiconductor substrate 8 of a first conductivity type having a drain electrode 2 on the back surface. A second diffusion part 5 of the first conductivity type is formed in the upper surface of the diffusion part 4 as a source region surrounded by the first diffusion part 4, and the first diffusion part 4 and the second diffusion part 5 are connected to each other by the source electrode 1. A gate electrode 3 is provided via an oxide film 6 from the surface of the semiconductor substrate 8 to above the first diffusion part 4 with a gap between it and the second diffusion part 5, and the surface is covered with a resin 7. sealed with
MOS type semiconductor device.
JP24006585A 1985-10-25 1985-10-25 Mos type semiconductor element Granted JPS6298246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24006585A JPS6298246A (en) 1985-10-25 1985-10-25 Mos type semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24006585A JPS6298246A (en) 1985-10-25 1985-10-25 Mos type semiconductor element

Publications (2)

Publication Number Publication Date
JPS6298246A JPS6298246A (en) 1987-05-07
JPH0355783B2 true JPH0355783B2 (en) 1991-08-26

Family

ID=17053963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24006585A Granted JPS6298246A (en) 1985-10-25 1985-10-25 Mos type semiconductor element

Country Status (1)

Country Link
JP (1) JPS6298246A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4546796B2 (en) * 2004-09-16 2010-09-15 パナソニック株式会社 Semiconductor device

Also Published As

Publication number Publication date
JPS6298246A (en) 1987-05-07

Similar Documents

Publication Publication Date Title
US4397714A (en) System for measuring the concentration of chemical substances
US4322680A (en) Chemically sensitive JFET transducer devices utilizing a blocking interface
KR940001427A (en) Thin film semiconductor device and its manufacturing method
JPS5870155A (en) Semiconductor device responding to ion
US4908682A (en) Power MOSFET having a current sensing element of high accuracy
US20040222446A1 (en) Ion sensitive field effect transistor and fabrication
GB1457800A (en) Semiconductor devices
JPH0355783B2 (en)
KR840000988A (en) Insulated Gate Field Effect Transistor
JP3349029B2 (en) Semiconductor device
JPS56110264A (en) High withstand voltage mos transistor
CA1114072A (en) Charge-flow transistors having metallization patterns
US5160990A (en) MIS-FET with small chip area and high strength against static electricity
JPH0710499Y2 (en) Variable capacity diode device
JP2684712B2 (en) Field effect transistor
JPS6272135A (en) Mos type semiconductor element
JPS63226956A (en) semiconductor resistor
JPH03120830A (en) Semiconductor device
JPS59228764A (en) semiconductor equipment
JPH04364079A (en) semiconductor equipment
JP2000187017A (en) Semiconductor ion sensor
JPH05175238A (en) Junction type field-effect transistor
JPH05152508A (en) Semiconductor device
JPS632339A (en) Evaluation of sealing resin
JPS57192071A (en) Solid-state image pickup element