JPH03120830A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH03120830A JPH03120830A JP26041289A JP26041289A JPH03120830A JP H03120830 A JPH03120830 A JP H03120830A JP 26041289 A JP26041289 A JP 26041289A JP 26041289 A JP26041289 A JP 26041289A JP H03120830 A JPH03120830 A JP H03120830A
- Authority
- JP
- Japan
- Prior art keywords
- region
- insulating film
- emitter
- electrode
- conductivity type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Bipolar Transistors (AREA)
- Thyristors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体装置に関し、特に集積回路に好適な高耐
圧ラテラルトランジスタ及び高耐圧ラテラルサイリスタ
の構造に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to the structure of a high voltage lateral transistor and a high voltage lateral thyristor suitable for integrated circuits.
従来、高耐圧ラテラルトランジスタ及び高耐圧ラテラル
サイリスタは、例えばラテラルトランジスタを例にとる
と、n型半導体基板にp型不純物を拡散し、エミッタ、
コレクタ領域をそれぞれ形成し、ベース領域にコンタク
トを形成するだめにn型不純物を拡散して濃度の高いn
+型領領域形成し、これらの領域から電極を取り出す構
造になっていた。以下図面を用いて更に説明する。Conventionally, high-voltage lateral transistors and high-voltage lateral thyristors have been developed by diffusing p-type impurities into an n-type semiconductor substrate, for example, in the case of a lateral transistor.
In order to form collector regions and form contacts to the base region, n-type impurities are diffused to form high-concentration n-type impurities.
The structure was such that positive type regions were formed and electrodes were taken out from these regions. This will be further explained below using the drawings.
第3図は従来のラテラルトランジスタの一例を示す半導
体チップの模式断面図である。以下製造方法と共に説明
する。FIG. 3 is a schematic cross-sectional view of a semiconductor chip showing an example of a conventional lateral transistor. The manufacturing method will be explained below.
まず、n型半導体基板1の一主面に絶縁膜2を形成する
。次に選択的にp型不純物を拡散し、コレクタ領域3及
びエミッタ領域4を形成し、更にベース領域にオーミッ
クコンタクトを形成するために、n型半導体基板1の不
純物濃度より濃いn+型領領域5形成する。次でこれら
の拡散領域にオーミックコンタクトするコレクタ電極6
.エミッタ電極7及びベース電極8を形成し、その上を
保護膜14で覆い、更にその外郭体をモールド樹脂等で
樹脂封止していた。First, the insulating film 2 is formed on one main surface of the n-type semiconductor substrate 1 . Next, p-type impurities are selectively diffused to form a collector region 3 and an emitter region 4, and an n+-type region 5 whose impurity concentration is higher than that of the n-type semiconductor substrate 1 in order to form an ohmic contact to the base region. Form. Next, a collector electrode 6 makes ohmic contact with these diffusion regions.
.. An emitter electrode 7 and a base electrode 8 were formed, covered with a protective film 14, and further sealed with a mold resin or the like.
しかしながら上述した従来の樹脂封止されたラテラルト
ランジスタの構造では、エミッタとコレクタ間に数十7
以上の高電圧を印加した際に、第3図に示したように、
エミッタとコレクタ同上の酸化膜までに負電界が及び、
空乏層9が形成され、エミッタとコレクタ間に反転層が
生じ、エミッタとコレクタ間の実効的な距離W、が短く
なることが多々ある。このためあたかもトランジスタの
直流電流増幅率hPEが増加するという現象が起き、微
少のベース電流がエミッタ・コレクタ間に大きなリーク
電流が発生するという不具合があった。However, in the structure of the conventional resin-sealed lateral transistor described above, there are several tens of seven points between the emitter and the collector.
When applying the above high voltage, as shown in Figure 3,
A negative electric field extends to the oxide film on the emitter and collector,
A depletion layer 9 is formed, an inversion layer is generated between the emitter and the collector, and the effective distance W between the emitter and collector is often shortened. For this reason, a phenomenon occurs in which the direct current amplification factor hPE of the transistor increases, and a small base current causes a large leakage current between the emitter and the collector.
またサイリスクの場合もカンードとアノード間に数十V
の電圧を印加した際に、アノード・pゲート間上の酸化
膜まで負電界が及び空乏層が形成され、アノードとpベ
ース間に反転層が生じ、アノードとpゲート開の実効的
な距離が短くなる。このため、あたかもサイリスタのア
ノ−ドルゲート、nゲートによって形成されるトランジ
スタのhPEが増加するという現象が起き、微少のnゲ
ート電流でアノード・カソード間に大きなリーク電流が
発生するという不具合があった。Also, in the case of Cyrisk, there are several tens of V between the cando and the anode.
When a voltage of Becomes shorter. As a result, a phenomenon occurs in which the hPE of the transistor formed by the anode gate and the n-gate of the thyristor increases, and a large leakage current occurs between the anode and the cathode due to a small n-gate current.
第1の本発明の半導体装置は、一導電型半導体基板に形
成された逆導電型の第1および第2の領域と一導電型の
高濃度不純物を含む第3の領域と、前記半導体基板上に
形成された絶縁膜と、前記絶縁膜に設けられた開口部を
介し前記第1.第2および第3の領域に接続する電極配
線とを有する半導体装置において、前記第1の領域と第
2の領域間の前記絶縁膜上に、前記第1の領域または第
3の領域に接続された配線を設けたものである。A semiconductor device according to a first aspect of the present invention includes first and second regions of opposite conductivity types formed on a semiconductor substrate of one conductivity type, a third region containing high concentration impurities of one conductivity type, and a third region formed on a semiconductor substrate of one conductivity type. through the insulating film formed in the first insulating film and the opening provided in the insulating film. In a semiconductor device having an electrode wiring connected to a second region and a third region, an electrode wiring connected to the first region or the third region is provided on the insulating film between the first region and the second region. It is equipped with additional wiring.
第2の本発明の半導体装置は、一導電型半導体基板に形
成された逆導電型の第1および第2の領域と一導電型の
高濃度不純物を含む第3の領域と、前記半導体基板上に
形成された絶縁膜と、前記絶縁膜に設けられた開口部を
介し前記第1.第2および第3の領域に接続する電極配
線とを有する半導体装置において、前記第1の領域内に
一導電型の拡散領域とこの拡散領域に接続する電極配線
とこの電極配線に接続するフィールドプレートを設けた
ものである。A second semiconductor device of the present invention includes first and second regions of opposite conductivity types formed on a semiconductor substrate of one conductivity type, a third region containing high concentration impurities of one conductivity type, and a third region containing high concentration impurities of one conductivity type; through the insulating film formed in the first insulating film and the opening provided in the insulating film. In a semiconductor device having an electrode wiring connected to a second and a third region, a diffusion region of one conductivity type in the first region, an electrode wiring connected to the diffusion region, and a field plate connected to the electrode wiring. It has been established.
次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.
第1図は本発明の第1の実施例を示す半導体チップの断
面図であり、特にラテラルトランジスタの場合を示して
いる。FIG. 1 is a sectional view of a semiconductor chip showing a first embodiment of the present invention, particularly showing the case of a lateral transistor.
比較的高い抵抗率(5〜30Ωcrn)のn型半導体基
板1の熱酸化により絶縁膜2を形成し、選択的にフォト
リソグラフィーにより絶縁膜2に窓明けし、p型半導体
領域を形成し、コレクタ領域3およびエミッタ領域4を
設ける。次に再度選択的にフォトリソグラフィーにより
絶縁膜2に窓明けしn++散層を設け、第3の領域とし
てのベース拡散層5を設ける。続いてオーミックコンタ
クト部の窓明けをして一層目のAJ?電極配線を設け、
コレクタ電極6.エミッタ電極7.ベース電極8を設け
る。この際同時に本発明によるチャンネルストッパー1
0をコレクタエミッタ同上に絶縁膜を介して設ける。こ
のチャンネルストッパー10としての配線は、エミッタ
電極7又はベース電極8に他の位置において接続する。An insulating film 2 is formed by thermal oxidation of an n-type semiconductor substrate 1 having a relatively high resistivity (5 to 30 Ω crn), a window is selectively opened in the insulating film 2 by photolithography, a p-type semiconductor region is formed, and a collector is formed. A region 3 and an emitter region 4 are provided. Next, a window is opened in the insulating film 2 by selective photolithography again to provide an n++ diffusion layer, and a base diffusion layer 5 as a third region is provided. Next, we open the window of the ohmic contact section and see the first layer of AJ? Provide electrode wiring,
Collector electrode 6. Emitter electrode7. A base electrode 8 is provided. At the same time, the channel stopper 1 according to the present invention
0 is provided on the collector-emitter through an insulating film. This wiring as the channel stopper 10 is connected to the emitter electrode 7 or the base electrode 8 at another position.
このような構造をとるとコレクタ領域3から伸びる空乏
層9はチャンネルストッパー10により伸長しないなめ
、ベース幅w1が狭くなることはない、従ってラテラル
PNP TrのhFEが大きくなることはない。With such a structure, the depletion layer 9 extending from the collector region 3 is not extended by the channel stopper 10, so the base width w1 does not become narrower, and therefore the hFE of the lateral PNP Tr does not become larger.
次に眉間窒化膜11を設はスルーホールの穴を明け、二
層配線によりコレクタフィールドプレート12とエミッ
タフィールドプレート13を設ける。このフィールドプ
レートは数十〜数百Vの耐圧を得る為に設けられている
。その上に窒化膜で保護膜14が覆うように設けられて
いる。Next, a glabellar nitride film 11 is formed, a through hole is formed, and a collector field plate 12 and an emitter field plate 13 are provided by two-layer wiring. This field plate is provided to obtain a withstand voltage of several tens to several hundreds of volts. A protective film 14 is provided thereon to cover it with a nitride film.
第2図は本発明の第2の実施例の半導体チップの断面図
であり、本発明をラテラルサイリスタに適用した場合を
示している。FIG. 2 is a sectional view of a semiconductor chip according to a second embodiment of the present invention, and shows the case where the present invention is applied to a lateral thyristor.
水弟2の実施例の第1の実施例と異なる点は、コレクタ
領域3をnゲート拡散層31.エミッタ領域4をアノー
ド拡散層41.ベース拡散層5をnゲート拡散層51と
名称を変えている点と、nゲート拡散層31内にカソー
ド拡散層15を設けている点である。The difference between the second embodiment and the first embodiment is that the collector region 3 is formed by an n-gate diffusion layer 31. Anode diffusion layer 41. emitter region 4. The two points are that the name of the base diffusion layer 5 is changed to an n-gate diffusion layer 51, and that the cathode diffusion layer 15 is provided within the n-gate diffusion layer 31.
この第2の実施例でもチャンネルストッパー10が設け
られており、nゲート電極81に接続されている。この
ような構造をとるとnゲート拡散層31から伸びる空乏
層9は、チャンポルス1〜ツバ−10により伸長せず、
ベース幅W2が狭くなることはない。従ってアノードP
ゲートnゲートによって構成されるラテラルPNP
Trのhpgが大きくなることはない。This second embodiment also includes a channel stopper 10, which is connected to the n-gate electrode 81. If such a structure is adopted, the depletion layer 9 extending from the n-gate diffusion layer 31 will not extend due to the Champors 1 to 10;
The base width W2 does not become narrower. Therefore, the anode P
Lateral PNP composed of n gates
The hpg of the Tr will not increase.
以上説明したように本発明は、半導体装置であるラテラ
ルトランジスタのエミッタあるいはベース領域に接続さ
れた金属膜をコレクタ7工ミツタ間上に絶縁膜を介して
設けることにより、コレクタとエミッタ間に数十V以上
の電圧を印加した際にモールド樹脂材の分極等による負
電界がコレクタ、エミッタ同上の絶縁膜に印加されるの
を防ぎ、実効的にコレクタとエミッタ間のバスが短くな
ることがないので、安定したhFEをもつラテラルトラ
ンジスタが得られる効果がある。As explained above, the present invention provides a metal film connected to the emitter or base region of a lateral transistor, which is a semiconductor device, through an insulating film between the collector and the emitter. When a voltage higher than V is applied, a negative electric field due to polarization of the mold resin material is prevented from being applied to the collector and emitter as well as the insulating film, and the bus between the collector and emitter is not effectively shortened. , there is an effect that a lateral transistor with stable hFE can be obtained.
またサイリスタの場合も同様に、nゲートに接続した金
属膜をアノードとpゲート同上に絶縁膜を介して設ける
ことにより、nゲートに流れる微少リーク電流が増幅さ
れてアノードとカソード間のリーク電流が増大すること
を防ぎ、安定した耐圧のラテラルサイリスタが得られる
。Similarly, in the case of a thyristor, by providing a metal film connected to the n-gate on the anode and the p-gate via an insulating film, the minute leakage current flowing to the n-gate is amplified and the leakage current between the anode and cathode is reduced. A lateral thyristor with stable pressure resistance can be obtained.
第1図および第2図は本発明の第1および第2の実施例
の断面図、第3図は従来例の断面図である。
1・・・n型半導体基板、2・・・絶縁膜、3・・・コ
レクタ領域、4・・・エミッタ領域、5・・・ベース拡
散層、6・・・コレクタ電極、7・・・エミッタ電極、
8・・・ベース電極、9・・・空乏層、10・・・チャ
ンネルストッパ11・・・層間絶縁膜、12・・・コレ
クタフィールドプレート、13・・・エミッタフィール
ドプレート、14・・・保護膜、15・・・カソード拡
散層、16・・カソード電極、17・・・カソードフィ
ールドプレート、31・・・nゲート拡散層、41・・
・アノード拡散層、51・・・nゲート拡散層、61・
・・pゲート電極、71・・・アノード電極、81・・
・nゲート電極、121・・・pゲートフィールドプレ
ート。1 and 2 are sectional views of first and second embodiments of the present invention, and FIG. 3 is a sectional view of a conventional example. DESCRIPTION OF SYMBOLS 1... N-type semiconductor substrate, 2... Insulating film, 3... Collector region, 4... Emitter region, 5... Base diffusion layer, 6... Collector electrode, 7... Emitter electrode,
8... Base electrode, 9... Depletion layer, 10... Channel stopper 11... Interlayer insulating film, 12... Collector field plate, 13... Emitter field plate, 14... Protective film , 15... Cathode diffusion layer, 16... Cathode electrode, 17... Cathode field plate, 31... N gate diffusion layer, 41...
・Anode diffusion layer, 51...n gate diffusion layer, 61・
...p gate electrode, 71...anode electrode, 81...
・N gate electrode, 121...p gate field plate.
Claims (2)
および第2の領域と一導電型の高濃度不純物を含む第3
の領域と、前記半導体基板上に形成された絶縁膜と、前
記絶縁膜に設けられた開口部を介し前記第1、第2およ
び第3の領域に接続する電極配線とを有する半導体装置
において、前記第1の領域と第2の領域間の前記絶縁膜
上に、前記第1の領域または第3の領域に接続された配
線を設けたことを特徴とする半導体装置。(1) A first semiconductor substrate of an opposite conductivity type formed on a semiconductor substrate of one conductivity type.
and a third region containing a second region and a high concentration impurity of one conductivity type.
A semiconductor device having a region, an insulating film formed on the semiconductor substrate, and an electrode wiring connected to the first, second and third regions through an opening provided in the insulating film, A semiconductor device characterized in that a wiring connected to the first region or the third region is provided on the insulating film between the first region and the second region.
および第2の領域と一導電型の高濃度不純物を含む第3
の領域と、前記半導体基板上に形成された絶縁膜と、前
記絶縁膜に設けられた開口部を介し前記第1、第2およ
び第3の領域に接続する電極配線とを有する半導体装置
において、前記 I第1の領域内に一導電型の拡散領域
とこの拡散領域に接続する電極配線とこの電極配線に接
続するフィールドプレートを設けたことを特徴とする半
導体装置。(2) A first semiconductor substrate of an opposite conductivity type formed on a semiconductor substrate of one conductivity type.
and a third region containing a second region and a high concentration impurity of one conductivity type.
A semiconductor device having a region, an insulating film formed on the semiconductor substrate, and an electrode wiring connected to the first, second and third regions through an opening provided in the insulating film, A semiconductor device characterized in that a diffusion region of one conductivity type, an electrode wiring connected to the diffusion region, and a field plate connected to the electrode wiring are provided in the first region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26041289A JPH03120830A (en) | 1989-10-04 | 1989-10-04 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26041289A JPH03120830A (en) | 1989-10-04 | 1989-10-04 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03120830A true JPH03120830A (en) | 1991-05-23 |
Family
ID=17347571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26041289A Pending JPH03120830A (en) | 1989-10-04 | 1989-10-04 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03120830A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5610435A (en) * | 1992-12-28 | 1997-03-11 | Canon Kabushiki Kaisha | Semiconductor device having an electrode which controls a surface state of the base area for minimizing a change of the D.C. amplification ratio |
JP2010021412A (en) * | 2008-07-11 | 2010-01-28 | Oki Semiconductor Co Ltd | Semiconductor thyristor device |
-
1989
- 1989-10-04 JP JP26041289A patent/JPH03120830A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5610435A (en) * | 1992-12-28 | 1997-03-11 | Canon Kabushiki Kaisha | Semiconductor device having an electrode which controls a surface state of the base area for minimizing a change of the D.C. amplification ratio |
JP2010021412A (en) * | 2008-07-11 | 2010-01-28 | Oki Semiconductor Co Ltd | Semiconductor thyristor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0541520A (en) | Semiconductor device | |
JPH0671079B2 (en) | Bidirectionally conductive monolithic integrated semiconductor device and manufacturing method thereof | |
JPH0324791B2 (en) | ||
US3763408A (en) | Schottky barrier semiconductor device having a substantially non-conductive barrier for preventing undesirable reverse-leakage currents and method for making the same | |
JPH04332173A (en) | Planar type semiconductor device and its manufacture | |
JPH08274321A (en) | Semiconductor device | |
US4380021A (en) | Semiconductor integrated circuit | |
JPH0656890B2 (en) | Vertical conductivity type MOS-FET | |
JPH03120830A (en) | Semiconductor device | |
US5880501A (en) | Semiconductor integrated circuit and manufacturing method of the same | |
JP3217552B2 (en) | Horizontal high voltage semiconductor device | |
JP3217484B2 (en) | High voltage semiconductor device | |
JPH04127574A (en) | Vertical type insulated-gate field-effect transistor | |
JP2785792B2 (en) | Power semiconductor device | |
JP3074064B2 (en) | Lateral MOS field effect transistor | |
JP3073056B2 (en) | Static induction semiconductor device | |
JPS58173A (en) | Manufacturing method for semiconductor switch | |
JPS60154671A (en) | Semiconductor device | |
JP3206149B2 (en) | Insulated gate bipolar transistor | |
JP2816985B2 (en) | Vertical MOS field-effect transistor | |
JP2916158B2 (en) | Conduction modulation type MOSFET | |
JP2863041B2 (en) | Switching element | |
JPH02283069A (en) | Semiconductor device | |
JP2825303B2 (en) | Manufacturing method of GTO thyristor with insulated gate | |
JP2518373B2 (en) | Bipolar transistor |