JPH0355544B2 - - Google Patents
Info
- Publication number
- JPH0355544B2 JPH0355544B2 JP62224383A JP22438387A JPH0355544B2 JP H0355544 B2 JPH0355544 B2 JP H0355544B2 JP 62224383 A JP62224383 A JP 62224383A JP 22438387 A JP22438387 A JP 22438387A JP H0355544 B2 JPH0355544 B2 JP H0355544B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- layer
- plating
- plating layer
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007747 plating Methods 0.000 claims description 49
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 20
- 239000008397 galvanized steel Substances 0.000 claims description 20
- 229910000831 Steel Inorganic materials 0.000 claims description 18
- 239000010959 steel Substances 0.000 claims description 18
- 238000000227 grinding Methods 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 239000010953 base metal Substances 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 238000005246 galvanizing Methods 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims 2
- 238000000576 coating method Methods 0.000 claims 2
- 239000010410 layer Substances 0.000 description 61
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 29
- 238000005275 alloying Methods 0.000 description 12
- 239000011701 zinc Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 8
- 239000011324 bead Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 229910001297 Zn alloy Inorganic materials 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
Landscapes
- Coating With Molten Metal (AREA)
Description
(産業上の利用分野)
本発明は、耐パウダリング性および耐フレーキ
ング性に優れた厚目付の合金化溶融亜鉛めつき鋼
板に関するものである。
(従来の技術)
合金化溶融亜鉛めつき鋼板は、溶融亜鉛めつき
鋼板をめつき後加熱して素地鋼板の鉄をめつき層
中に拡散させ、鉄−亜鉛合金化するものである
が、亜鉛めつき鋼板に比較して塗装耐食性が優れ
ているため、自動車、建材、家電製品等の材料と
して広く使用されている。
(発明が解決しようとする問題点)
近年耐食性に対する要求が益々強くなり、厚目
付の合金化溶融亜鉛めつき鋼板が要望されるに至
つた。しかし、合金化溶融亜鉛めつき鋼板は、上
述したように熱拡散処理で製造するため、目付量
が厚くなるに従がいめつき層中の鉄濃度勾配が大
きくなり、地鉄との界面にFe濃度の高く脆いΓ
相が生成し、その層が厚くなり、一方めつき層表
面近傍のFe濃度が低くなつて合金化が未完のま
まη相(純Zn相)が残存したり、Fe濃度の低い
合金相、即ちζ相が厚く生成しがちである。
Γ相が厚くなると、プレス加工時にめつき層が
剥離し易く、謂ゆるパウダリングが生起し、製品
に押し庇等が発生し、歩留低下あるいは型洗浄の
頻度増等による能率低下の実害が出る。
一方η相あるいはζ相がめつき層表面に残存す
ると、これらの相は比較的柔らかいためプレス加
工時に型かじりが生成し易く、謂ゆるフレーキン
グとなつて金型ビード部等に堆積し、これまたプ
レス工程の歩留低下、能率低下をもたらす。従つ
て、理想的には地鉄界面からめつき層表面まで
Fe濃度勾配のない、均一なδ1相から構成されて
いることが望ましいが、熱拡散処理で合金化する
限り、事実上不可能である。
低目付量では理想型に近いδ1相を主体とする合
金化溶融亜鉛めつき鋼板は製造され実用に供され
ているが、目付量45g/m2以上の厚目付では、プ
レス工程で耐パウダリング性、耐フレーキング性
ともに満足できる合金化溶融亜鉛めつき鋼板は従
来にはなく、強く開発が要望されているところで
ある。
本発明は上述した問題点を有利に解決する合金
化溶融亜鉛めつき鋼板を提供する。
(問題点を解決するための手段)
上記問題点を解決するための第1の本発明は、
Fe:8〜12%、Al:0.05〜0.25%、残部Znから
なる組成であつて、かつ地鉄界面のΓ相が1.0μm
以下、めつき層表面にηζ相が存在しない目付量
45〜90g/m2のめつき層を少くとも片面に有する
耐パウダリング性および耐フレーキング性に優れ
た合金化溶融亜鉛めつき鋼板である。
また第2の本発明は、Fe:8〜12%、Al:
0.05〜0.25%、残部Znからなる組成であつて、か
つ地鉄界面のΓ相が1.0μm以下、めつき層表面に
η相が存在しない目付量45〜90g/m2の合金化溶
融亜鉛めつき層の上に、Fe:60%以上、残部Zn
からなる合金めつき層を生成せしめた2層めつき
層を少くとも片面に有する耐パウダリング性およ
び耐フレーキング性に優れた合金化溶融亜鉛めつ
き鋼板である。
(作用)
従来の技術と比較することによつて、本発明の
特徴を述べる。
従来は溶融亜鉛浴中に有効Al量(Al%−Fe%)
を例えば0.09〜0.15%に添加調整した浴中に鋼帯
を通してめつきをし、ガスワイピング等で目付量
調整した後合金化炉に通板し、めつき表面の金属
光沢が消えるまで、即ち表面まで合金化が完了す
る時点まで熱処理し、直ちに冷却して合金化程度
を制御して製造していた。(特開昭61−223174号
公報)かかるめつき層の組成は、Fe:8〜13%、
Al:0.25〜0.35%、残部Znからなるものである。
しかるに目付量45g/m2以上の溶融亜鉛めつき
鋼板をかかる工程で合金化処理すると、地鉄界面
に生成するΓ相の厚さが例えば1〜37μm程度と
なり、耐パウダリング性が十分ではない。
そこで浴中の有効Al量を0.10%以下程度に低減
し、浴中で形成されるFe−Al合金層を薄くして
Fe−Zn合金相の生成を比較的容易にすることに
よつて、より低温の熱処理で合金化溶融亜鉛めつ
き鋼板を製造することができる。かかるめつき層
の組成は、Fe:6〜11%、Al:0.05〜0.25%、残
部Znからなるものである。しかるに目付量45
g/m2以上の場合には、Γ相の厚さを1μm以下
とする条件はあるものの、めつき層表面にη相、
ζ相が残存し易く、耐フレーキング性が十分では
ない。
上記2例は、浴中の有効Al量の制御のみで耐
パウダリング性と耐フレーキング性をともに満足
することができないことを示している。しかし本
発明者らが検討したところによれば、Fe−Al合
金相の厚みのみではなく、質が重要なのである。
即ち上記後者例では、Fe−Al合金相が薄くFe拡
散のバリアーとしての性能が不十分で、合金化熱
処理前に既にFe−Al皮膜が部分的に破壊され、
ζ相等のFe−Zn合金属の生成が始まつているの
である。
本発明は浴中の鋼帯浸漬時間を3秒好ましくは
2秒以内とすることによつて、Fe−Al合金相を
健全なまま合金化炉に導き、めつき層表面にη
相、ζ相が存在せず、かつ地鉄界面のΓ層厚さが
1μm以下であるFe濃度勾配の小さい合金化溶融
亜鉛めつき鋼板を製造し得ることを見出し、耐パ
ウダリング性および耐フレーキング性ともに良好
にすることに成功した。
鋼帯の浴中浸漬時間3秒好ましくは2秒以内と
いう条件は、現在稼働している一般の連続溶融亜
鉛めつき設備では極めて困難である。即ち、浸漬
ロール径は鋼帯の折れ防止のため600mm以上必要
であり、鋼帯のプレス成形性を考慮すれば800mm
以上に設計することが好ましい。従つて、浴中の
鋼帯パス長さは3m以上、好ましくは4m以上と
なり、通常操業条件である鋼帯速度60m/分では
達成できない。更に鋼帯速度を高めればよいが、
竪型合金化炉を延長する厖大な投資を必要とし、
あるいは溶融亜鉛浴を特殊な短パドス径路で通板
することで浸漬時間3秒、好ましくは2秒以内を
達成できるが、いづれにしろ、従来にない新しい
プロセスを用いる必要がある。
本発明は浴中有効Al量0.10%以下、浸漬時間3
秒、好ましくは2秒以下とすることにより、めつ
き層中のFe:8〜12%、Al:0.05〜0.25%とする
ことができる。
Fe8%未満ではめつき層表面にζ相が残存し易
く、はなはだしい場合にはη相も残存する。
Fe12%を越えるとΓ相が1μmを超え易いので好
ましくない。
Al:0.05%未満ではめつき層表面にζ相が残存
し易く、逆にζ相の残存を避けるべく高温で合金
化処理すると、地鉄表面のΓ相が1μmを越える
ので好ましくない。Al0.25%を越えると表面まで
合金化を完了させるまで熱処理するとΓ相が1μ
mを越えるので好ましくない。
本発明のめつき組成は浸漬時間3秒以上で製造
した従来の合金化溶融亜鉛めつき鋼板のめつき組
成と比較すると、Fe/Al比率が大きいことが特
徴である。
Γ相は1μm以下とすることが、耐パウダリン
グ性を向上させるため好ましい。1μmを越える
と目付量45g/m2以上では耐パウダリング性が劣
化し、プレスに実害が出る。
Γ相の測定法としては種々の方法があるが、こ
こでは次の方法を採用した。即ち、サンプル断面
をX線マイクロアナライザー(EPMA)で鋼板
面に垂直方向に沿つて線分析し、Feの原子組成
が19〜31%の範囲をΓ相と定義し、素地鋼板およ
びδ1相と識別した。傾斜研磨法を用いれば測定精
度を向上させることができる。
η相およびζ相の有無は、電位測定法によるの
が感度およびプレス性との関連において最も妥当
である。ここでは次の方法を採用した。即ち、
ZnSO4.7H2O:100g/、NaCl:200g/か
らなる電解液中で電流密度の20mA/cm2でサンプ
ルを陽極として定電流電解し、Agを参照電極と
して電位を測定する。このときめつき表層部の電
位がAg電極に対して−750mV未満であればη相
が存在し、−700mV〜−750mVであればζ相が
存在すると判断する。(素地鉄電位は−270mV付
近にある)−670mV以上であればζ相が実質的に
は存在しないと判断する。電流印加する理由は酸
化膜等の影響を除去するためである。後述する2
層めつきの場合には電流印加直後にはFeに富ん
だ上層皮膜の電位を示すが、直ちに下層の電位を
示すようになるので、この時点の電位で判断する
上層皮膜にわずかの亀裂が生ずれば、上層が存在
していても電気的に卑な下層の電位が測定される
からである。
電位測定法でζ相が存在しなく表面はδ1相であ
ると判断した場合でも、X線回折法によれば僅か
のζ相、あるいはη相が検出されることがある。
しかるに、対フレーキング性はめつき層表層部の
機械的物性値にかかわるものであるから、マクロ
な電位測定法の方がプレスの実際とよく合致す
る。
このようにして測定したζ相が存在すると、例
えば自動車のフエンダーを成形する場合、金型の
ビード部を摺動する時、柔かいζ相が“かじり”
とられ、ビード部に堆積して凝集し、押し庇の原
因となるので好ましくない。めつき層の表面が実
質的にδ1相であれば、上記のようなフレーキング
は発生しない。
本発明のもう一つの態様は、Fe:60%以上、
残部Znからなる合金めつき層を上層に施した2
層めつき化合金化溶融亜鉛めつき鋼板である。上
層めつき層はビツカース硬度400程度の極めて硬
い層であり、この存在によつて金型との凝着を抑
制でき、耐フレーキング性を改善できる。上層め
つき層の厚さは1〜10g/m2が好ましい。1g/
m2未満では下層めつき層を完全に被覆することは
困難で、下層露出部からの金型凝着が起る場合が
あり、好ましくない。10g/m2を越えると耐食性
が劣化する傾向があるので好ましくない。なお、
上層のFe60%未満ではめつき層が脆くなるので
好ましくない。60%以上であれば硬くて、かつパ
ウダリング性の良い皮膜となる。
上層めつきの実施例として電気めつき法はつき
まわり性が良いので、微細凹凸の激しい合金化溶
融亜鉛めつき層の上に容易に被覆できる。上層め
つき層にFe、Zn、以外にNi、Co、Cr、Mn、
Al、Si、Zr、Cu、Mo、Ti、P、C、O、S等
が少量含有していても実質上プレス成形上の効果
は変らない。
2層めつき化した場合、下層のζ相の存在は実
質上許容できる。即ち、上層の存在によつて、金
型との凝着が抑制できるからである。しかしなが
ら、η相の存在は好ましくない。なんとなれば、
あまりにも軟いη相(ビツカース硬度30〜50程
度)が上層直下に存在すると、金型ビード部摺動
時にη相部が破壊され、剥離片のη相がバインダ
ーとなつて2次凝集を起すからである。
本発明の合金化溶融めつき層の厚さは、目付量
として45〜90g/m2が適用できる範囲である。45
g/m2未満では従来の技術で耐パウダリング性、
耐フレーキング性ともに満足できる合金化溶融亜
鉛めつき鋼板は製造可能であり、本発明が特に有
利という訳ではない。90g/m2を越えると、Γ相
を1μm以下で、かつめつき表層部にη相ないし
はζ相を存在させないめつき層は実質上製造でき
ない。
合金化溶融めつき層の組成としてFe、Alのみ
を規定したが、他の成分、例えばPb、Cd、Sn、
In、Li、Sb、As、Bi、Mg、La、Ce、Ti、Zr、
Ni、Co、Cr、Mn、P、S、O等が少量添加さ
れたり、不可避的に混入しても、本質的には本発
明の効果は変らないものである。
なお本発明のめつき層は、両面45〜90g/m2の
目付量の防錆鋼板の場合には、両面に適用するこ
とが好ましいが、片面45g/m2〜90g/m2でかつ
他面が45g/m2未満の差厚めつき鋼板の場合に
は、厚目付面のみに適用することもできる。片面
めつき鋼板の場合には勿論めつき面のみに適用す
るものである。
(実施例)
次に本発明の実施例を比較例とともに挙げる。
めつき用素材としてはCC−AI−K鋼(0.7t×
1200w・Coil)を使用し、無酸化炉型の連続溶融
亜鉛めつきラインにおいてめつき直後に合金化処
理炉により、連続的に加熱合金化処理した。
なおめつき層中Al組成は、めつき浴中Al濃度
で、めつき層中Fe濃度は合金化炉の加熱条件を
適宜に選定して製造した。
通板速度は40〜70m/分とし、浸漬時間は1〜
5秒の間の条件でめつきを行なつた。ただし、実
施例は全て1〜3秒の範囲である。一方ラインの
後方出側において、電気めつき法による上層めつ
きを行なつた。通常の硫酸浴を使用し、めつき浴
中のZn/Feイオン比と電流密度により、上層め
つき組成と目付量を制御した。なお上層めつきを
施さない場合は、上層めつきタンクを水張りして
通板し、次いで熱風乾燥した。
次にめつき層の加工性試験方法について述べ
る。
(1) 耐パウダリング性試験
加工前に曲げ加工部にビニルテープをはり、
テープ面を内側とする曲げ化合(2丁曲げ)を
行ない、再度開いてテープをはがし、めつき層
がテープに付着して黒変した部分の程度で判定
した。
(良) ◎−○−△−× (劣)
(◎、○は実用上問題なし)
(2) 耐フレーキング性試験
第1図に示す如き、角ビード付引張成形によ
り評価した。ポンチ1とダイス2間は2.0Kg
f/cm2(プラグサイズ0.7×75×280mm)で試験
片3とを押圧し、次いで試験片3を引張りなが
らビード部を通過させる。200枚の反復成形を
行ない、鋼板またはビード部へのめつき層金属
の堆積程度を相対評価した。
(良) ◎−○−△−× (劣)
(◎、○は実用上問題なし)
(3) 実プレス試験
普通乗用車のフエンダー部品を実プレスで成
形加工した。300枚の反復成形を行ない、鋼板
またはプレス型へのめつき層金属の付着堆積程
度を相対評価した。評価は各部位にテープをは
りつけ、はがしてからテープに転着した金属粉
の黒化度合で判定した。
(良) ◎−○−△−× (劣)
(◎、○は実用上問題なし)
上記それぞれの試験結果を比較例とともに第1
表にしめす。
(Field of Industrial Application) The present invention relates to a thick alloyed hot-dip galvanized steel sheet with excellent powdering resistance and flaking resistance. (Prior art) Alloyed hot-dip galvanized steel sheets are produced by heating a hot-dip galvanized steel sheet after plating to diffuse iron in the base steel sheet into the plating layer, forming an iron-zinc alloy. Because it has superior paint corrosion resistance compared to galvanized steel sheets, it is widely used as a material for automobiles, building materials, home appliances, etc. (Problems to be Solved by the Invention) In recent years, demands for corrosion resistance have become stronger and stronger, and thick alloyed hot-dip galvanized steel sheets have been desired. However, since alloyed hot-dip galvanized steel sheets are manufactured by thermal diffusion treatment as mentioned above, as the basis weight increases, the iron concentration gradient in the galvanized layer increases, and the Fe concentration at the interface with the base steel increases. Highly concentrated and brittle Γ
phase is formed and the layer becomes thicker, while the Fe concentration near the surface of the plating layer decreases, leaving the η phase (pure Zn phase) with incomplete alloying, or an alloy phase with a low Fe concentration, i.e. The ζ phase tends to be thick. When the Γ phase becomes thicker, the plating layer tends to peel off during press processing, causing so-called powdering, which causes eaves to appear in the product, resulting in lower yields and lower efficiency due to increased frequency of mold cleaning. Get out. On the other hand, if the η phase or ζ phase remains on the surface of the plating layer, these phases are relatively soft and are likely to cause mold galling during press working, becoming so-called flaking that accumulates on the mold bead, etc. This causes a decrease in yield and efficiency in the pressing process. Therefore, ideally from the substrate interface to the surface of the plating layer.
It is desirable to have a uniform δ 1 phase with no Fe concentration gradient, but this is virtually impossible as long as alloying is performed by thermal diffusion treatment. At low area weights, alloyed hot-dip galvanized steel sheets mainly consisting of the δ 1 phase, which is close to the ideal type, have been manufactured and put into practical use, but at thicker area weights of 45 g/m2 or more , powder resistance is required in the pressing process. There is no existing alloyed hot-dip galvanized steel sheet that has satisfactory ring properties and flaking resistance, and there is a strong need for its development. The present invention provides an alloyed hot-dip galvanized steel sheet that advantageously solves the above-mentioned problems. (Means for solving the problems) The first invention for solving the above problems is as follows:
The composition is Fe: 8-12%, Al: 0.05-0.25%, and the balance is Zn, and the Γ phase at the base metal interface is 1.0 μm.
The following is the basis weight where ηζ phase does not exist on the surface of the plating layer.
This is an alloyed hot-dip galvanized steel sheet with excellent powdering resistance and flaking resistance, having a plating layer of 45 to 90 g/m 2 on at least one side. Further, the second invention has Fe: 8 to 12%, Al:
Alloyed hot-dip galvanized metal having a composition of 0.05 to 0.25% Zn with the balance being Zn, a Γ phase at the base metal interface of 1.0 μm or less, and an area weight of 45 to 90 g/m 2 with no η phase present on the surface of the plating layer. On top of the layer, Fe: 60% or more, balance Zn
This is an alloyed hot-dip galvanized steel sheet with excellent powdering resistance and flaking resistance, which has a two-layer plating layer on at least one side, which is an alloy plating layer formed from the following. (Function) The features of the present invention will be described by comparing it with conventional techniques. Conventionally, the effective amount of Al in the molten zinc bath (Al% - Fe%)
For example, the steel strip is plated by passing it through a bath containing 0.09 to 0.15%, and after adjusting the basis weight by gas wiping etc., the plate is passed through an alloying furnace until the metallic luster on the plated surface disappears, that is, the surface In manufacturing, the alloy is heat-treated until alloying is completed, and then immediately cooled to control the degree of alloying. (Unexamined Japanese Patent Publication No. 61-223174) The composition of this plating layer is Fe: 8 to 13%,
Al: 0.25-0.35%, balance Zn. However, when hot-dip galvanized steel sheets with a basis weight of 45 g/m2 or more are alloyed in this process, the thickness of the Γ phase formed at the interface between the base metals is, for example, about 1 to 37 μm, and the powdering resistance is insufficient. . Therefore, the effective amount of Al in the bath was reduced to about 0.10% or less, and the Fe-Al alloy layer formed in the bath was made thinner.
By making the formation of the Fe--Zn alloy phase relatively easy, alloyed hot-dip galvanized steel sheets can be produced with lower temperature heat treatment. The composition of the plating layer is Fe: 6 to 11%, Al: 0.05 to 0.25%, and the balance is Zn. However, the basis weight is 45
g/m 2 or more, there is a condition that the thickness of the Γ phase is 1 μm or less, but there are also η phases and η phases on the surface of the plating layer.
The ζ phase tends to remain, and flaking resistance is not sufficient. The above two examples show that it is not possible to satisfy both powdering resistance and flaking resistance only by controlling the effective amount of Al in the bath. However, according to studies conducted by the present inventors, not only the thickness but also the quality of the Fe-Al alloy phase is important.
That is, in the latter example, the Fe-Al alloy phase is thin and has insufficient performance as a barrier for Fe diffusion, and the Fe-Al film is already partially destroyed before the alloying heat treatment.
The formation of Fe-Zn alloy metals such as the ζ phase has begun. In the present invention, by setting the steel strip immersion time in the bath to 3 seconds, preferably 2 seconds or less, the Fe-Al alloy phase is guided to the alloying furnace in a healthy state, and the η
phase, ζ phase does not exist, and the Γ layer thickness at the base metal interface is
We have discovered that it is possible to produce an alloyed hot-dip galvanized steel sheet with a small Fe concentration gradient of 1 μm or less, and succeeded in achieving good powdering resistance and flaking resistance. The condition of immersing the steel strip in the bath for 3 seconds, preferably within 2 seconds, is extremely difficult to achieve with the general continuous hot-dip galvanizing equipment currently in operation. In other words, the dipping roll diameter needs to be at least 600 mm to prevent the steel strip from bending, and if the press formability of the steel strip is taken into consideration, it is 800 mm.
It is preferable to design as above. Therefore, the steel strip path length in the bath is 3 m or more, preferably 4 m or more, which cannot be achieved with the steel strip speed of 60 m/min, which is the normal operating condition. It would be better to further increase the steel strip speed, but
It requires a huge investment to extend the vertical alloying furnace,
Alternatively, an immersion time of 3 seconds, preferably 2 seconds or less can be achieved by passing the molten zinc bath through a special short path, but in any case, it is necessary to use a new process that has not existed before. The present invention has an effective Al content in the bath of 0.10% or less and a dipping time of 3.
By setting the heating time to 2 seconds, preferably 2 seconds or less, Fe: 8 to 12% and Al: 0.05 to 0.25% can be achieved in the plating layer. If Fe is less than 8%, the ζ phase tends to remain on the surface of the plating layer, and in extreme cases, the η phase also remains.
If Fe exceeds 12%, the Γ phase tends to exceed 1 μm, which is not preferable. If Al: less than 0.05%, the ζ phase tends to remain on the surface of the plating layer, and on the other hand, if alloying is performed at a high temperature to avoid the ζ phase remaining, the Γ phase on the surface of the base metal will exceed 1 μm, which is not preferable. When Al exceeds 0.25%, the Γ phase becomes 1μ when heat treated until the alloying is completed to the surface.
It is not preferable because it exceeds m. The plating composition of the present invention is characterized by a large Fe/Al ratio when compared with the plating composition of conventional alloyed hot-dip galvanized steel sheets produced with an immersion time of 3 seconds or more. It is preferable that the Γ phase has a thickness of 1 μm or less in order to improve powdering resistance. If it exceeds 1 μm and the basis weight is 45 g/m 2 or more, the powdering resistance will deteriorate, causing actual damage to the press. Although there are various methods for measuring the Γ phase, the following method was adopted here. That is, the cross section of the sample was analyzed along the direction perpendicular to the steel plate surface using an Identified. Measurement accuracy can be improved by using the inclined polishing method. The presence or absence of the η phase and ζ phase is most appropriately determined by potential measurement in relation to sensitivity and pressability. The following method was adopted here. That is,
Constant current electrolysis is carried out using the sample as an anode at a current density of 20 mA/cm 2 in an electrolytic solution containing 100 g of ZnSO 4 .7H 2 O and 200 g of NaCl, and the potential is measured using Ag as a reference electrode. At this time, if the potential of the plating surface layer is less than -750 mV with respect to the Ag electrode, it is determined that the η phase exists, and if it is between -700 mV and -750 mV, it is determined that the ζ phase exists. (The potential of the bare iron is around -270 mV) If it is -670 mV or higher, it is determined that the ζ phase does not substantially exist. The reason for applying current is to remove the influence of oxide films and the like. 2 described later
In the case of layer plating, the potential of the Fe-rich upper layer is indicated immediately after the current is applied, but the potential of the lower layer is immediately indicated, so slight cracks may occur in the upper layer, which is judged based on the potential at this point. For example, even if the upper layer is present, the potential of the lower layer, which is electrically less noble, is measured. Even if it is determined by potential measurement that no ζ phase exists and the surface is δ 1 phase, a small amount of ζ phase or η phase may be detected by X-ray diffraction.
However, since the flaking resistance is related to the mechanical properties of the surface layer of the plating layer, the macroscopic potential measurement method better matches the actual press. If the ζ phase measured in this way exists, the soft ζ phase will "gall" when sliding on the bead of the mold, for example when molding a car fender.
This is undesirable because it is removed, deposits on the bead, and aggregates, causing eaves. If the surface of the plating layer is substantially in the δ1 phase, flaking as described above will not occur. Another aspect of the present invention is Fe: 60% or more,
2 with an alloy plating layer made of Zn on the top layer
It is a layer-plated alloyed hot-dip galvanized steel sheet. The upper plating layer is an extremely hard layer with a Vickers hardness of about 400, and its presence can suppress adhesion to the mold and improve flaking resistance. The thickness of the upper plating layer is preferably 1 to 10 g/m 2 . 1g/
If it is less than m 2 , it is difficult to completely cover the lower plating layer, and adhesion from the exposed portion of the lower layer to the mold may occur, which is not preferable. If it exceeds 10 g/m 2 , corrosion resistance tends to deteriorate, which is not preferable. In addition,
If the Fe content of the upper layer is less than 60%, the plating layer becomes brittle, which is not preferable. If it is 60% or more, the film will be hard and have good powdering properties. As an example of upper layer plating, electroplating has good throwing power, so it can be easily coated on an alloyed hot-dip galvanized layer with severe fine irregularities. In addition to Fe and Zn, the upper plating layer contains Ni, Co, Cr, Mn,
Even if a small amount of Al, Si, Zr, Cu, Mo, Ti, P, C, O, S, etc. is contained, the effect on press forming does not substantially change. In the case of two-layer plating, the presence of the ζ phase in the lower layer is substantially permissible. That is, the presence of the upper layer can suppress adhesion to the mold. However, the presence of the η phase is not preferred. If anything,
If an extremely soft η phase (Vitkers hardness of about 30 to 50) exists directly under the upper layer, the η phase will be destroyed when the mold bead slides, and the η phase of the peeled pieces will become a binder and cause secondary agglomeration. It is from. The thickness of the alloyed melt-plated layer of the present invention is within the applicable range of 45 to 90 g/m 2 in terms of basis weight. 45
If less than g/m 2 , powdering resistance cannot be achieved using conventional technology.
It is possible to produce an alloyed hot-dip galvanized steel sheet that has satisfactory flaking resistance, and the present invention is not particularly advantageous. If it exceeds 90 g/m 2 , it is virtually impossible to produce a plated layer in which the Γ phase is 1 μm or less and the η phase or ζ phase is not present in the plating surface layer. Although only Fe and Al are specified as the composition of the alloyed melt-plated layer, other components such as Pb, Cd, Sn,
In, Li, Sb, As, Bi, Mg, La, Ce, Ti, Zr,
Even if small amounts of Ni, Co, Cr, Mn, P, S, O, etc. are added or unavoidably mixed, the effects of the present invention essentially remain unchanged. In addition, the plating layer of the present invention is preferably applied to both sides in the case of a rust-preventing steel plate with a basis weight of 45 to 90 g/m 2 on both sides, but it is preferable to apply the plating layer on both sides with a basis weight of 45 to 90 g/m 2 on one side and on the other side . In the case of a differentially thickened steel plate with a surface of less than 45 g/m 2 , it can also be applied only to the thickened surface. In the case of a single-sided plated steel plate, this applies only to the plated side. (Example) Next, examples of the present invention will be described together with comparative examples. CC-AI-K steel (0.7 t ×
Immediately after plating in a non-oxidation furnace type continuous hot-dip galvanizing line, the alloy was continuously heated and alloyed using an alloying furnace using a 1200 W coil). The Al composition in the plating layer was determined by the Al concentration in the plating bath, and the Fe concentration in the plating layer was determined by appropriately selecting the heating conditions of the alloying furnace. The plate threading speed is 40 to 70 m/min, and the immersion time is 1 to 70 m/min.
Plating was performed for 5 seconds. However, in all Examples, the time is in the range of 1 to 3 seconds. On the other hand, on the rear exit side of the line, upper layer plating was performed using the electroplating method. A normal sulfuric acid bath was used, and the upper layer plating composition and area weight were controlled by the Zn/Fe ion ratio and current density in the plating bath. In addition, when upper layer plating was not applied, the upper layer plating tank was filled with water, passed through the plate, and then dried with hot air. Next, the method for testing the workability of the plated layer will be described. (1) Powdering resistance test Before processing, apply vinyl tape to the bent part.
A bending combination (two-way bending) was performed with the tape surface facing inside, the tape was opened again, and the tape was peeled off.The plating layer was judged based on the degree of blackening caused by adhesion to the tape. (Good) ◎−○−△−× (Poor) (◎, ○ indicates no practical problem) (2) Flaking resistance test Evaluation was performed by tension forming with a square bead as shown in FIG. The weight between punch 1 and die 2 is 2.0Kg.
f/cm 2 (plug size 0.7 x 75 x 280 mm) and test piece 3, and then pull test piece 3 to pass through the bead portion. 200 sheets were repeatedly formed, and the degree of deposition of the plating layer metal on the steel plate or bead portion was evaluated relative to each other. (Good) ◎−○−△−× (Poor) (◎, ○ indicates no practical problem) (3) Actual press test A fender part for an ordinary passenger car was molded using an actual press. 300 sheets were repeatedly molded, and the degree of adhesion and accumulation of the plating layer metal on the steel plate or press mold was evaluated relative to the degree of adhesion. Evaluation was made by attaching a tape to each part, peeling it off, and determining the degree of blackening of the metal powder transferred to the tape. (Good) ◎−○−△−× (Poor) (◎, ○ indicates no practical problem)
Show it on the table.
【表】
(発明の効果)
以上説明したごとく本発明のめつき鋼板は、加
工性、フレーキング性ともに向上し、溶融めつき
鋼板の用途を拡大し、工業的に大きな効果を奏す
るものである。[Table] (Effects of the invention) As explained above, the galvanized steel sheet of the present invention improves both workability and flaking property, expands the uses of hot-dip galvanized steel sheet, and has great industrial effects. .
第1図は耐フレーキング性試験を示す横断面説
明図である。
1……ポンチ、2……ダイス、3……試験片。
FIG. 1 is an explanatory cross-sectional view showing a flaking resistance test. 1...Punch, 2...Dice, 3...Test piece.
Claims (1)
からなる組成であつて、かつ地鉄界面のΓ相が
1.0μm以下、めつき層表面にηζ相が存在しない目
付量45〜90g/m2のめつき層を少くとも片面に有
する耐パウダリング性および耐フレーキング性に
優れた合金化溶融亜鉛めつき鋼板。 2 Fe:8〜12%、Al:0.05〜0.25%、残部Zn
からなる組成であつて、かつ地鉄界面のΓ相が
1.0μm以下、めつき層表面にη相が存在しない目
付量45〜90g/m2の合金化溶融亜鉛めつき層の上
に、Fe:60%以上、残部Znからなる合金めつき
層を生成せしめた2層めつき層を少くとも片面に
有する耐パウダリング性および耐フレーキング性
に優れた合金化溶融亜鉛めつき鋼板。[Claims] 1 Fe: 8-12%, Al: 0.05-0.25%, balance Zn
and the Γ phase at the base metal interface is
Alloyed hot-dip galvanizing with excellent powdering resistance and flaking resistance, having a plating layer on at least one side with a coating weight of 45 to 90 g/ m2 with a thickness of 1.0 μm or less and no ηζ phase present on the surface of the plating layer. steel plate. 2 Fe: 8-12%, Al: 0.05-0.25%, balance Zn
and the Γ phase at the base metal interface is
An alloyed galvanized layer consisting of Fe: 60% or more and the balance Zn is created on an alloyed hot-dip galvanized layer with a coating weight of 45 to 90 g/m 2 with a thickness of 1.0 μm or less and no η phase on the surface of the plated layer. An alloyed hot-dip galvanized steel sheet having excellent powdering resistance and flaking resistance and having a two-layered galvanized layer on at least one side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22438387A JPS6468456A (en) | 1987-09-08 | 1987-09-08 | Alloyed and zinc hot dipped steel sheet having excellent powdering resistance and flaking resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22438387A JPS6468456A (en) | 1987-09-08 | 1987-09-08 | Alloyed and zinc hot dipped steel sheet having excellent powdering resistance and flaking resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6468456A JPS6468456A (en) | 1989-03-14 |
JPH0355544B2 true JPH0355544B2 (en) | 1991-08-23 |
Family
ID=16812888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22438387A Granted JPS6468456A (en) | 1987-09-08 | 1987-09-08 | Alloyed and zinc hot dipped steel sheet having excellent powdering resistance and flaking resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6468456A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010084883A1 (en) * | 2009-01-21 | 2010-07-29 | 住友金属工業株式会社 | Curved metallic material and process for producing same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0762226B2 (en) * | 1990-07-24 | 1995-07-05 | 新日本製鐵株式会社 | Alloyed hot-dip galvanized steel sheet with excellent low temperature impact adhesion |
JP4696656B2 (en) * | 2005-04-15 | 2011-06-08 | Jfeスチール株式会社 | High tensile alloyed hot dip galvanized steel sheet with excellent plating adhesion |
JP4712670B2 (en) * | 2006-10-27 | 2011-06-29 | 株式会社フサヤ | Deck material mounting bracket |
JP5228722B2 (en) * | 2008-09-10 | 2013-07-03 | 新日鐵住金株式会社 | Alloyed hot-dip galvanized steel sheet and method for producing the same |
JP5589269B2 (en) * | 2008-09-25 | 2014-09-17 | 新日鐵住金株式会社 | Alloyed hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet |
JP5365157B2 (en) * | 2008-11-21 | 2013-12-11 | Jfeスチール株式会社 | Surface-treated steel sheet and electronic equipment casing |
PL2527493T3 (en) | 2010-07-09 | 2019-02-28 | Nippon Steel & Sumitomo Metal Corporation | Galvanized steel sheet |
JP5605045B2 (en) * | 2010-07-16 | 2014-10-15 | 新日鐵住金株式会社 | Method for producing galvannealed steel sheet |
CA2849286C (en) | 2011-09-30 | 2015-12-01 | Nippon Steel & Sumitomo Metal Corporation | Alloyed hot-dip galvanized steel sheet |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58130265A (en) * | 1982-01-28 | 1983-08-03 | Sumitomo Metal Ind Ltd | Alloyed zinc-plated steel plate |
JPS58130264A (en) * | 1982-01-28 | 1983-08-03 | Sumitomo Metal Ind Ltd | Alloyed galvanized steel sheet |
-
1987
- 1987-09-08 JP JP22438387A patent/JPS6468456A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58130265A (en) * | 1982-01-28 | 1983-08-03 | Sumitomo Metal Ind Ltd | Alloyed zinc-plated steel plate |
JPS58130264A (en) * | 1982-01-28 | 1983-08-03 | Sumitomo Metal Ind Ltd | Alloyed galvanized steel sheet |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010084883A1 (en) * | 2009-01-21 | 2010-07-29 | 住友金属工業株式会社 | Curved metallic material and process for producing same |
JPWO2010084883A1 (en) * | 2009-01-21 | 2012-07-19 | 住友金属工業株式会社 | Bending metal material and manufacturing method thereof |
JP5246273B2 (en) * | 2009-01-21 | 2013-07-24 | 新日鐵住金株式会社 | Bending metal material and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS6468456A (en) | 1989-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2517169B2 (en) | Method for producing hot dip galvanized steel sheet | |
US5049453A (en) | Galvannealed steel sheet with distinguished anti-powdering and anti-flaking properties and process for producing the same | |
JPH0355544B2 (en) | ||
JP2003253416A (en) | Hot-dip zincing steel sheet | |
JP2783453B2 (en) | Hot-dip Zn-Mg-Al plated steel sheet and method for producing the same | |
JPH0645853B2 (en) | Method for producing galvannealed steel sheet | |
JP2783457B2 (en) | Manufacturing method of hot-dip Zn-Al plated steel sheet | |
JP2557573B2 (en) | Hot-dip galvanized steel sheet and method for producing the same | |
JP2002004017A (en) | Hot-dip Zn-Al-Mg-Si-plated steel excellent in surface properties and method for producing the same | |
JPH06256925A (en) | Zinc-iron hot dip galvannealed steel excellent in press formability | |
JPH04360A (en) | Alloyed hot-dip galvanized steel sheet with excellent workability | |
JP2772697B2 (en) | Anti-corrosion steel sheet for automobiles with excellent low-temperature chipping resistance and perforation corrosion resistance | |
JPH04235266A (en) | Manufacture of alloying galvannealed steel sheet excellent in workability and corrosion resistance | |
JP2000219949A (en) | Method for producing Zn-Al-Si alloy-plated steel sheet excellent in design | |
JPH03274285A (en) | Galvannealed steel sheet excellent in press formability | |
CA2010898C (en) | Galvannealed steel sheet with distinguished anti-powdering and anti-flaking properties and process for producing the same | |
JPH0971851A (en) | Manufacturing method of zinc-tin alloy plated steel sheet | |
JPH03274251A (en) | Alloyed hot-dip galvanized steel sheet with excellent press formability | |
JPH0635648B2 (en) | Hot-dip, low-reduction type hot dip galvanizing method for zinc or zinc alloys | |
JP2599535B2 (en) | Hot-dip galvanized steel sheet with smooth and glossy spangle pattern and excellent intergranular corrosion resistance | |
JP2754596B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same | |
JPH05320946A (en) | Method for producing hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet | |
JPH0544006A (en) | Production of alloyed hot dip galvanized steel sheet having excellent workability and corrosion resistance | |
JPH03243755A (en) | Organic composite alloyed hot-dip galvanized steel sheet with excellent press formability | |
JP2792809B2 (en) | Hot-dip galvanized steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080823 Year of fee payment: 17 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080823 Year of fee payment: 17 |