JPH0348819A - Ferroelectric liquid crystal display - Google Patents
Ferroelectric liquid crystal displayInfo
- Publication number
- JPH0348819A JPH0348819A JP1185520A JP18552089A JPH0348819A JP H0348819 A JPH0348819 A JP H0348819A JP 1185520 A JP1185520 A JP 1185520A JP 18552089 A JP18552089 A JP 18552089A JP H0348819 A JPH0348819 A JP H0348819A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- area
- ferroelectric liquid
- gradation
- display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 title claims abstract description 23
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 230000010287 polarization Effects 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 11
- 239000004372 Polyvinyl alcohol Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000011324 bead Substances 0.000 description 2
- 230000003098 cholesteric effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 210000002858 crystal cell Anatomy 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 241000208140 Acer Species 0.000 description 1
- -1 asb" Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133371—Cells with varying thickness of the liquid crystal layer
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/30—Gray scale
Landscapes
- Physics & Mathematics (AREA)
- Liquid Crystal (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明1↓ 強誘電性液晶ディスプレイに関し特に強誘
電性液晶ディスプレイの階調表示に関すも
従来の技術
強誘電性液晶を用いた双安定型強誘電性液晶(SSFL
C)セル代 高速応答法 双安定性を特徴としているこ
とか収 大画面ディスプレイとして期待されていも し
かし双安定性であるため間中間的な状態の制御が難しく
、画像表示などの階調表示の必要なディスプレイには使
用困難であるとされてき島
そこで、多階調を実現するための方法として、駆動波形
による階調表示法 画素分割による階調表示法 段差を
つけるなどして、強誘電性液晶のしきい値を変化させる
方法 及び分極を反転したときに現れるドメインを用い
て階調を得る方法などが提案されていも
発明が解決しようとする課題
以上の従来の提案で(友 次に述べるような課題があっ
た
駆動波形による階調表示ζ友 各フレームを数個のサブ
フレームに分割し lフレーム内で、画素のデユーティ
−比を変化させ駆動するものであ4しかし 高速応答の
液晶材料を必要とするうえ駆動系が複雑なものになると
いう課題があもまた 画素分割による階調表示は 各画
素をさらに細分化し 階調を得るものであム しかし多
階調を得るために1友 高精細のパターンニング技術が
必要となり、回路的にも複雑なものとなる課題がある。[Detailed description of the invention] Industrial application field of the present invention 1 ↓ Related to ferroelectric liquid crystal displays, particularly related to gradation display of ferroelectric liquid crystal displays, conventional technology Bistable ferroelectric using ferroelectric liquid crystal liquid crystal (SSFL)
C) Cell cost High-speed response method Although it is expected to be used as a large screen display due to its characteristic of bistability, it is difficult to control intermediate states due to bistability. Therefore, methods for achieving multiple gradations include gradation display methods using drive waveforms, gradation display methods using pixel division, and ferroelectric Although methods of changing the threshold of liquid crystals and methods of obtaining gradation using domains that appear when polarization is reversed have been proposed, the conventional proposals go beyond the problems that the invention attempts to solve (as described in Tomo). Gradation display using drive waveforms, which had such problems, divided each frame into several subframes and drove the pixels by changing the duty ratio within each frame.However, high-speed response liquid crystal materials However, in order to obtain multiple gradations, there is still the problem that the gradation display by pixel division further subdivides each pixel to obtain gradations. This requires high-definition patterning technology and creates a complex circuit.
さらに 段差を設けて強誘電性液晶のしきい値を変化さ
せる方法L 本久 強誘電性液晶のしきい値が急峻であ
るた八 印加電圧を非常に高い精度で分割する必要があ
も この急峻なしきい値を、基板あるいはTTO電極に
段差をつけ、画素内での液晶層の厚みに段差をつけるこ
とにより、液晶層にかかる電界強度をこの段差で変化さ
せ、実効的に異なるしきい値電圧で駆動させるものであ
ムしかし 多階調を得るために(上 かなりの厚さの段
差が必要であるた八 液晶層の厚さdが段差のある部分
とない部分で大きく異なへ そのため液晶分子の複屈折
率を△nとすると、Δn−dが大きく変わり、メモリ時
でも段差のある部分とない部分で透過率が異なり、コン
トラストが充分得られないといった課題があつ九
また 分極を反転したときに現れるドメインを用いて階
調を得る方法では 分極反転ドメイン力(強誘電性液晶
の欠陥部分やセルギャップの薄い部分から発生し ボー
ト状に成長することを利用するものであも この分極反
転の発生、成長を印加パルスの電圧高さ、幅で制御可能
であれば階調表示が実現できる力(今までは各画素内で
均一に分極反転ドメインを発生させることが困難であっ
tう本発明(よ このような問題点を解決するもので、
その目的(上 しきい特性が急峻な強誘電性液晶を用い
ても容易に階調表示が得られる強誘電性液晶ディスプレ
イを提供することにあへ
課題を解決するための手段
本発明の強誘電性液晶ディスプレイ(友 ディスプレイ
を構成する2つの基板のうち少なくとも一方の基板の液
晶と接する側の表面に 微小領域からなるハム あるい
は凹部を付設したことを特徴とするものであa
作用
本発明が従来のものと異なる点は 液晶と接する基板表
面上に微小領域からなる凸部あるいぼ凹部を設けたこと
により、電界強度の差で、分極反転ドメインの発生を制
御でき、容易に階調表示が実現できることであム
第1図に本発明における強誘電性液晶ディスプレイの概
要を示す。ここで、 lは凸部あるいは凹部を有する段
差未 2はITO電鳳 3は基板を示題 またa、bは
それぞれ段差体の凸部の領域凹部の領域の液晶層厚を示
も
液晶層厚i1 a、 bで厚さが異なり、段差体の
材質(誘電率や抵抗など)の違いや厚みの違いにより、
aの領域とbの領域との実効電圧に差をつけることが
できも そのたべ 電圧を印加したときには分極反転が
常に実効電圧が大きく印加された方の領域から発生する
ことになム つまり分極反転ドメインの発生 成長を、
凸部あるいは凹部の画素に占める面積や、高さによって
制御することができるたべ 容易に階調を得ることがで
きもたとえば 段差体lの上にさらにITO電極を作成
しておけl、Ca部にかかる実効電圧は常に6部よりも
大きくなり、段差体の材質などに関係なく、常にa部よ
り分極反転ドメインが発生することになム
この啄 各画素内で均一な階調を得るために(上各画素
内で少な(とも1つ以上の凸部あるいは凹部を有するよ
うにすればよく、実効電圧が画素内で異なるように5服
凹部を組み合わせればよ(℃またその形状としてζよ
占有面積 高さの異なる凸部と凹部が数種類混ざった
ものでもよく、さらにこれらを積層してもよし
実施例
本発明において(戴 強誘電性液晶の階調を、凸部ある
いは凹部からの分極反転ドメインの発生を制御すること
によって得るものである力丈 凸眼凹部はどの様な手段
を用いて作成しても構わなliT。Furthermore, a method of changing the threshold of ferroelectric liquid crystal by creating a step L Motohisa Since the threshold of ferroelectric liquid crystal is steep, it is necessary to divide the applied voltage with very high precision. By adding steps to the substrate or TTO electrode and adding steps to the thickness of the liquid crystal layer within the pixel, the electric field strength applied to the liquid crystal layer can be changed by the steps, effectively creating different threshold voltages. However, in order to obtain multiple gradations, a fairly thick step is required, and the thickness d of the liquid crystal layer differs greatly between the part with the step and the part without. If △n is the birefringence of In the method of obtaining gradations using domains appearing in If the generation and growth can be controlled by the voltage height and width of the applied pulse, gradation display can be realized. (This is a solution to such problems,
The purpose of the present invention is to provide a ferroelectric liquid crystal display that can easily display gradations even when using a ferroelectric liquid crystal having a steep threshold characteristic. This is a liquid crystal display characterized by having a hum or recess made of a minute area on the surface of at least one of the two substrates constituting the display on the side that comes into contact with the liquid crystal. The difference is that by providing convex or concave portions consisting of minute regions on the surface of the substrate in contact with the liquid crystal, the generation of polarization-inverted domains can be controlled by differences in electric field strength, and gradation display can be easily achieved. Figure 1 shows an outline of the ferroelectric liquid crystal display according to the present invention.Here, l is a level difference having a convex or concave portion, 2 is an ITO electrode, 3 is a substrate, and a and b are The thickness of the liquid crystal layer in the convex region and the concave region of the stepped body is shown respectively.The liquid crystal layer thickness i1a and b are different in thickness, and due to the difference in the material (permittivity, resistance, etc.) of the stepped body and the difference in thickness,
Even if it is possible to make a difference in the effective voltage between region a and region b, when a voltage is applied between them, polarization reversal will always occur from the region to which a larger effective voltage is applied.In other words, polarization reversal Domain generation and growth,
This can be controlled by the area occupied by the pixel of the convex or concave part, and by the height.For example, it is possible to easily obtain gradation by creating an ITO electrode on the step body l, and in the Ca part. This effective voltage is always larger than 6 parts, and regardless of the material of the step body, a polarization inversion domain always occurs from part a.In order to obtain uniform gradation within each pixel, Each pixel may have at least one convex or concave portion, and five concave portions may be combined so that the effective voltage is different within each pixel. A combination of several types of convex portions and concave portions with different areas and heights may be used, and these may also be stacked. Strength can be obtained by controlling the occurrence of LiT. The convex and concave portions can be created using any method.
またそれらの形汰 高さなど限られたもので実験を行な
った力(それらを限定するものではな1.X。Also, the power that was tested with limited things such as their shape and height (1.X is not limited to these).
実施例1
本発明の強誘電性液晶ディスプレイにおけるセル構造及
びその製造方法について詳細に説明すも第2図(友 実
施例1における強誘電性液晶ディスプレイの断面図であ
ム
ガラス基板4,5上にITO電極6,7を作成ずム こ
のITO電極6及び7(友 2枚の基板を組み合わせた
ときに各画素の大きさが500μm×500μへ 画素
間が100μmとなるように作成し池
この1.TO電極の付いた基板4及び5の一方の表面&
へ 凸部として突起物を次のような方法で作成した
まず、 5i02を400℃で、 5iHaと02/N
2の混合ガスにより2000A作成し九充分洗浄、乾燥
を行なった後、ポジタイプのレジスト剤を塗布し マス
ク露九 現(亀 及びエツチングを行なっt、:o
このとき得られた5in2の突起物8の大きさは10μ
mX10μm、 20μmX20μm、 30μmX
30μm、 40μmx40μ毘 50μmX50μ
mの5種類で、ピッチはすべて150μ亀 上下基板を
合わせたときに1画素当り16個の突起物となも この
とき、突起物の1画素当りに占める面積比1友 下式の
ように計算され
(x 、umX x 、um)X 16+(500um
X500μm)= y%下表のようにな翫
その後この突起物付きの基板に再びITO電極9をスパ
ッタにより約3000A作成し九次に両方の基板上に配
向膜10.Itとして、ポリビニルアルコール(PVん
クラレボバール117)を乾燥後の膜厚が50OAと
なるように製膜し 一方向にラビング処理し九 PVA
膜作成後の凸部の高さ1友5種類とも1500Aであつ
九
その後、PVAのラビングした方向が互いに平行になる
よう(、:、粒径2μmのビーズスペーサ12を介して
貼合わせ、注入口以外の部分をシール樹脂13でシール
し九 次に液晶14として、チッソ石油化学社製の強誘
電性液晶C5−1014を素子内に減圧下、コレステリ
ック相温度領域で注入した後、−0,5℃/分の冷却速
度で室温まで徐冷し 注入口を封止しt4
この強誘電性液晶セルを偏光顕微鏡下で、観察したとこ
ろ均一な配向が得られていることが分かつへ まt二5
種類のセルすべて、突起物の占有面積は画素の面積に比
べ小さく、コントラスト低下の原因にはならないことが
わかった
このセルにIV、 0. 5Hzの三角波を印加した
とこへ 分極反転ドメインは常に凸部から発生しており
、各画素内で均一に再現性よく発へ 成長していること
がわかった
次に本実施例で作成したパネルの階調性の評価を行なう
ためにしきい値特性を測定し九しきい値特性に用いた電
圧波形を第4図に示す。Example 1 The cell structure and manufacturing method for the ferroelectric liquid crystal display of the present invention will be explained in detail. Create the ITO electrodes 6 and 7. Create the ITO electrodes 6 and 7 so that when the two substrates are combined, the size of each pixel will be 500 μm x 500 μm, and the distance between pixels will be 100 μm. One surface of substrates 4 and 5 with TO electrodes &
A protrusion was created as a convex part using the following method. First, 5i02 was heated to 400℃, 5iHa and 02/N
2000A was prepared using the mixed gas of step 2, and after 90 minutes of cleaning and drying, a positive type resist agent was applied and etching was performed.
The size of the 5in2 protrusion 8 obtained at this time was 10μ
mX10μm, 20μmX20μm, 30μmX
30μm, 40μm×40μbi 50μm×50μ
There are 5 types of m, all with a pitch of 150μ. When the upper and lower substrates are combined, there are 16 protrusions per pixel. At this time, the area ratio of the protrusions per pixel is 1. Calculated as shown in the formula below. and (x, umX x, um)X 16+(500um
X500μm) = y% As shown in the table below, an ITO electrode 9 of about 3000A was formed again on this substrate with projections by sputtering, and an alignment film 10. As it, polyvinyl alcohol (PV Kuraray Bovar 117) was formed into a film with a film thickness of 50OA after drying, and then rubbed in one direction.
The height of the convex portion after film formation was 1500 A for all five types. After that, the PVA was pasted together through bead spacers 12 with a particle size of 2 μm so that the rubbed directions were parallel to each other, and the injection port was Then, as the liquid crystal 14, a ferroelectric liquid crystal C5-1014 manufactured by Chisso Petrochemical Co., Ltd. was injected into the element under reduced pressure in the cholesteric phase temperature range. The injection port was then slowly cooled to room temperature at a cooling rate of ℃/min, and the injection port was sealed. When this ferroelectric liquid crystal cell was observed under a polarizing microscope, it was found that uniform alignment had been obtained.
IV, 0.0. When a 5Hz triangular wave was applied, the polarization-inverted domain was always generated from the convex portion and grew uniformly and with good reproducibility within each pixel.Next, we examined the panel created in this example. In order to evaluate the gradation, the threshold characteristics were measured and the voltage waveforms used for the nine threshold characteristics are shown in FIG.
第4図で、一定のリセットパルス15が印加された後、
しきい値特性を測定するための逆極性の可変の書き込み
パルス16が印加されa この一連のパルスは一定の時
間17ごとに印加されている。In FIG. 4, after the constant reset pulse 15 is applied,
A variable write pulse 16 of opposite polarity is applied to measure the threshold characteristic. This series of pulses is applied at regular time intervals 17.
この電圧波形を用いて測定したときの電圧(V)透過率
(T)曲線を第5図に示す。また透過率(友 次のリセ
ットパルスが印加される直前の値を測定し九 図5にお
いて、横軸は電圧 縦軸は透過率を表わしていも ただ
し第5図での測定(上突起物が10μmX10μmのセ
ルを用(入 リセットパルスを20V、 1m5ec
1 可変の書き込みパルスを0〜20 V、 0.
5 m s e cとり、l5eCごとに一連のパルス
を印加した
どのような書き込みパルスを印加してL 分極反転は常
に凸部の部分から発生し 特に5v〜7Vの電圧印加後
の分極反転はその成長が途中で止まり、 10階調が得
られ九
実施例2
第3図(友 実施例2における強誘電性液晶ディスプレ
ィの断面図であ翫
ガラス基板4,5上にITO電極2,9を作成すも こ
のITO電極ζ、t、2枚の基板を組み合わせたときに
各画素の大きさが500μmX 500μへ 画素間が
100μmとなるように作成し九このITO電極の付い
た基板の一方の表面く凹部20を次のような方法で作成
し九
ネガタイプのレジスト剤を塗布し マスク露光現像 及
びエツチングを行なつ1.、 このとき得られた凹部
3′のくぼみは20μm×20μmで、ピッチは150
μmであa
次に両方の基板上に配向膜lO111として、ポリビニ
ルアルコール(PVA、 タラレボバール117)を
乾燥後の膜厚が50OAとなるように製膜し 一方向に
ラビング処理した PVA膜作成後の凹部のくぼみl友
150OAであつ九その後、PVAのラビングした方
向が互いに平行になるようく 粒径2μmのビーズスペ
ーサ12を介して貼合わせ、注入口以外の部分をシール
樹脂13でシールし九 次に液晶14として、チッソ石
油化学社製の強誘電性液晶C5−1014を素子内に減
圧下、コレステリック相温度領域で注入したi−0,5
℃/分の冷却速度で室温まで徐冷し 注入口を封止し九
この強誘電性液晶セルを偏光顕微鏡下で、観察したとこ
ろ均一な配向が得られていることが分かつ九 このセル
にIV、 0. 5Hzの三角波を印加したところ分
極反転ドメインは常に凹部のくぼみの部分から発生して
おり、各画素内で均一にドメインが発毛 成長している
ことがわかつ九また実施例1と同様に階調性の評価を行
なったとこへ 同様に分極反転の発生 成長を制御する
ことができ、8階調が得られ九
発明の効果
本発明の強誘電性液晶ディスプレイで(戴 液晶と接す
る基板表面へ 微小領域からなる凸部あるいは凹部を付
設しているたべ それらの段差により液晶層にかかる実
効電圧に違いが生じも 従って、分極反転ドメインの発
生 成長を制御することができ、しきい値が急峻な強誘
電性液晶でも容品に階調表示が実現できる。FIG. 5 shows a voltage (V) transmittance (T) curve measured using this voltage waveform. In addition, the transmittance (the value immediately before Tomoji's reset pulse is applied) is measured. In Figure 5, the horizontal axis represents the voltage and the vertical axis represents the transmittance. (Input reset pulse at 20V, 1m5ec)
1. Variable write pulse from 0 to 20 V, 0.
5 msec, and a series of pulses were applied every 15eC.What kind of write pulse was applied?Polarization reversal always occurs from the convex part, and especially after applying a voltage of 5V to 7V, the polarization reversal occurs. The growth stopped midway, and 10 gradations were obtained. Figure 3 is a cross-sectional view of a ferroelectric liquid crystal display in Example 2. ITO electrodes 2 and 9 were created on glass substrates 4 and 5. This ITO electrode ζ, t, when two substrates are combined, the size of each pixel is 500μm x 500μ, and the distance between pixels is 100μm. The recesses 20 were created by the following method, a nine-negative type resist was applied, mask exposure was developed, and etching was performed.
Next, polyvinyl alcohol (PVA, Talarebovar 117) was formed as an alignment film 111 on both substrates to a film thickness of 50 OA after drying, and rubbed in one direction. After that, the PVA rubbed directions are parallel to each other, and the parts other than the injection port are sealed with a sealing resin 13. As the liquid crystal 14, a ferroelectric liquid crystal C5-1014 manufactured by Chisso Petrochemical Co., Ltd. was injected into the device under reduced pressure in the cholesteric phase temperature range i-0,5.
The ferroelectric liquid crystal cell was slowly cooled to room temperature at a cooling rate of °C/min, the injection port was sealed, and the cell was observed under a polarizing microscope, revealing that uniform alignment had been obtained. , 0. When a 5 Hz triangular wave was applied, it was found that the polarization-inverted domain was always generated from the concave part of the concave part, and that the domain was growing uniformly within each pixel. In the ferroelectric liquid crystal display of the present invention, the growth of polarization reversal can be controlled and eight gradations can be obtained. Although the effective voltage applied to the liquid crystal layer differs due to the difference in level between these regions, it is possible to control the generation and growth of polarization-inverted domains, and to create a strong voltage with a steep threshold. Dielectric liquid crystals can also be used to display gradation on containers.
即ち従来はしきい値をかえる目的で、基板、■Toなど
に段差をつけていたため、Δnodが大きく変わり、コ
ントラストが低下したが、本発明によれば段差はあるが
、それらの占める領域は画素の一部分であり、またその
領域からの分極反転ドメインの発生を制御するものであ
るため、コントラストが小さくなることはない。That is, in the past, steps were added to the substrate, ■To, etc. for the purpose of changing the threshold value, resulting in a large change in Δnod and a decrease in contrast.However, according to the present invention, although there are steps, the area occupied by them is Since it is a part of the region and controls the generation of polarization-inverted domains from that region, the contrast will not become small.
第1図は本発明における強誘電性液晶ディスプレイの概
略断面図、第2図は本実施例1における強誘電性液晶デ
ィスプレイの断面図、第3図は本実施例2における強誘
電性液晶ディスプレイの断面図、第4図は実施例1.2
で行なった階調性測定用の印加パルス波形図、第5図は
実施例1で測定した電圧(V)−透過率(T)の図。
1・・・凸部あるいは、凹部を有する段差体、2−−−
ITO電極、 3争拳・基板、 asb”・凸部、凹部
の領域の液晶層厚、4,5・・・ガラス基板、(3,7
*拳曇電極、8・φ・突起物、9・・・ITO電楓 1
0.II・・・配向A12・・・ビーズスペーサ、 1
3・・・シール樹脂 14・・・液& 15・ ・リ
セットパル入16・・・可変の書き込みパル入 17・
・・パルス開成 18.19・・ ITO電楓 20・
・・凹部FIG. 1 is a schematic cross-sectional view of a ferroelectric liquid crystal display according to the present invention, FIG. 2 is a cross-sectional view of a ferroelectric liquid crystal display according to the first embodiment, and FIG. Cross-sectional view, Figure 4 is Example 1.2
FIG. 5 is a diagram of applied pulse waveforms for gradation measurement conducted in Example 1, and FIG. 5 is a diagram of voltage (V) versus transmittance (T) measured in Example 1. 1... Step body having a convex portion or a concave portion, 2---
ITO electrode, 3.Substrate, asb", liquid crystal layer thickness in the convex and concave regions, 4,5...Glass substrate, (3,7
*Fist cloud electrode, 8・φ・protrusion, 9...ITO electric maple 1
0. II... Orientation A12... Bead spacer, 1
3...Seal resin 14...Liquid & 15. -Reset pulse included 16...Variable writing pulse included 17.
・・Pulse opening 18.19・・ ITO Denkaede 20・
・Concavity
Claims (2)
記ディスプレイを構成する2つの基板のうち少なくとも
一方の基板の液晶と接する側の表面に、微小領域からな
る凸部、あるいは凹部を付設したことを特徴とする強誘
電性液晶ディスプレイ。(1) In a display using ferroelectric liquid crystal, a convex portion or a concave portion consisting of a minute area is provided on the surface of at least one of the two substrates constituting the display on the side that is in contact with the liquid crystal. A characteristic ferroelectric liquid crystal display.
以上含まれることを特徴とする特許請求の範囲第1項記
載の強誘電性液晶ディスプレイ。(2) The ferroelectric liquid crystal display according to claim 1, wherein each pixel includes at least one convex portion or concave portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1185520A JPH0348819A (en) | 1989-07-18 | 1989-07-18 | Ferroelectric liquid crystal display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1185520A JPH0348819A (en) | 1989-07-18 | 1989-07-18 | Ferroelectric liquid crystal display |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0348819A true JPH0348819A (en) | 1991-03-01 |
Family
ID=16172228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1185520A Pending JPH0348819A (en) | 1989-07-18 | 1989-07-18 | Ferroelectric liquid crystal display |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0348819A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0584963A2 (en) * | 1992-07-30 | 1994-03-02 | Canon Kabushiki Kaisha | Liquid crystal display device |
EP0627648A1 (en) * | 1993-06-04 | 1994-12-07 | Canon Kabushiki Kaisha | Liquid crystal device |
US6151096A (en) * | 1996-12-05 | 2000-11-21 | Sharp Kabushiki Kaisha | Liquid crystal display including dopant phase-separated from liquid crystal |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62231940A (en) * | 1986-04-02 | 1987-10-12 | Canon Inc | Optical modulation element |
-
1989
- 1989-07-18 JP JP1185520A patent/JPH0348819A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62231940A (en) * | 1986-04-02 | 1987-10-12 | Canon Inc | Optical modulation element |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0584963A2 (en) * | 1992-07-30 | 1994-03-02 | Canon Kabushiki Kaisha | Liquid crystal display device |
EP0584963A3 (en) * | 1992-07-30 | 1994-11-09 | Canon Kk | Liquid crystal display device. |
US5495352A (en) * | 1992-07-30 | 1996-02-27 | Canon Kabushiki Kaisha | Liquid crystal display device with stripe-shaped unevennesses on the electrodes |
US5604613A (en) * | 1992-07-30 | 1997-02-18 | Canon Kabushiki Kaisha | Liquid crystal display device with pixels having stripe-shaped projections with equal heights |
US5644372A (en) * | 1992-07-30 | 1997-07-01 | Canon Kabushiki Kaisha | Liquid crystal display device having protrusions on the electrodes |
EP0627648A1 (en) * | 1993-06-04 | 1994-12-07 | Canon Kabushiki Kaisha | Liquid crystal device |
US5581381A (en) * | 1993-06-04 | 1996-12-03 | Canon Kabushiki Kaisha | LCD electrode projections of variable widths and spacings |
US6151096A (en) * | 1996-12-05 | 2000-11-21 | Sharp Kabushiki Kaisha | Liquid crystal display including dopant phase-separated from liquid crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4846560A (en) | Liquid crystal device with ferroelectric liquid crystal oriented at non-pixel portions | |
JPS62280824A (en) | Driving method for liquid crystal display device | |
JPH10239664A (en) | Liquid crystal display | |
JP2001311934A (en) | Liquid crystal element | |
US7123330B2 (en) | Liquid crystal panel substrate having alignment film and method for forming alignment film by varied evaporation angle | |
JPH0348819A (en) | Ferroelectric liquid crystal display | |
JP3054520B2 (en) | Driving method of active matrix cell | |
US6344840B1 (en) | Plasma-addressed liquid crystal display device | |
JPH11305234A (en) | Liquid crystal display element and its manufacture | |
JP2984496B2 (en) | Liquid crystal display device | |
JPS63198024A (en) | Liquid crystal electrooptic device | |
JPH06194625A (en) | Driving method for ferroelectric liquid crystal display element | |
JPH02181724A (en) | Liquid crystal element and driving method thereof | |
JPH09311315A (en) | Ferroelectric liquid crystal element and ferroelectric liquid crystal material | |
JP2843861B2 (en) | Driving method of liquid crystal electro-optical device | |
JP2001033842A (en) | Method for manufacturing optical operation element using liquid crystal photodiode | |
JPH11242200A (en) | Liquid crystal display | |
Van Haaren et al. | Switching on stray electric fields in ferroelectric liquid crystal cells | |
JPH0335217A (en) | Driving system for liquid crystal display device | |
JPH02184821A (en) | Ferroelectric liquid crystal display | |
JP2739147B2 (en) | Liquid crystal electro-optical device | |
JPH11190833A (en) | Liquid crystal display | |
JPH036526A (en) | Ferroelectric liquid crystal display | |
JPH0457026A (en) | Ferroelectric liquid crystal display | |
JPH1152336A (en) | Liquid crystal display |