[go: up one dir, main page]

JPH0337055B2 - - Google Patents

Info

Publication number
JPH0337055B2
JPH0337055B2 JP56009517A JP951781A JPH0337055B2 JP H0337055 B2 JPH0337055 B2 JP H0337055B2 JP 56009517 A JP56009517 A JP 56009517A JP 951781 A JP951781 A JP 951781A JP H0337055 B2 JPH0337055 B2 JP H0337055B2
Authority
JP
Japan
Prior art keywords
friction
steel
fibers
braking
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56009517A
Other languages
Japanese (ja)
Other versions
JPS57124140A (en
Inventor
Mitsuhiko Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP951781A priority Critical patent/JPS57124140A/en
Publication of JPS57124140A publication Critical patent/JPS57124140A/en
Publication of JPH0337055B2 publication Critical patent/JPH0337055B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は車両、産業機械等のブレーキ用の摩擦
材に関するものである。 [従来の技術] 従来のブレーキ用摩擦材は、一般に石綿を基材
とし、これに結合剤、潤滑調整剤等の充填材を配
合し、加熱加圧により所定形状に成型して製造さ
れている。 しかし、この石綿基材の摩擦材はその製造工程
で多量の石綿粉塵が発生し、健康上有害とされて
いる。 そこで、石綿に代わる材料の探索が続けられ、
一つの答としてスチールフアイバーを主基材とし
たスチール系摩擦材が一部実用に供せられるよう
になつてきた。 このスチール系摩擦材は、骨格構成材としてス
チールフアイバーを用いることにより、必要強度
を得ている。従つてスチール系摩擦材にあつては
基本的にスチールの少くとも一部がフアイバーで
あることを要求する。 スチール系の一部をフアイバーとし、一部を鉄
粉とすることは、特開昭48−87268号等で提案さ
れている。 又、摩擦材は、スチールフアイバー等の骨格構
成材以外に、グラフアイト等の固体潤滑剤とバイ
ンダーレジンが不可欠でで、他に各種無機、有機
充填剤の添加が有効なことは公知の事実である。 [発明が解決しようとする課題] しかし、このスチール系摩擦材の欠点として初
期摩擦係数の不安定性がある。 初期摩擦係数の不安定性とは、新品の摩擦材と
新品の摩擦相手材(デイスク又はドラム)を組合
せて制動がなされる時、摩擦材と相手材のなじみ
が完全につくまでの間、制動動条件の変動に対し
て摩擦係数が安定せず、かなり大幅な変動をする
ことを言う。具体的な例としては乗用車が工場か
ら出荷され、ユーザーに渡つた時点で、ブレーキ
の低速の利きと高速の利きに大幅な差が出ること
は、ドライバーに大きな不安感を与え、かつ安全
上も問題である。 第1図は市販のスチール系摩擦材を用いて、
JASO6914に従つてダイナモメータで評価した時
の低速制動(速度50Km/H→0)と高速制動(速
度100Km/H→0)における減速度と摩擦係数の
関係を示す図である。 テスト条件はその摩擦材が用いられている車両
ブレーキにほぼ相当するように設定した。 又、JASO6914では、擦り合せ前チエツクと称
する50Km/H→0Km/Hの制動を0.3gの減速度で
10回行なつた後、第1図に示す各制動を行うこと
に定められている。従つて第1図に示す摩擦係数
はそれ以前に10回の制動履歴のみを受けることに
なる。 第1図において速度50Km/H→0制動での摩擦
係数は0.3前後で安定しているが、速度100Km/H
→0の制動では最高0.5もの値を示して変動して
いる。 本発明者は、このように初期の摩擦係数が50
Km/H→0と100Km/H→0で大きく変化する原
因について種々の検討を行なつた結果、その主因
がスチールフアイバーの炭素量の多いことにある
ことを見出した。 即ち、スチール系摩擦材と相手材とのなじみが
充分についていない状態で高速からの制動を行な
うと、摩擦熱により摩擦材全体が幾分軟化する。
その時、結合剤の軟化程度が最も大きく、摩擦表
面には骨格構造をなすスチールフアイバーが浮き
出たようになり、わずか10数回の制動履歴しか受
けていない比較的清浄な相手材とスチールフアイ
バーが摩擦することになる。 相手材は通常スチール、又は鋳鉄が用いられる
ため、鉄―鉄の摩擦が主体として生じる。同種金
属同志の摩擦は凝着しやすく、摩擦係数を大きく
する。一方、低速の摩擦においては、摩擦熱は小
さいため、スチールフアイバーが浮き出すことが
ないので、摩擦係数は大きくならない。 又、充分な擦り合せによりなじみを受けた相手
材は、摩耗粉や摩擦材構成成分である結合剤、潤
滑剤等が転移付着するため、鉄―鉄同志の摩擦を
妨害する。 従つて、鉄―鉄の摩擦において、その凝着力を
少なくすることが初期摩擦係数の安定性を改善す
ることになる。 スチール(鋼)は炭素の添加された合金で、炭
素添加により強度が大きくなる。そして一般には
スチールフアイバーの炭素量は0.08%以上となつ
ている。 摩擦における凝着力は凝着面の材料強度(凝着
破壊強度)に比例することが知られており、従来
の炭素量0.08%以上のスチールフアイバーでは凝
着破壊強度が大きく、初期摩擦係数の不安定性が
増すことが分つた。 [課題を解決するための手段] 本発明は、上述の事情に鑑みなされたもので、
純鉄フアイバーを用いることにより、材料強度を
低くして相手材との凝着破壊強度を小さくし、初
期摩擦係数の安定性を改善した摩擦材を提供しよ
うとするものである。 本発明は炭素量が0.03%以下の純鉄で、直径
100μm、長さ3mm程度の純鉄フアイバーを骨格構
成材としたことを特徴とする摩擦材である。 すでに説明したように、摩擦材に用いるスチー
ルフアイバーの炭素量が多くなると相手材との凝
着破壊力が大きくなり、初期摩擦係数が不安定と
なるが、従来のスチール系摩擦材に用いられるス
チールフアイバー炭素量は0.08〜0.20%であり、
これより少ない炭素量のスチールフアイバーは用
いられていない。 本発明において炭素量0.03%以下の純鉄フアイ
バーを用いてブレーキ摩擦材の骨格構成成分の全
部、又は一部としているのは、後記表1、表2に
基づいて作成した第3図イ,ロのグラフにより明
らかである。 すなわち、第3図イは純鉄フアイバーの炭素量
が0.008%、0.025%(以上本発明実施例)及び炭
素量が0.065%、0.12%、0.20%、0.43%(以上比
較例)を同重量部、カシユー変性フエノールレジ
ン、グラフアイト、BaSO4、SiO2もそれぞれ同
重量部混合してなる各摩擦材について、
JASO6914により、それぞれ50Km/H→0と100
Km/H→0における摩擦係数(表2)の差を求め
て、これを50Km/H→0のそれぞれの摩擦係数を
基準にその平均摩擦係数(μ)差比をプロツトし
たもので、このグラフによれば、鉄フアイバーに
おいて炭素量が増加する程、50Km/H→0と100
Km/H→0における摩擦係数の差比は増大するこ
とを示している。同ロ図はイ図の一部を拡大して
示す。図示のように50Km/H→0と100Km/H→
0との差比が10%、つまり運転者がブレーキ時違
和感を感じない範囲内は、炭素量が0.038%以下
にあるものと推定され、製造バラツキ等安全をみ
て、炭素量を0.03%以下とすると50Km/H→0、
100Km/H→0の摩擦係数の差比は8%となる。 このように炭素量0.03%以下の純鉄フアイバー
を摩擦材の骨格構成分の全部、又は一部とすれば
よく、他の金属、又は非金属フアイバー、カーボ
ンフアイバー、アラミド繊維、マイカ等と併用し
てもよい。 一方、純鉄フアイバーの直径を100μm、長さを
3mm程度としているのは、同じ重量の純鉄フアイ
バーを入れるとき、このフアイバーは細い程補強
性を増すが、長さが3mmを越えて長いものとなる
程、混合することが困難になるためである。 勿論、結合剤、固体潤滑剤は不可欠であり、必
要に応じ、無機、有機の充填材等が添加される。 以下、本発明を実施例により説明する。 [実施例] 表1に示す配合のものを、通常の乾式法で混
合、プレス成型、後硬化を行い、摩擦材を作成し
た。 用いた鉄系フアイバーのうち、本発明のNo.1、
No.2(アームコ鉄)は、いずれも純鉄に入るもの
であり、比較例のNo.3は極軟鋼と称されているも
ので、これらについては、溶解鋳造した丸棒を用
い、又は比較例のNo.4〜6には一般市販品を用
い、それぞれ切削により計算相当直径100μm、長
さ3mmのフアイバーにしたものを用いた。 なお表1における組成物は重量部で示してい
る。
[Industrial Application Field] The present invention relates to a friction material for brakes of vehicles, industrial machines, etc. [Prior art] Conventional friction materials for brakes are generally manufactured by using asbestos as a base material, adding fillers such as binders and lubrication modifiers, and molding the material into a predetermined shape by heating and pressing. . However, this asbestos-based friction material generates a large amount of asbestos dust during its manufacturing process, which is considered to be harmful to health. Therefore, the search for materials to replace asbestos continues,
As an answer, some steel-based friction materials based on steel fibers have come into practical use. This steel-based friction material obtains the necessary strength by using steel fibers as a skeleton constituent material. Therefore, in the case of steel-based friction materials, at least a portion of the steel is basically required to be fiber. It has been proposed in Japanese Patent Application Laid-Open No. 87268/1987 to use a portion of the steel material as fiber and a portion as iron powder. In addition, it is a well-known fact that friction materials require solid lubricants such as graphite and binder resin in addition to frame constituent materials such as steel fibers, and it is effective to add various inorganic and organic fillers. be. [Problems to be Solved by the Invention] However, a drawback of this steel-based friction material is instability of the initial coefficient of friction. Instability of the initial coefficient of friction means that when braking is performed by combining a new friction material and a new friction partner material (disc or drum), the braking effect remains until the friction material and the partner material become completely familiar. This refers to the fact that the coefficient of friction is not stable in response to changes in conditions and fluctuates considerably. As a specific example, when a passenger car is shipped from the factory and delivered to the user, there is a large difference in the effectiveness of the brakes at low speeds and at high speeds, which causes a great sense of anxiety for the driver and also poses safety concerns. That's a problem. Figure 1 shows the results using a commercially available steel friction material.
It is a diagram showing the relationship between deceleration and friction coefficient in low-speed braking (velocity 50 Km/H→0) and high-speed braking (velocity 100 Km/H→0) when evaluated with a dynamometer according to JASO6914. Test conditions were set to approximately correspond to vehicle brakes in which the friction material is used. Also, in JASO6914, braking from 50km/H to 0km/H, called pre-rubbing check, is performed at a deceleration of 0.3g.
After 10 times, each braking action shown in Figure 1 is to be performed. Therefore, the friction coefficient shown in FIG. 1 has been subjected to only 10 previous braking histories. In Figure 1, the friction coefficient at a speed of 50 km/H → 0 braking is stable at around 0.3, but at a speed of 100 km/H
→At 0 braking, the value fluctuates and shows a maximum value of 0.5. The inventor thus determined that the initial coefficient of friction was 50.
As a result of various studies on the cause of the large change between Km/H→0 and 100Km/H→0, we found that the main cause was the large amount of carbon in the steel fiber. That is, if braking is performed from high speed without sufficient familiarity between the steel friction material and the mating material, the entire friction material will soften somewhat due to frictional heat.
At that time, the degree of softening of the binder is the greatest, and the steel fibers forming a skeleton structure appear on the friction surface, and the steel fibers rub against a relatively clean mating material that has been subjected to only a dozen braking cycles. I will do it. Since the mating material is usually steel or cast iron, iron-iron friction mainly occurs. Friction between metals of the same type tends to cause adhesion, increasing the coefficient of friction. On the other hand, in low-speed friction, the frictional heat is small and the steel fibers do not stand out, so the friction coefficient does not increase. In addition, when the mating material has been sufficiently rubbed to become familiar, abrasion powder and friction material constituents such as binders and lubricants are transferred and adhered to the mating material, which interferes with iron-to-steel friction. Therefore, in iron-iron friction, reducing the adhesive force improves the stability of the initial friction coefficient. Steel is an alloy with added carbon, and the addition of carbon increases its strength. Generally, the carbon content of steel fiber is 0.08% or more. It is known that the adhesive force in friction is proportional to the material strength (adhesive fracture strength) of the adhesive surface, and conventional steel fibers with a carbon content of 0.08% or more have a large adhesive fracture strength, leading to concerns about the initial coefficient of friction. It was found that the quality increased. [Means for Solving the Problems] The present invention has been made in view of the above circumstances, and has the following features:
By using pure iron fibers, the material strength is lowered, the adhesive failure strength with the mating material is reduced, and the stability of the initial coefficient of friction is improved. The present invention is made of pure iron with a carbon content of 0.03% or less, and has a diameter of
This friction material is characterized by having a skeleton made of pure iron fibers of approximately 100 μm and 3 mm in length. As already explained, when the carbon content of steel fibers used in friction materials increases, the adhesive fracture force with the other material increases, making the initial coefficient of friction unstable. The fiber carbon content is 0.08-0.20%,
Steel fibers with lower carbon content have not been used. In the present invention, pure iron fibers with a carbon content of 0.03% or less are used as all or a part of the framework components of the brake friction material as shown in Figures A and B, which are created based on Tables 1 and 2 below. This is clear from the graph. That is, in Figure 3 A, pure iron fibers with carbon contents of 0.008% and 0.025% (examples of the present invention) and carbon contents of 0.065%, 0.12%, 0.20%, and 0.43% (comparative examples) are prepared in the same parts by weight. , Cassieux modified phenol resin, graphite, BaSO 4 and SiO 2 in the same weight parts.
According to JASO6914, 50Km/H → 0 and 100 respectively
The difference in friction coefficients (Table 2) at Km/H→0 is calculated, and the average friction coefficient (μ) difference ratio is plotted based on the respective friction coefficients at 50 Km/H→0. According to
It is shown that the difference ratio of the friction coefficient at Km/H→0 increases. Figure B shows an enlarged part of Figure A. As shown, 50Km/H → 0 and 100Km/H →
It is estimated that the carbon content is 0.038% or less when the difference ratio from 0 is 10%, that is, within the range where the driver does not feel any discomfort when braking. Then 50Km/H → 0,
The difference ratio of the friction coefficient from 100Km/H to 0 is 8%. In this way, pure iron fibers with a carbon content of 0.03% or less may be used as all or part of the framework of the friction material, and may be used in combination with other metals, nonmetallic fibers, carbon fibers, aramid fibers, mica, etc. It's okay. On the other hand, the diameter of the pure iron fiber is set to 100μm and the length is about 3mm.When inserting pure iron fiber of the same weight, the thinner the fiber is, the more reinforcing it becomes, but if the length is longer than 3mm, This is because the more difficult it becomes to mix. Of course, a binder and a solid lubricant are essential, and inorganic or organic fillers may be added as necessary. The present invention will be explained below using examples. [Example] A friction material having the composition shown in Table 1 was mixed, press-molded, and post-cured using a conventional dry method to prepare a friction material. Among the iron-based fibers used, No. 1 of the present invention,
No. 2 (Armco Iron) are all classified as pure iron, and Comparative Example No. 3 is called extremely mild steel. For example Nos. 4 to 6, commercially available products were used, each of which was cut into fibers with a calculated equivalent diameter of 100 μm and a length of 3 mm. The compositions in Table 1 are shown in parts by weight.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 炭素量が0.03%以下で、直径が100μm、長さ
3mm程度の純鉄フアイバーを骨格構成材とし、こ
れに結合剤、固体潤滑剤を混合して成型し、硬化
させたことを特徴とするブレーキ用摩擦材。
1. A pure iron fiber with a carbon content of 0.03% or less, a diameter of 100 μm, and a length of about 3 mm is used as a skeleton constituent material, and a binder and a solid lubricant are mixed therein, molded, and hardened. Friction material for brakes.
JP951781A 1981-01-23 1981-01-23 Frcition material Granted JPS57124140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP951781A JPS57124140A (en) 1981-01-23 1981-01-23 Frcition material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP951781A JPS57124140A (en) 1981-01-23 1981-01-23 Frcition material

Publications (2)

Publication Number Publication Date
JPS57124140A JPS57124140A (en) 1982-08-02
JPH0337055B2 true JPH0337055B2 (en) 1991-06-04

Family

ID=11722445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP951781A Granted JPS57124140A (en) 1981-01-23 1981-01-23 Frcition material

Country Status (1)

Country Link
JP (1) JPS57124140A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115986A (en) * 1984-11-12 1986-06-03 Sumitomo Electric Ind Ltd Friction material using iron powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157672A (en) * 1979-04-26 1980-12-08 Kureha Chem Ind Co Ltd Organic friction material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157672A (en) * 1979-04-26 1980-12-08 Kureha Chem Ind Co Ltd Organic friction material

Also Published As

Publication number Publication date
JPS57124140A (en) 1982-08-02

Similar Documents

Publication Publication Date Title
US5339931A (en) Porous copper powder modified friction material
US6220404B1 (en) Non-asbestos disc brake pad for automobiles
KR910003443B1 (en) Sintered iron base friction material
JPH0240131B2 (en)
US4672082A (en) Friction material using steel fibers
US8167097B2 (en) Friction material
JPH0337055B2 (en)
US4665108A (en) Friction material using iron powder
KR830001417B1 (en) Process of manufacturing friction material of glass fiber
CA1291298C (en) Friction material
JP2000154371A (en) Non-asbestos disc brake pad for automobile
Cristescu et al. Studies and research on the tribological behavior of the braking systems of vehicles. Review
JPH026933B2 (en)
JPH08135703A (en) Brake lining for rotor made of stainless steel
JPS6153327A (en) Friction material for preventing creak
JPH02212582A (en) Friction material
JPS63140133A (en) Friction material
JPH02578B2 (en)
JPH09286973A (en) Non-asbestos-based abrasion material
JPH04314779A (en) Nonasbestine friction material
EP3943570A1 (en) Friction material for disc brake
JP2002155267A (en) Friction material
JP2004204904A (en) Brake lining
JPH11310773A (en) Friction material composition, production thereof, and friction material produced from the same
JPH11152460A (en) Friction material composition, process for producing friction material composition and friction material using the friction material composition