[go: up one dir, main page]

JPH03296140A - Knowledge information processing system - Google Patents

Knowledge information processing system

Info

Publication number
JPH03296140A
JPH03296140A JP2098099A JP9809990A JPH03296140A JP H03296140 A JPH03296140 A JP H03296140A JP 2098099 A JP2098099 A JP 2098099A JP 9809990 A JP9809990 A JP 9809990A JP H03296140 A JPH03296140 A JP H03296140A
Authority
JP
Japan
Prior art keywords
rule
knowledge
fact
inference
rule knowledge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2098099A
Other languages
Japanese (ja)
Inventor
Tomoyuki Fujita
藤田 友之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2098099A priority Critical patent/JPH03296140A/en
Publication of JPH03296140A publication Critical patent/JPH03296140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Executing Special Programs (AREA)

Abstract

PURPOSE:To advance an inference in order to obtain a conclusion by deciding automatically the difference of conditions between the rule knowledges even though the complete coincidence is obtained between the accumulated rule knowledges and a given prior fact and correcting the rule most approximate to the prior fact. CONSTITUTION:A prior fact is inputted and stored in a prior fact storage means 1. Then the related rule knowledge is taken out of a rule knowledge storage 2 and collated with the contents of the storage 1. The trade-off relation satisfied between the rule knowledges is detected based on the contents of the storage 1. If a condition part is not completely coincident with the contents of the storage 1 at execution of an inference, the conditions are eased and added to the rule that is not conflicting with the prior fact based on the result of a trad-off relation detector 3. Then the rule knowledge is corrected and the inference is carried on. Thus it is possible to advance the inference and a proper conclusion is obtained even though the conditions of the accumulated rule knowledges are not completely coincident with the contents of given fact.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコンザルチージョン等のインテリジェントな業
務を支援するエキスパートシステムに代表される知識情
報処理システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a knowledge information processing system typified by an expert system that supports intelligent work such as consultation.

〔従来の技術〕[Conventional technology]

複雑で様々な事実にもとづいて結論を得るためには、非
常に高度な専門知識が要求される。このような専門知識
を習得するには長い教育期間と経験が必要であり、熟練
した専門家を育てるには、膨大な費用と期間を必要とし
ていた。そごで、誰もか熟練した専門家と同等の問題解
決を図れるように、熟練した専門家の知識をルールとし
て蓄え、様々な事実に適合する結論を求める知識情報処
理装置が開発されてきた。
A very high level of specialized knowledge is required to reach conclusions based on complex and diverse facts. Acquiring such specialized knowledge requires a long period of education and experience, and training skilled professionals requires a huge amount of money and time. Therefore, knowledge information processing devices have been developed that store the knowledge of skilled experts as rules and seek conclusions that fit various facts so that anyone can solve problems on the same level as a skilled expert. .

従来の知識情報処理システムては、問題解決の手法をル
ール知識として表現し、与えられた個々の事実にもとづ
いて、蓄積されたルール知識のなかで条件を完全に満足
するものを、順次適用しながら結論を導くことにより、
問題解決を図ってきた。
In conventional knowledge information processing systems, problem-solving methods are expressed as rule knowledge, and based on each given fact, the accumulated rule knowledge that completely satisfies the conditions is sequentially applied. By drawing conclusions while
I've been trying to solve the problem.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の知識情報処理システムは、蓄積されたルール知識
の条件と与えられた事実の内容とが完全に一致すること
により推論を進めるものであった。
Conventional knowledge information processing systems advance inference based on the complete match between the conditions of accumulated rule knowledge and the content of given facts.

したがって、蓄積されたルール知識は、与えられた事実
に完全に一致するものか用意されていなければならなか
った。
Therefore, the accumulated rule knowledge had to be completely consistent with the given facts.

本発明の目的は、蓄積されたルール知識が与えられた前
提事実と完全に満足していなくても、ルール知識間の条
件の差を自動的に判別して、前提事実に最も近いルール
を修正することにより推論を進めて結論を導くことがで
きる知識情報処理システムを提供することにある。
The purpose of the present invention is to automatically determine the difference in conditions between the rule knowledge and correct the rule that is closest to the prerequisite fact, even if the accumulated rule knowledge does not completely satisfy the given prerequisite fact. The object of the present invention is to provide a knowledge information processing system that can proceed with inference and draw a conclusion.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の知識情報処理システムは、処理の対象となる前
提事実を記憶する前提事実記憶手段と、結論を導き出す
ためのルール知識を記憶するルール知識記憶手段と、前
記前提事実記憶手段と前記ルール知識記憶手段との記憶
内容の差を求めるトレードオフ関係検出手段と、前記前
提事実記憶手段及び前記ルール知識記憶手段の記憶内容
と前記トレードオフ関係検出手段により求めた前記差と
を参照して前記ルール知識を修正す条件緩和手段と、前
記条件緩和手段により得られる修正された前記ルール知
識から結論を導く推論手段とから構成される。
The knowledge information processing system of the present invention includes a premise fact storage means for storing premise facts to be processed, a rule knowledge storage means for storing rule knowledge for deriving a conclusion, the premise fact storage means and the rule knowledge. trade-off relationship detection means for determining the difference between the stored contents and the storage means; It is comprised of a condition relaxing means for modifying knowledge, and an inference means for drawing a conclusion from the modified rule knowledge obtained by the condition relaxing means.

〔作用〕[Effect]

本発明においては、前提となる事実を入力し、前提事実
記憶装置に記憶する。続いて、ルール知識記憶装置から
関連するルール知識を取り出し、前提事実記憶装置の内
容と照らし合わせる。ここで、前提事実記憶装置の内容
を基準にルール知識間に成立しているトレードオフ関係
を見い出す。
In the present invention, facts serving as a premise are input and stored in a premise fact storage device. Next, the relevant rule knowledge is retrieved from the rule knowledge storage device and compared with the contents of the premise fact storage device. Here, a trade-off relationship established between rule knowledge is found based on the contents of the prerequisite fact storage device.

推論を行う際に、条件部が前提事実記憶装置の内容と完
全に一致していない場合、前提事実と矛盾しないルール
に対して、トレードオフ関係検出装置の結果をもとに、
条件の緩和と追加を行うことにより、発火可能なルール
知識として修正し、推論を継続する。結論として、推論
の最終結果と推論の過程で修正された条件を提示するこ
とにより処理を終了する。
When making inferences, if the condition part does not completely match the contents of the premise fact storage device, based on the results of the trade-off relationship detection device, for rules that do not contradict the premise facts,
By relaxing and adding conditions, it is modified as fireable rule knowledge and inference is continued. In conclusion, the process is finished by presenting the final result of the inference and the conditions modified during the inference process.

〔実施例〕〔Example〕

以下、図面を参照して、本発明について説明する。本発
明の一実施例を示す第1図において、利用者から入力さ
れる前提事実は、前提事実記憶装置1により記憶される
。記憶された前提事実は専門家のノウハウをルールの形
で記憶したルール知識記憶装置2と照らし合わされ、ル
ール間のトレードオフ関係がトレードオフ関係検出装置
3に記憶される。対象となるルール知識の何れもが前提
事実に一致しない場合には条件緩和装置5により、ルー
ル知識が修正される。その結果、与えられた前提事実と
修正されたルール知識をもとに推論機構4により比較照
合が行われ、採用された知識の条件部の修正内容を修正
条件保持装置6に格納し、結論を結論保持装置7に格納
する。
The present invention will be described below with reference to the drawings. In FIG. 1 showing an embodiment of the present invention, prerequisite facts input by a user are stored in a prerequisite fact storage device 1. As shown in FIG. The stored prerequisite facts are compared with a rule knowledge storage device 2 that stores expert know-how in the form of rules, and trade-off relationships between rules are stored in a trade-off relationship detection device 3. If none of the target rule knowledge matches the prerequisite facts, the condition relaxing device 5 modifies the rule knowledge. As a result, the inference mechanism 4 performs a comparison based on the given prerequisite facts and the revised rule knowledge, stores the revised contents of the condition part of the adopted knowledge in the revised condition holding device 6, and draws a conclusion. The result is stored in the conclusion holding device 7.

専門家のノウハウは、「もしく条件部)ならば、(動作
部)を実行せよ」のルールの形式で記述される。例えば
、電子回路設計における知識の一つは「もしく動作スピ
ードとして10ナノ秒が必要であり、かつ消費電力が2
0mWで良い)ならば、(電子回路ブロック゛A′°を
使用せよ)」と表わせられる。同様に、「もしく動作ス
ピードとして15ナノ秒が必要であり、がっ消費電力が
12mWて良い)ならば、く電子回路ブロックパB′″
を使用せよ)」なるルールも与えられていたとする。こ
こで、前提事実として9ナノ秒程度の動作速度と15m
Wの消費電力を実現する回路仕様が与えられた場合、従
来の知識情報処理シズテムでは結論が求まらないが、本
発明によれば動作スピードに関する条件を緩和するとと
もに消費電力に関する条件を仮定することにより、電子
ブロック“A′″と“B′″の回路を候補として採用す
る。この場合、動作スピードと消費電力がトレードオフ
関係にあることをトレードオフ関係検出装置3が見い出
し、前提条件に対してトレードオフ関係の少ない電子回
路ブロック” A ”が適切であるとの結論を得ること
ができる。
Expert know-how is described in the form of a rule: ``If conditional part), then execute (action part).'' For example, one of the pieces of knowledge in electronic circuit design is ``If the operating speed is 10 nanoseconds and the power consumption is 2.
0 mW is sufficient), then it can be expressed as (use electronic circuit block 'A'°)'. Similarly, if the operating speed is 15 nanoseconds and the power consumption is 12 mW, then
Suppose that the rule ``Use ``)'' is also given. Here, the prerequisite facts are that the operating speed is about 9 nanoseconds and the speed is 15 m.
If a circuit specification that achieves power consumption of W is given, a conclusion cannot be reached in a conventional knowledge information processing system, but according to the present invention, conditions regarding operating speed are relaxed and conditions regarding power consumption are assumed. Accordingly, the circuits of electronic blocks "A'" and "B'" are adopted as candidates. In this case, the trade-off relationship detection device 3 finds that there is a trade-off relationship between operating speed and power consumption, and concludes that electronic circuit block "A" with less trade-off relationship is appropriate for the preconditions. be able to.

第2図にこのように表現された知識を使って推論を実行
する知識情報処理の手順を示す。なお、同図中のP]〜
P7は、フローヂャー1〜の各ステップを示す。Plに
おいて、処理の前提となる事実を初期化する。続いて、
P2において、ルールの条件部と格納されているルール
知識とを照合し、複数のルール知識が対象となっている
場合、条件間のトレードオフ関係を求める。P3におい
て、条件が成立していない場合、P4において、ルール
知識の条件部を緩和と追加を実行する。この結果、P5
において、適切なルール知識の動作部を実行することが
可能となり、採用されるルール知識に関する修正条件を
保持しくP6)、かつ前提事実の更新を図る(Pl)。
FIG. 2 shows the steps of knowledge information processing to perform inference using the knowledge expressed in this way. In addition, P] ~ in the same figure
P7 indicates each step of flower 1~. In Pl, the facts that are the premise of the process are initialized. continue,
In P2, the condition part of the rule is compared with the stored rule knowledge, and if a plurality of rule knowledge are targeted, a trade-off relationship between the conditions is determined. If the condition is not satisfied in P3, the condition part of the rule knowledge is relaxed and added in P4. As a result, P5
In this step, it becomes possible to execute the operation part of the appropriate rule knowledge, maintain the modification conditions regarding the adopted rule knowledge (P6), and update the prerequisite facts (Pl).

ルール知識の動作部に、終了命令が記述されていなけれ
ばPlに戻り、次のルール知識を処理する。このような
動作を繰り返すことにより、前提事実をもとに適切な結
論を得る作業か実現される。
If no termination command is written in the action section of the rule knowledge, the process returns to Pl and processes the next rule knowledge. By repeating these operations, it is possible to reach an appropriate conclusion based on the prerequisite facts.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明によれば、与えられた前提
事実をもとに、蓄えられたルール知識を用いて熟練した
専門家と同様に速やかに適切な結論を求めることができ
るので、熟練度の低い利用者でも熟練した専門家と同等
の作業を行なうことか可能になる。
As described above, according to the present invention, based on the given prerequisite facts, it is possible to quickly reach an appropriate conclusion using accumulated rule knowledge, just like a skilled expert. Even users with low skill level can perform tasks equivalent to those of skilled professionals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は同実
施例の動作を例示するフローチャートである。 ]・・・前提事実記憶装置、2・・・ルール知識記憶装
置、3・・・トレードオフ関係検出装置、4・・・推論
機構、5・・・条件緩和装置、6・・・修正条件保持装
置、7・・・結論保持装置。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a flowchart illustrating the operation of the embodiment. ]...Premise fact storage device, 2...Rule knowledge storage device, 3...Trade-off relationship detection device, 4...Inference mechanism, 5...Condition relaxation device, 6...Modified condition retention device Device, 7... Conclusion holding device.

Claims (1)

【特許請求の範囲】[Claims]  処理の対象となる前提事実を記憶する前提事実記憶手
段と、結論を導き出すためのルール知識を記憶するルー
ル知識記憶手段と、前記前提事実記憶手段と前記ルール
知識記憶手段との記憶内容の差を求めるトレードオフ関
係検出手段と、前記前提事実記憶手段及び前記ルール知
識記憶手段の記憶内容と前記トレードオフ関係検出手段
により求めた前記差とを参照して前記ルール知識を修正
す条件緩和手段と、前記条件緩和手段により得られる修
正された前記ルール知識から結論を導く推論手段とから
構成されることを特徴とする知識情報処理システム。
A premise fact storage means for storing premise facts to be processed, a rule knowledge storage means for storing rule knowledge for deriving a conclusion, and a difference in memory content between the premise fact storage means and the rule knowledge storage means. a trade-off relationship detection means to be sought; a condition relaxation means for modifying the rule knowledge by referring to the stored contents of the prerequisite fact storage means and the rule knowledge storage means and the difference determined by the trade-off relationship detection means; A knowledge information processing system comprising: inference means for drawing a conclusion from the modified rule knowledge obtained by the condition relaxation means.
JP2098099A 1990-04-13 1990-04-13 Knowledge information processing system Pending JPH03296140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2098099A JPH03296140A (en) 1990-04-13 1990-04-13 Knowledge information processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2098099A JPH03296140A (en) 1990-04-13 1990-04-13 Knowledge information processing system

Publications (1)

Publication Number Publication Date
JPH03296140A true JPH03296140A (en) 1991-12-26

Family

ID=14210893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2098099A Pending JPH03296140A (en) 1990-04-13 1990-04-13 Knowledge information processing system

Country Status (1)

Country Link
JP (1) JPH03296140A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08241255A (en) * 1995-03-06 1996-09-17 Nec Corp Network controller
US5694525A (en) * 1992-12-02 1997-12-02 Mitsubishi Denki Kabushiki Kaisha Method for filing and synthesizing of knowledge base and fuzzy control system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694525A (en) * 1992-12-02 1997-12-02 Mitsubishi Denki Kabushiki Kaisha Method for filing and synthesizing of knowledge base and fuzzy control system using the same
JPH08241255A (en) * 1995-03-06 1996-09-17 Nec Corp Network controller

Similar Documents

Publication Publication Date Title
Ross et al. Efficient reductions for imitation learning
CN107957989B (en) Cluster-based word vector processing method, device and equipment
KR100348670B1 (en) Method for automatically restoring consistency in a hierarchical computer comprising such a system for automatic consistency restoration
CN114298329A (en) Model training method, device, equipment and storage medium
Kuang On neutral delay logistic Gause-type predator-prey systems
CN110309946A (en) Logistics route method and device for planning, computer-readable medium and logistics system
US10769516B2 (en) Information processing apparatus, program and information processing method
JPH03296140A (en) Knowledge information processing system
Lescanne Implementation of completion by transition rules+ control: ORME
CN109492086A (en) A kind of answer output method, device, electronic equipment and storage medium
CN108681490A (en) For the vector processing method, device and equipment of RPC information
CN114723024A (en) Linear programming-based neural network mapping method for storage and calculation integrated chip
CN115879450A (en) Step-by-step text generation method, system, computer equipment and storage medium
US11455533B2 (en) Information processing apparatus, control method, and non-transitory computer-readable storage medium for storing information processing program
CN109299321B (en) Method and device for recommending songs
CN115171201B (en) Face information identification method, device and equipment based on binary neural network
CN108241695B (en) Information processing method and device
CN118760528B (en) Calculation force matching method and system based on artificial intelligence
TWI877867B (en) Training system and training method for data model in specific field
KR102701708B1 (en) Method and system for local compression of artificial intelligence model
CN118761473B (en) Operation and maintenance analysis data processing method and system based on enhanced knowledge graph
JPH01126735A (en) Knowledge information processor
JP2024040936A (en) Information processing apparatus, control method of information processing apparatus, and program
CN116978363A (en) Data processing method and device, computer equipment, storage medium and product
JPH01124030A (en) Inference method in knowledge utilizing information processing system