JPH03266372A - Lithium secondary battery - Google Patents
Lithium secondary batteryInfo
- Publication number
- JPH03266372A JPH03266372A JP2064032A JP6403290A JPH03266372A JP H03266372 A JPH03266372 A JP H03266372A JP 2064032 A JP2064032 A JP 2064032A JP 6403290 A JP6403290 A JP 6403290A JP H03266372 A JPH03266372 A JP H03266372A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- ethylene carbonate
- battery
- secondary battery
- lithium secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 50
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 48
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000003792 electrolyte Substances 0.000 claims abstract description 19
- 239000012046 mixed solvent Substances 0.000 claims abstract description 16
- -1 ether compound Chemical class 0.000 claims abstract description 10
- 239000007774 positive electrode material Substances 0.000 claims abstract description 9
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 8
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 8
- 239000007773 negative electrode material Substances 0.000 claims abstract description 6
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 6
- 229910000733 Li alloy Inorganic materials 0.000 claims abstract description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000001989 lithium alloy Substances 0.000 claims abstract description 4
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract 2
- 238000002156 mixing Methods 0.000 abstract description 9
- 230000006866 deterioration Effects 0.000 abstract description 4
- 238000007600 charging Methods 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 9
- 229940019778 diethylene glycol diethyl ether Drugs 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 239000008151 electrolyte solution Substances 0.000 description 8
- 238000007599 discharging Methods 0.000 description 7
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 6
- 230000007774 longterm Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- 238000010277 constant-current charging Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910013872 LiPF Inorganic materials 0.000 description 2
- 101150058243 Lipf gene Proteins 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 150000002641 lithium Chemical class 0.000 description 2
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 2
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- SPEUIVXLLWOEMJ-UHFFFAOYSA-N 1,1-dimethoxyethane Chemical compound COC(C)OC SPEUIVXLLWOEMJ-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101150048797 LIPH gene Proteins 0.000 description 1
- 229910013470 LiC1 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- DBYQHFPBWKKZAT-UHFFFAOYSA-N lithium;benzene Chemical compound [Li+].C1=CC=[C-]C=C1 DBYQHFPBWKKZAT-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はリチウム二次電池の充放電サイクル寿命の改良
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improving the charge/discharge cycle life of lithium secondary batteries.
(発明の概要〕
本発明は、リチウムもしくはリチウム合金を負極活物質
として用い、遷移金属カルコゲン化合物を正極活物質と
して用いたリチウム二次電池において、電解液として、
エチレンカーボネートと一般式R+−0−+CHzCt
lz−0)−z Rz(但しR1、R2はCH3、t、
US、CJ’rの中から選ばれるいずれかの炭化水素基
であり、R2とR2は同じでもよい)で表されるエーテ
ル化合物の混合溶媒にリチウム塩を溶解したものを用い
、その混合溶媒中のエチレンカーボネートの混合比を2
5〜75容量%にすることによって、長時量率放電での
充放電サイクル寿命の大きい優れたリチウム二次電池を
提供しようとするものである。(Summary of the Invention) The present invention provides a lithium secondary battery using lithium or a lithium alloy as a negative electrode active material and a transition metal chalcogen compound as a positive electrode active material.
Ethylene carbonate and general formula R+-0-+CHzCt
lz-0)-z Rz (However, R1 and R2 are CH3, t,
A lithium salt is dissolved in a mixed solvent of an ether compound (which is any hydrocarbon group selected from US, CJ'r, and R2 and R2 may be the same), and in the mixed solvent. The mixing ratio of ethylene carbonate is 2
By setting the content to 5 to 75% by capacity, it is intended to provide an excellent lithium secondary battery with a long charge/discharge cycle life in long-term rate discharge.
リチウムを負極活物質として用いた電池は、小型で高エ
ネルギー密度を有する電池として着目されており、正極
剤にMnO□やCFx等を用いたりチウム−次電池は実
用化に至っている。そして近年は、従来の電池と比較し
て優れた特性が期待できるリチウム二次電池の開発が強
く望まれている。ところが、リチウム電池を充放電可能
な二次電池とするためには、正極活物質や電池構成をは
じめ多くの改良すべき課題がある。Batteries using lithium as a negative electrode active material are attracting attention as small-sized batteries with high energy density, and lithium-secondary batteries using MnO□, CFx, etc. as positive electrode materials have been put into practical use. In recent years, there has been a strong desire to develop lithium secondary batteries that are expected to have superior characteristics compared to conventional batteries. However, in order to turn a lithium battery into a rechargeable and dischargeable secondary battery, there are many issues that need to be improved, including the positive electrode active material and battery configuration.
電解液の開発も重要な課題の一つである。リチウム−次
電池用電解液としてはリチウム塩をTブチロラクトン、
プロピレンカーボネート、1,2−ジメトキシエタン等
の溶媒に溶解させたものが用いられ良好な特性を示して
いるが、リチウム二次電池用電解液に関しては、充放電
に伴う電池劣化が少ないこと、充放電効率が高いこと、
リチウムとの反応性の低いこと、充電時間率依存性が少
ないこと等要求される特性が多く、未だ優れた電解液が
開発されていないのが現状である。The development of electrolytes is also an important issue. As an electrolyte for lithium secondary batteries, lithium salt is used as T-butyrolactone,
Electrolytes for lithium secondary batteries that are dissolved in solvents such as propylene carbonate and 1,2-dimethoxyethane have been used and have shown good properties. High discharge efficiency,
Currently, an excellent electrolytic solution has not yet been developed, as it has many required characteristics such as low reactivity with lithium and little dependence on charging time rate.
例えば、従来例としてLiPFbをプロピレンカーボネ
ートと1,2−ジメトキシエタンの混合溶媒に溶解させ
た電解液を用いたリチウム二次電池について、充放電サ
イクルの放電時間率を変えて充放電サイクル試験を行い
、そのサイクル寿命を調べると、第2図に示すように、
5時間率以上の長時間率放電の繰り返しを行うと、リチ
ウムの劣化が著しく促進され、サイクル寿命が非常に短
くなるという欠点があることが判る。For example, as a conventional example, a charge/discharge cycle test was conducted on a lithium secondary battery using an electrolyte solution in which LiPFb was dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane by changing the discharge time rate of the charge/discharge cycle. , when examining its cycle life, as shown in Figure 2,
It can be seen that repeated long-term discharge at a rate of 5 hours or more has the disadvantage that the deterioration of lithium is significantly accelerated and the cycle life is extremely shortened.
本発明の課題は、長時間率放電を繰り返す充放電サイク
ルに対しても充放電特性の劣化の少ない優れたリチウム
二次電池を提供することである。An object of the present invention is to provide an excellent lithium secondary battery whose charging and discharging characteristics are less likely to deteriorate even when subjected to charging and discharging cycles in which long-term rate discharge is repeated.
〔発明を解決するための手段]
本発明は、リチウムもしくはリチウム合金を負極活物質
として用い、遷移金属カルコゲン化合物を正極活物質と
して用いたリチウム二次電池において、電解液として、
エチレンカーボネートと一般式R,−0−+CHzCH
z−0←2R2(但しR,、RzはC1,、C2H5、
C:lH7の中から選ばれるいずれかの炭化水素基であ
り、R1とR2は同じでもよい)で表されるエーテル化
合物の混合溶媒にリチウム塩を溶解したものを用い、そ
の混合溶媒中のエチレンカーボネートの混合比が25〜
75容量%であるリチウム二次電池である。[Means for Solving the Invention] The present invention provides a lithium secondary battery using lithium or a lithium alloy as a negative electrode active material and a transition metal chalcogen compound as a positive electrode active material, in which as an electrolyte,
Ethylene carbonate and general formula R, -0-+CHzCH
z-0←2R2 (However, R,, Rz is C1,, C2H5,
C: Any hydrocarbon group selected from lH7, and R1 and R2 may be the same. Carbonate mixing ratio is 25~
It is a lithium secondary battery with a capacity of 75%.
本発明に用いられる電解質は従来より公知のものがいず
れも使用可能であり、LiClO4、LiAsF6、t
、1pFt、 、LiB(CJs)4、LiC1,Li
Br5LiCF3SO,、LiClO4(h等がある。As the electrolyte used in the present invention, any conventionally known electrolyte can be used, including LiClO4, LiAsF6, t
,1pFt, ,LiB(CJs)4,LiC1,Li
There are Br5LiCF3SO, LiClO4 (h, etc.).
このようなリチウム塩を前記混合溶媒に0.5から1.
5mol/1溶解させて使用するのが望ましい。この範
囲を外れると充放電特性が著しく低下する。The amount of such lithium salt in the mixed solvent is 0.5 to 1.
It is desirable to use it by dissolving 5 mol/1. Outside this range, the charge/discharge characteristics deteriorate significantly.
本発明のリチウム二次電池の正極材料としては、Mn0
z、CrzOs 、Ti0z、TiS、、v203、L
iMnzOn、LiCo0z、CuO、Mob、、Mo
S、、P2O3、WO,等の遷移金属カルコゲン化合物
が使用可能である。As the positive electrode material of the lithium secondary battery of the present invention, Mn0
z,CrzOs,Ti0z,TiS,,v203,L
iMnzOn, LiCo0z, CuO, Mob, ,Mo
Transition metal chalcogen compounds such as S, P2O3, WO, etc. can be used.
〔作用]
本発明者らの研究結果によれば、負極活物質としてリチ
ウムを用い、正極活物質として遷移金属カルコゲン化合
物を用いたリチウム二次電池の電解液として、エチレン
カーボネートとジエチレングリコールジエチルエーテル
の混合溶媒にリチウム塩を溶かしたものを用い、混合溶
媒中のエチレンカーボネートの混合比率を25〜75容
量%とすることにより、5時間以上の長時間率放電を繰
り返しても、充放電サイクル寿命が短くならないリチウ
ム二次電池が得られる。また、前記のジエチレングリコ
ールジエチルエーテル即チczHs−o(CHzC)I
t−0+−z CzHsの替わりに、それと同系列の、
一般式R+−0−+CHzCHz−0+−z R2(但
しR1、R2はCH。[Function] According to the research results of the present inventors, a mixture of ethylene carbonate and diethylene glycol diethyl ether is used as an electrolyte for a lithium secondary battery that uses lithium as a negative electrode active material and a transition metal chalcogen compound as a positive electrode active material. By using a lithium salt dissolved in the solvent and setting the mixing ratio of ethylene carbonate in the mixed solvent to 25 to 75% by volume, the charge/discharge cycle life will be short even after repeated long-rate discharges of 5 hours or more. You can obtain a lithium secondary battery that does not require a lithium battery. In addition, the above-mentioned diethylene glycol diethyl ether, czHs-o(CHzC)I
Instead of t-0+-z CzHs, the same series as that,
General formula R+-0-+CHzCHz-0+-z R2 (However, R1 and R2 are CH.
、C2H,、C,I(、の中から選ばれるいずれかの炭
化水素基であり、R,とR2は同じでもよい)を用いて
も、同様のリチウム二次電池が得られる。A similar lithium secondary battery can be obtained by using , C2H,, C, I (which is any hydrocarbon group selected from , and R and R2 may be the same).
本発明の電池が良好な結果を示す明確な理由は不明であ
るが、前記電解液を用いることで、リチウムの析出形態
が樹脂状結晶から塊状に近いリチウム結晶になり、リチ
ウムの電極からの剥離、脱離、脱落が少なくなることと
、リチウム塩の解離度が向上するため、リチウムイオン
の供給が速やかに行われリチウムの析出状態が良くなる
ためと考えられる。Although the exact reason why the battery of the present invention shows good results is unknown, the use of the electrolyte changes the lithium precipitation form from resin-like crystals to nearly block-like lithium crystals, which prevents lithium from peeling off from the electrodes. This is thought to be because lithium ions are quickly supplied and the state of lithium precipitation improves because , desorption, and dropout are reduced and the degree of dissociation of the lithium salt is improved.
また、一般にリチウム二次電池用電解液の溶媒として誘
電率が高いものを用いることにより電解質塩の解離を促
進しリチウムの充放電効率が高まるとされている。エチ
レンカーボネートの誘電率は73.0と極めて高いが融
点が39°Cと高く常温では固体である。これに例えば
エチレングリコールジエチルエーテルを混合することに
より高誘電率低融点の溶媒を得ることができるのである
。この溶液中エチレンカーボネートの比率が高いほどリ
チウムの充放電効率は良くなる傾向にあるが、前記混合
溶媒中のエチレンカーボネートの比率が75容量%より
高いと、溶液の粘度が高く電解液として用いてもイオン
移動度が悪←電池の重負荷特性や低温特性が悪くなる。Furthermore, it is generally believed that by using a solvent with a high dielectric constant as a solvent for an electrolyte solution for a lithium secondary battery, dissociation of the electrolyte salt is promoted and the efficiency of charging and discharging lithium is increased. Ethylene carbonate has an extremely high dielectric constant of 73.0, but has a high melting point of 39°C and is solid at room temperature. By mixing, for example, ethylene glycol diethyl ether with this, a solvent with a high dielectric constant and a low melting point can be obtained. The higher the ratio of ethylene carbonate in this solution, the better the charging and discharging efficiency of lithium tends to be. However, if the ratio of ethylene carbonate in the mixed solvent is higher than 75% by volume, the viscosity of the solution is high and it is difficult to use it as an electrolyte. Also, the ion mobility is poor ← The heavy load characteristics and low temperature characteristics of the battery are deteriorated.
また、逆に比率が25容量%より低いと誘電率も低くな
りリチウムの充放電効率が低下する。On the other hand, if the ratio is lower than 25% by volume, the dielectric constant will also decrease and the efficiency of charging and discharging lithium will decrease.
第1図は本発明を実施例に適用したリチウム二次電池の
断面構造を示す模式図である。FIG. 1 is a schematic diagram showing the cross-sectional structure of a lithium secondary battery to which the present invention is applied in an example.
以下、本発明のリチウム二次電池の実施例及び比較例を
第1図に従って説明する。Examples and comparative examples of the lithium secondary battery of the present invention will be described below with reference to FIG.
実施例1 まず、正極1は次のようにして作成した。Example 1 First, positive electrode 1 was created as follows.
二酸化マンガン1モルと炭酸リチウム0.25モルを混
合し、450°Cの空気中で1時間焼成してLiMnz
O4を得て、これを正極活物質として用い、このLiM
nz0487重量部に導電材としてグラファイト10重
量部、結着剤としてポリフッ化ビニリデン3重量部を加
え、混合し、正極合剤とした。そして、この正極合剤を
溶剤N−メチルピロリドンに分散させてスラリー(ペー
スト状)にした。LiMnz
Obtain O4 and use it as a positive electrode active material, and this LiM
10 parts by weight of graphite as a conductive material and 3 parts by weight of polyvinylidene fluoride as a binder were added to parts by weight of nz0487 and mixed to obtain a positive electrode mixture. Then, this positive electrode mixture was dispersed in a solvent N-methylpyrrolidone to form a slurry (paste).
次に、この正極合剤スラリーを、正極集電体としての帯
状のアルミニウム箔の両面に均一に塗布して、乾燥し、
その後にローラープレス機により圧縮成型して帯状の正
極lを作った。Next, this positive electrode mixture slurry is uniformly applied to both sides of a strip-shaped aluminum foil serving as a positive electrode current collector, and dried.
Thereafter, compression molding was performed using a roller press machine to produce a strip-shaped positive electrode 1.
負極2は銅箔を負極集電体とし、これに金属リチウムを
圧着することによって作成した。Negative electrode 2 was created by using copper foil as a negative electrode current collector and pressing metallic lithium onto this.
次に前記正極1及び前記負極2を用い、さらにセパレー
ター3を一対用いて、これらを互いに積層させてから、
多数回巻回することによって、渦巻型の巻回体を作った
。Next, using the positive electrode 1 and the negative electrode 2, and further using a pair of separators 3, and stacking them on each other,
A spiral-shaped body was made by winding the material many times.
この巻回体をニッケルめっきを施した鉄製電池缶5に収
納した。そして正極1の集電を行うために、アルミニウ
ム類の正極リードを正極1に取り付け、これを正極1か
ら導出して、電池蓋7に溶接した。また負極2の集電を
行うために、ニッケル製の負極リードを負極2に取り付
け、これを負極2から導出して、電池缶5に溶接した。This wound body was housed in a nickel-plated iron battery can 5. In order to collect current from the positive electrode 1, an aluminum positive electrode lead was attached to the positive electrode 1, led out from the positive electrode 1, and welded to the battery lid 7. Further, in order to collect current from the negative electrode 2, a nickel negative electrode lead was attached to the negative electrode 2, led out from the negative electrode 2, and welded to the battery can 5.
この電池缶5の中に、エチレンカーボネート50容量%
、ジエチレングリコールジエチルエーテル50容量%か
らなる混合溶媒中にLiPhを1mol/1溶かして得
た電解液を注入した。This battery can 5 contains 50% by volume of ethylene carbonate.
An electrolytic solution obtained by dissolving 1 mol/1 LiPh in a mixed solvent consisting of 50% by volume of diethylene glycol diethyl ether was injected.
次に、巻回体の上下面に対向するように、電池缶5内に
絶縁板4を配設した。また、この電池缶5と電池蓋7を
絶縁封口ガスケット6を介してかしめて、電池蓋7を封
口した。以上のようにして、直径13.8n+m、高さ
42mmの円筒型リチウム二次電池Aを作成した。Next, an insulating plate 4 was placed inside the battery can 5 so as to face the upper and lower surfaces of the wound body. Further, the battery can 5 and the battery lid 7 were caulked together with an insulating sealing gasket 6 interposed therebetween, and the battery lid 7 was sealed. As described above, a cylindrical lithium secondary battery A having a diameter of 13.8 n+m and a height of 42 mm was created.
比較例1
比較のためにリチウム−次電池に用いられている溶媒を
使用したリチウム二次電池を作成した。Comparative Example 1 For comparison, a lithium secondary battery was prepared using a solvent used in lithium secondary batteries.
電解液としてプロピレンカーボネート50容量%、1.
2−ジメトキシエタン50容量%からなる混合溶媒中に
LiPFbを1mol/l溶かして得たものを用い、そ
の他は実施例1と同様にしてリチウム二次電池Bを作成
した。50% by volume of propylene carbonate as an electrolyte; 1.
A lithium secondary battery B was prepared in the same manner as in Example 1 except that LiPFb was dissolved at 1 mol/l in a mixed solvent consisting of 50% by volume of 2-dimethoxyethane.
実施例1及び比較例1で示した電池を充電電流75mA
で上限電圧3.9vとして9時間定電流充電を行い、次
に11Ωで終止電圧2.Ovまで放電を行う9時間率充
電2時間率放電サイクル試験と充電電流75mAで上限
電圧3.9vとして9時間定電流充電を行い、次に50
Ωで終止電圧2.Ovまで放電を行う9時量率充電10
時間率放電サイクル試験の2種類の試験を行った。そし
ていずれも放電容量がlOサイクルめの放電容量の50
%にまで劣化したところをサイクル寿命とし、この結果
を第1表に示す。The batteries shown in Example 1 and Comparative Example 1 were charged at a charging current of 75 mA.
Constant current charging was performed for 9 hours with an upper limit voltage of 3.9V, and then a final voltage of 2.9V was set at 11Ω. A 9-hour rate charge 2-hour rate discharge cycle test in which the battery was discharged to Ov, and a constant current charge was performed for 9 hours with a charging current of 75 mA and an upper limit voltage of 3.9 V, and then a constant current charge of 50 mA was carried out.
End voltage in Ω2. 9 hour rate charge 10 to discharge to Ov
Two types of time rate discharge cycle tests were conducted. In both cases, the discharge capacity is 50% of the discharge capacity at the 10th cycle.
The cycle life is defined as the point where the deterioration reaches %, and the results are shown in Table 1.
第1表
二のように、9時間率充電2時間率放電サイクル試験の
場合は、本発明の電池Aも、従来のりチウム−次電池に
用いられている溶媒を用いた比較例の電池Bも、同等な
サイクル寿命を示すが、9時間率充電10時間率放電サ
イクル試験の場合は、本発明の電池Aは従来のりチウム
−次電池に用いられている電解液を使用した比較例の電
池Bに比べ、非常に良好な特性を示している。As shown in Table 1, in the case of the 9-hour rate charge and 2-hour rate discharge cycle test, both Battery A of the present invention and Battery B of the comparative example using the solvent used in conventional lithium-secondary batteries. , but in the case of a 9-hour rate charge and 10-hour rate discharge cycle test, battery A of the present invention shows the same cycle life as battery B of the comparative example, which uses the electrolyte solution used in conventional lithium-secondary batteries. It shows very good characteristics compared to .
次に、エチレンカーボネートとジエチレングリコールジ
エチルエーテルの混合比を変えて電解液を調整し電池を
作成した。Next, the electrolyte was adjusted by changing the mixing ratio of ethylene carbonate and diethylene glycol diethyl ether, and a battery was created.
実施例2
電解液としてエチレンカーボネート25容量%、ジエチ
レングリコールジエチルエーテル75 容1%からなる
混合溶媒中にLiPF+、を1mol/l溶かして得た
ものを用い、その他は実施例1と同様にしてリチウム二
次電池Cを作成した。Example 2 An electrolytic solution obtained by dissolving 1 mol/l of LiPF+ in a mixed solvent consisting of 25% by volume of ethylene carbonate and 1% by volume of diethylene glycol diethyl ether was used, and the other conditions were the same as in Example 1. Next battery C was created.
実施例3
電解液としてエチレンカーボネート75容量%、ジエチ
レングリコールジエチルエーテル25容量%からなる混
合溶媒中にLiPF、を1mol/l溶かして得たもの
を用い、その他は実施例1と同様にしてリチウム二次電
池りを作成した。Example 3 An electrolytic solution obtained by dissolving 1 mol/l of LiPF in a mixed solvent consisting of 75% by volume of ethylene carbonate and 25% by volume of diethylene glycol diethyl ether was used, and the other conditions were the same as in Example 1. I created a battery.
比較例2
電解液としてジエチレングリコールジエチルエーテル1
00容量%からなる溶媒中にLiPF6を1s+ol/
I溶かして得たものを用い、その他は実施例1と同様に
してリチウム二次電池Eを作成した。Comparative Example 2 Diethylene glycol diethyl ether 1 as electrolyte
1s+ol/LiPF6 in a solvent consisting of 00% by volume
A lithium secondary battery E was prepared in the same manner as in Example 1 except that the material obtained by melting I was used.
比較例3
電解液としてエチレンカーボネート100容量%からな
る溶媒中にLiPFbを1IIIol/l溶かして得た
ものを用い、その他は実施例1と同様にしてリチウム二
次電池Fを作成した。Comparative Example 3 A lithium secondary battery F was produced in the same manner as in Example 1 except that an electrolyte obtained by dissolving 1IIIol/l of LiPFb in a solvent consisting of 100% by volume of ethylene carbonate was used.
実施例2と3及び比較例2と3の電池についても充電電
流75mAで上限電圧3.9vとして9時間定電流充電
を行い、次に11Ωで終止電圧2.Ovまで放電を行う
9時間率充電2時間率放電サイクル試験と充電電流75
+wAで上限電圧3.9vとして9時間定電流充電を行
い、次に50Ωで終止電圧2.Ovまで放電を行う9時
間率充電10時間率放電サイクル試験の2種類の試験を
行った。そしていずれも放電容量が10サイクルめの放
電容量の50%にまで劣化したところをサイクル寿命と
し、この結果を第2表に示す。The batteries of Examples 2 and 3 and Comparative Examples 2 and 3 were also subjected to constant current charging for 9 hours with a charging current of 75 mA and an upper limit voltage of 3.9 V, and then a final voltage of 2.9 V at 11 Ω. 9-hour rate charging 2-hour rate discharging cycle test and charging current 75 to discharge to Ov
Constant current charging was performed for 9 hours at +wA with an upper limit voltage of 3.9V, and then with a final voltage of 2.9V at 50Ω. Two types of tests were conducted: 9-hour rate charging and 10-hour rate discharging cycle test in which the battery was discharged to Ov. In each case, the cycle life was defined as the point at which the discharge capacity deteriorated to 50% of the discharge capacity at the 10th cycle, and the results are shown in Table 2.
第2表
第1表及び第2表から、5時間率以上の長時量率放電を
繰り返す充放電サイクル試験を行うと、リチウム二次電
池の電解液の溶媒としてエチレンカーボネート単独やジ
エチレングリコールジエチルエーテル単独を用いた電池
Eと電池Fはサイクル寿命が短いが、電解液の溶媒とし
てエチレンカーボネートの混合比を25容量%以上75
容量%以下に調整したエチレンカーボネートとジエチレ
ングリコールジエチルエーテルの混合溶媒を用いた電池
A、C,Dは、100サイクル以上のサイクル寿命を示
すのがわかる。Table 2 From Tables 1 and 2, when a charge/discharge cycle test with repeated discharge at a rate of 5 hours or more was performed, ethylene carbonate alone or diethylene glycol diethyl ether alone was used as the solvent for the electrolyte of a lithium secondary battery. Batteries E and B using Batteries have a short cycle life, but the mixing ratio of ethylene carbonate as the electrolyte solvent is 25% by volume or more.75
It can be seen that batteries A, C, and D using a mixed solvent of ethylene carbonate and diethylene glycol diethyl ether adjusted to a volume percent or less exhibited a cycle life of 100 cycles or more.
〔発明の効果]
本発明によれば、長時量率放電を繰り返しても劣化の少
ない充放電サイクル特性の優れたリチウム二次電池を提
供できる。[Effects of the Invention] According to the present invention, it is possible to provide a lithium secondary battery with excellent charge-discharge cycle characteristics and less deterioration even after repeated long-term rate discharges.
第1図は本発明の実施例に適用したリチウム二次電池の
断面構造を示す模式図、第2図はLiPFbをプロピレ
ンカーボネートと1.2−ジメトキシエタンの混合溶媒
に溶かした電解液を用いた従来技術によるリチウム二次
電池について測定されたサイクル寿命の放電時間率依存
性を示す。
第1図中に用いた符号において
1・−−−−−−−−−−−一=−正極2−・−−一一
−−−−−−−−−負極3−−−−−−−−−−−−−
−−セパレータ電池の断面構造と示す模式図Figure 1 is a schematic diagram showing the cross-sectional structure of a lithium secondary battery applied to an example of the present invention, and Figure 2 is an electrolytic solution in which LiPFb is dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane. 3 shows the discharge time rate dependence of the cycle life measured for a lithium secondary battery according to the prior art. In the symbols used in FIG. 1, 1. −−−−−−−
---Cross-sectional structure and schematic diagram of separator battery
Claims (1)
用い、遷移金属カルコゲン化合物を正極活物質として用
いたリチウム二次電池において、電解液としてエチレン
カーボネートと 一般式 R_1−O■CH_2CH_2−O■_2R_2(式中
、R_1、R_2はCH_3、C_2H_5、C_3H
_7の中から選ばれるいずれかの炭化水素基であり、R
_1とR_2は同じでもよい)で表されるエーテル化合
物の混合溶媒にリチウム塩を溶解したものを用い、前記
混合溶媒中のエチレンカーボネートの混合比は25〜7
5容量%であることを特徴とするリチウム二次電池。 2、R_1とR_2がC_2H_5である特許請求の範
囲第1項記載のリチウム二次電池。[Claims] 1. In a lithium secondary battery using lithium or a lithium alloy as a negative electrode active material and a transition metal chalcogen compound as a positive electrode active material, ethylene carbonate and the general formula R_1-OCH_2CH_2- are used as an electrolyte. O ■_2R_2 (in the formula, R_1 and R_2 are CH_3, C_2H_5, C_3H
Any hydrocarbon group selected from _7, R
_1 and R_2 may be the same) A lithium salt is dissolved in a mixed solvent of an ether compound represented by
A lithium secondary battery characterized by a capacity of 5%. 2. The lithium secondary battery according to claim 1, wherein R_1 and R_2 are C_2H_5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06403290A JP3158412B2 (en) | 1990-03-16 | 1990-03-16 | Lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06403290A JP3158412B2 (en) | 1990-03-16 | 1990-03-16 | Lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03266372A true JPH03266372A (en) | 1991-11-27 |
JP3158412B2 JP3158412B2 (en) | 2001-04-23 |
Family
ID=13246380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06403290A Expired - Fee Related JP3158412B2 (en) | 1990-03-16 | 1990-03-16 | Lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3158412B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005243543A (en) * | 2004-02-27 | 2005-09-08 | Sanyo Electric Co Ltd | Heat-resistant non-aqueous electrolyte battery |
CN1320685C (en) * | 2001-10-31 | 2007-06-06 | 三星Sdi株式会社 | Organic electrolyte and lithium secondary cell using same |
EP2755273A3 (en) * | 2013-01-11 | 2015-12-02 | Politechnika Warszawska | Mixtures of organic solvents, particularly for galvanic cells, and electrolytes for galvanic cells comprising said mixtures |
WO2018179990A1 (en) * | 2017-03-29 | 2018-10-04 | 株式会社日立製作所 | Semisolid electrolyte solution, semisolid electrolyte, semisolid electrolyte layer, electrode, and secondary battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101690727B1 (en) * | 2015-11-12 | 2016-12-28 | (주)에이엠에스 엔지니어링 | Seismic retrofitting structure without an anchor and with no demage of the existing structure |
-
1990
- 1990-03-16 JP JP06403290A patent/JP3158412B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1320685C (en) * | 2001-10-31 | 2007-06-06 | 三星Sdi株式会社 | Organic electrolyte and lithium secondary cell using same |
JP2005243543A (en) * | 2004-02-27 | 2005-09-08 | Sanyo Electric Co Ltd | Heat-resistant non-aqueous electrolyte battery |
JP4671613B2 (en) * | 2004-02-27 | 2011-04-20 | 三洋電機株式会社 | Heat resistant non-aqueous electrolyte battery |
EP2755273A3 (en) * | 2013-01-11 | 2015-12-02 | Politechnika Warszawska | Mixtures of organic solvents, particularly for galvanic cells, and electrolytes for galvanic cells comprising said mixtures |
WO2018179990A1 (en) * | 2017-03-29 | 2018-10-04 | 株式会社日立製作所 | Semisolid electrolyte solution, semisolid electrolyte, semisolid electrolyte layer, electrode, and secondary battery |
CN110235296A (en) * | 2017-03-29 | 2019-09-13 | 株式会社日立制作所 | Semisolid electrolyte, semisolid electrolyte, semisolid electrolyte layer, electrode, secondary cell |
JPWO2018179990A1 (en) * | 2017-03-29 | 2019-11-07 | 株式会社日立製作所 | Semi-solid electrolyte, semi-solid electrolyte, semi-solid electrolyte layer, electrode, secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP3158412B2 (en) | 2001-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3460407B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH07296853A (en) | Method for charging | |
JPH0845498A (en) | Nonaqueous electrolytic liquid secondary battery | |
JPH10188977A (en) | Lithium secondary battery | |
JPH03266372A (en) | Lithium secondary battery | |
JPH06275268A (en) | Nonaqueous electrolyte secondary battery | |
JPH0547383A (en) | Nonaqueous electrolyte secondary battery and manufacture thereof | |
JP3390195B2 (en) | Non-aqueous electrolyte secondary battery and method of manufacturing the same | |
JPH04328258A (en) | Nonaqueous electrolyte secondary battery | |
JP2730641B2 (en) | Lithium secondary battery | |
JPH01128371A (en) | Nonaqueous electrolyte secondary cell | |
JP3468956B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH06275269A (en) | Nonaqueous electrolyte secondary battery and its manufacture | |
JP3506386B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3663694B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3546597B2 (en) | Non-aqueous electrolyte battery | |
JP3179459B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3278837B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH04249870A (en) | Nonaqueous electrolyte secondary battery | |
JPH09245789A (en) | Non-aqueous electrolyte secondary battery | |
JPH06275264A (en) | Nonaqueous electrolyte secondary battery and its manufacture | |
JPH0554913A (en) | Nonaqueous electrolytic secondary battery | |
JPH09283183A (en) | Non-aqueous electrolyte secondary battery | |
JPS647461B2 (en) | ||
JPH07130396A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080216 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090216 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |