[go: up one dir, main page]

JPH01128371A - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell

Info

Publication number
JPH01128371A
JPH01128371A JP62284466A JP28446687A JPH01128371A JP H01128371 A JPH01128371 A JP H01128371A JP 62284466 A JP62284466 A JP 62284466A JP 28446687 A JP28446687 A JP 28446687A JP H01128371 A JPH01128371 A JP H01128371A
Authority
JP
Japan
Prior art keywords
electrode plate
width
negative electrode
positive electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62284466A
Other languages
Japanese (ja)
Other versions
JP2600214B2 (en
Inventor
Masaaki Yokogawa
横川 雅明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62284466A priority Critical patent/JP2600214B2/en
Publication of JPH01128371A publication Critical patent/JPH01128371A/en
Application granted granted Critical
Publication of JP2600214B2 publication Critical patent/JP2600214B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress the generation of dendrite of lithium separated from the surface of a negative electrode plate and to prevent the inner short circuit by making the width of the negative electrode plate mainly of lithium larger than the width of a positive electrode plate mainly of LiMn2O4. CONSTITUTION:In a nonaqueous electrolyte lithium type secondary cell, the width of the negative electrode plate is made larger than that of the positive electrode plate, to suppress the generation of dendrite of lithium separated from the surface of the negative electrode plate by the repeated charge and discharge and to prevent the inner short circuit, resulting in an improvement of the charge and discharge performance. When such a composition in which the width of the negative electrode plate is made larger than that of the positive electrode plate is compared with the composition in which both widths are equal or the width of the negative electrode plate is smaller than that of the positive electrode plate, a fairly large difference can be observed in the cycle life numbers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非水電解液二次電池に関するものであり、特
に電極構造の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a non-aqueous electrolyte secondary battery, and particularly to an improvement in electrode structure.

〔発明の概要〕[Summary of the invention]

本発明は、リチウムを主体とする負掻板とLiMn2O
4を主体とする正極板とを用いた非水電解液二次電池に
おいて、負極板の幅を正極板の幅よりも大きくすること
により、負極板表面から脱離するリチウムのデンドライ
ト発生を抑制して内部短絡を防止し、充放電サイクル特
性に優れた非水電解液二次電池を実現しようとするもの
である。
The present invention provides a negative scratch plate mainly composed of lithium and a LiMn2O
In a non-aqueous electrolyte secondary battery using a positive electrode plate mainly composed of 4, by making the width of the negative electrode plate larger than the width of the positive electrode plate, the generation of dendrites of lithium desorbed from the surface of the negative electrode plate can be suppressed. The aim is to realize a nonaqueous electrolyte secondary battery that prevents internal short circuits and has excellent charge/discharge cycle characteristics.

〔従来の技術〕[Conventional technology]

負極活物質としてリチウムを使用し電解液に非水電解液
を使用した。いわゆる非水電解液電池は、自己放電の少
ない保存性に優れた電池として知られており、特に5年
〜10年という長期間使用が要求される電子腕時計や種
々のメモリーバックアップ用電源として広く利用される
ようになっている。
Lithium was used as the negative electrode active material, and a non-aqueous electrolyte was used as the electrolyte. So-called non-aqueous electrolyte batteries are known as batteries with low self-discharge and excellent storage stability, and are widely used as power sources for electronic wristwatches and various memory backup devices that require long-term use of 5 to 10 years. It is now possible to do so.

ところで、これら従来使用されている非水電解液電池は
通常は一次電池であるが、長時間経済的に使用できる電
源として再充電可能な非水電解液二次電池への要望が多
く、各方面で研究が進められている。その中で、特に負
極活物質にリチウムを使用する非水電解液二次電池は、
電池電圧が高く、高エネルギー密度の二次電池として期
待されている。
By the way, these conventionally used non-aqueous electrolyte batteries are usually primary batteries, but there are many demands for rechargeable non-aqueous electrolyte secondary batteries as a power source that can be used economically for long periods of time, and there are many demands from various fields. Research is underway. Among them, non-aqueous electrolyte secondary batteries that use lithium as the negative electrode active material are particularly
It is expected to be a secondary battery with high battery voltage and high energy density.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記負極活物質にリチウムを使用した非水電
解液二次電池は、未だ実用化に至っていない。その原因
の一つに負極板の劣化による短寿命が挙げられる。これ
は、負極活物質であるリチウムが充放電の繰り返しによ
り負極板表面より脱離し、その脱離したリチウムがデン
ドライト状に成長し正極板と接触して短絡してしまうか
らである。このため、長寿命の二次電池を得ることがで
きない原因となっている。
However, a non-aqueous electrolyte secondary battery using lithium as the negative electrode active material has not yet been put into practical use. One of the reasons for this is the short lifespan due to deterioration of the negative electrode plate. This is because lithium, which is a negative electrode active material, is desorbed from the surface of the negative electrode plate due to repeated charging and discharging, and the desorbed lithium grows in a dendrite shape and comes into contact with the positive electrode plate, resulting in a short circuit. This is the reason why it is not possible to obtain a long-life secondary battery.

そこで、本発明は上述の実情に鑑みて提案されたもので
あって、負極板表面から脱離するリチウムのデンドライ
ト発生を抑制して内部短絡を防止し、優れた充放電サイ
クル特性が可能な非水電解液二次電池を提供することを
目的とする。
Therefore, the present invention was proposed in view of the above-mentioned circumstances, and is a non-woven fabric that suppresses the generation of dendrites of lithium desorbed from the surface of the negative electrode plate, prevents internal short circuits, and provides excellent charge-discharge cycle characteristics. The purpose is to provide a water electrolyte secondary battery.

〔問題点を解決するための手段) 本発明者等は、上述のような問題点を解決するため鋭意
研究の結果、負極板の幅が正極板の幅と同じかあるいは
それ以下の場合、充放電の際に負極板表面から脱離する
リチウムの特に負極板の幅方向の端部から脱離するリチ
ウムがデンドライト状に発生して成長し、その後セパレ
ータを乗り越えて正極板に接触して短絡するとの知見を
得るに至った。
[Means for Solving the Problems] As a result of intensive research to solve the above-mentioned problems, the present inventors found that when the width of the negative electrode plate is the same as or less than the width of the positive electrode plate, Lithium that is desorbed from the surface of the negative electrode plate during discharge, especially lithium that is desorbed from the widthwise ends of the negative electrode plate, grows in a dendrite shape, and then crosses over the separator and contacts the positive electrode plate, causing a short circuit. We have obtained the following knowledge.

本発明は、かかる知見に基づいて完成されたものであっ
て、リチウムを主体とする負極板とLiM n z O
aを主体とする正極板とがセパレータを介して積層巻回
され電池缶内に収納されてなる非水電解液二次電池にお
いて、上記負極板の幅が上記正極板の幅よりも大である
ことを特徴とするものである。
The present invention was completed based on this knowledge, and includes a negative electrode plate mainly composed of lithium and LiM nz O.
In a non-aqueous electrolyte secondary battery in which a positive electrode plate mainly composed of a and a positive electrode plate are laminated and wound through a separator and housed in a battery can, the width of the negative electrode plate is larger than the width of the positive electrode plate. It is characterized by this.

ここで、特に上記負極板の幅は正極板の幅に対して片側
0.5〜2.0 mm大きくすることが好ましい。
Here, it is particularly preferable that the width of the negative electrode plate be larger than the width of the positive electrode plate by 0.5 to 2.0 mm on one side.

例えば、負極板の幅を正掻板の幅に対して片側0.5m
m以下とした場合は、電極群を形成する際に巻き取りず
れにより負極板の幅が正極板の幅と同じかあるいはそれ
以下になることがあり、リチウムのデンドライト発生を
生ずる虞れがある。これに対して、負極板の幅を正極板
の幅に対して片側2.0mm以上大きくした場合は、充
放電に作用しないリチウムが多くなり無駄になる。
For example, the width of the negative electrode plate is 0.5 m on one side relative to the width of the positive plate.
If it is less than m, the width of the negative electrode plate may become equal to or less than the width of the positive electrode plate due to winding misalignment when forming an electrode group, and there is a possibility that lithium dendrites will occur. On the other hand, if the width of the negative electrode plate is made larger by 2.0 mm or more on one side than the width of the positive electrode plate, the amount of lithium that does not affect charging and discharging increases and is wasted.

本発明に係る非水電解液二次電池の正極板には、正極活
物質であるL i M n zoaが主として使用され
る。そのL i M n zooは、例えば炭酸リチウ
ムと二酸化マンガンを空気中や窒素等の不活性ガス雰囲
気中で400 ’C程度に加熱して反応させるか、また
はヨウ化リチウムと二酸化マンガンとを同様の雰囲気中
等で300°C程度に加熱して反応させることによって
容易に得ることができるものである。
In the positive electrode plate of the non-aqueous electrolyte secondary battery according to the present invention, L i M n zoa, which is a positive electrode active material, is mainly used. For example, lithium carbonate and manganese dioxide are heated to about 400'C in air or an inert gas atmosphere such as nitrogen, or lithium iodide and manganese dioxide are reacted in a similar manner. It can be easily obtained by heating to about 300°C in an atmosphere to cause a reaction.

特に、FeKα線を使用してX線回折を行った際に、回
折角46,1°における回折ピークの半値幅が1.1°
〜2.1 ”であるようなLiMnzOaを正極活物質
として使用すれば、より優れた充放電特性が得られる。
In particular, when X-ray diffraction was performed using FeKα rays, the half-width of the diffraction peak at a diffraction angle of 46.1° was 1.1°.
If LiMnzOa having a particle diameter of ˜2.1” is used as a positive electrode active material, better charge/discharge characteristics can be obtained.

なお、前述の正極活物質には、導電剤や結合剤1分散剤
等が必要に応じて添加されて正極板に加工される。
Note that a conductive agent, a binder, a dispersant, and the like are added to the above-mentioned positive electrode active material as necessary, and the material is processed into a positive electrode plate.

一方負極板には、リチウム箔の如き金属リチウム、リチ
ウム合金(例えばLiAjl!、LiPb。
On the other hand, for the negative electrode plate, metal lithium such as lithium foil, lithium alloy (for example, LiAjl!, LiPb, etc.) is used.

LiSn、LiB1.LiCd等)、さらにはこれら金
属リチウム、リチウム合金に微量の添加元素を添加した
もの等が使用可能である。
LiSn, LiB1. LiCd, etc.), metal lithium, lithium alloys with trace amounts of additional elements, etc. can be used.

また電解液としては、リチウム塩を電解質としこれを有
機溶剤(非水溶媒)に溶解した非水電解液が使用される
Further, as the electrolytic solution, a non-aqueous electrolytic solution in which a lithium salt is used as an electrolyte and dissolved in an organic solvent (non-aqueous solvent) is used.

ここで有機溶剤としては、特に限定されるものではない
が、例えばプロピレンカーボネート、エチレンカーボネ
ート、1.2−ジェトキシエタン、1.2−ジェトキシ
エタン、T−ブチロラクトン、2−メチル−γ−ブチロ
ラクトン、テトラヒドロフラン、2−メチルテトラヒド
ロフラン、1.3−ジオキソラン、4−メチル−1,3
−ジオキソラン、ジエチルエーテル、スルホラン、メチ
ルスルホラン、アセトニトリル、プロピオニトリル等の
単独若しくは2種以上の混合溶剤が使用できる。
Here, the organic solvent is not particularly limited, but for example, propylene carbonate, ethylene carbonate, 1,2-jethoxyethane, 1,2-jethoxyethane, T-butyrolactone, 2-methyl-γ-butyrolactone, tetrahydrofuran, -Methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3
- Solvents such as dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, and propionitrile may be used alone or in combination of two or more.

電解質も従来より公知のものが何れも使用可能であり、
L i Cl0a 、L 1AsFa 、L i PF
6、L i BFa 、L i B(C6H5)4  
、L i Cf、LiBr、、CHsSOsL i、C
FsSOzL を等の1種または2種以上を混合したも
の等が使用可能である。
Any conventionally known electrolyte can be used,
L i Cl0a , L 1AsFa , L i PF
6, L i BFa , L i B (C6H5)4
,L i Cf,LiBr, ,CHsSOsL i,C
It is possible to use one kind or a mixture of two or more kinds, such as FsSOzL.

〔作用〕[Effect]

リチウムを主体とする負極板とLtMnzOaを主体と
する正極板とからなる本発明に係る非水電解液二次電池
は、負極板の幅を正極板の幅よりも大きくすることによ
り、充放電の繰り返しにより負極板表面から脱離するリ
チウムのデンドライト発生が抑制されて内部短絡が防止
される。したがって、充放電サイクル特性が向上する。
The nonaqueous electrolyte secondary battery according to the present invention, which is composed of a negative electrode plate mainly composed of lithium and a positive electrode plate mainly composed of LtMnzOa, has improved charging and discharging performance by making the width of the negative electrode plate larger than the width of the positive electrode plate. By repeating this, the generation of dendrites of lithium desorbed from the surface of the negative electrode plate is suppressed, and internal short circuits are prevented. Therefore, charge/discharge cycle characteristics are improved.

〔実施例] 以下、本発明の具体的な一実施例について図面を参照し
ながら説明するや 本実施例は、リチウムを主体とする負極板とLiMn2
O4を主体とする正極板とがセパレータを介して積層巻
回され電池缶内に収納されてなる円筒型(いわゆるジェ
リーロールタイプ)の非水電解液二次電池に適応したも
のである。
[Example] Hereinafter, a specific example of the present invention will be described with reference to the drawings.
It is suitable for a cylindrical (so-called jelly roll type) non-aqueous electrolyte secondary battery in which a positive electrode plate mainly composed of O4 is laminated and wound through a separator and housed in a battery can.

上記非水電解液二次電池を作成するには、先ず、正極活
物質として市販の二酸化マンガン86.9gに18.5
gの炭酸リチウムを加え、これを乳鉢にて充分に混合し
た。次いでこの混合物をアルミナボート上で450℃の
温度にて空気中、1時間の焼成を行いl、’1Mn20
nを合成した。
To create the above-mentioned non-aqueous electrolyte secondary battery, first, 86.9 g of commercially available manganese dioxide was added to 18.5 g of manganese dioxide as a positive electrode active material.
g of lithium carbonate was added and thoroughly mixed in a mortar. Next, this mixture was calcined on an alumina boat at a temperature of 450°C in air for 1 hour to obtain l, '1Mn20.
n was synthesized.

次に、得られたLiMnzOaを82.8重量部、導電
剤としてグラファイト12重量部、結合剤としてポリフ
ッ化ビニリデン5.2重量部1分散剤としてN−メチル
−2−ピロリドンを湿式混合し、正極ペーストを作成し
た。
Next, 82.8 parts by weight of the obtained LiMnzOa, 12 parts by weight of graphite as a conductive agent, 5.2 parts by weight of polyvinylidene fluoride as a binder, 1 part by weight of polyvinylidene fluoride as a binder, 1 part by weight of N-methyl-2-pyrrolidone as a dispersant were mixed, and a positive electrode was prepared. Created a paste.

次に、この正極ペーストを厚さ0.03mmのアルミニ
ウム集電体両面に均一に塗布し、これをローラプレスし
て厚さ0.14m+の正極シートとなし、幅32mn+
、長さ400非に切断して一端部にアルミニウムのリー
ド(8)を超音波溶接して正極板(1)を作成した。
Next, this positive electrode paste was uniformly applied to both sides of an aluminum current collector with a thickness of 0.03 mm, and this was roller pressed to form a positive electrode sheet with a thickness of 0.14 m+, and a width of 32 mm+.
A positive electrode plate (1) was prepared by cutting the positive electrode plate (1) into pieces having a length of 400 mm and ultrasonically welding an aluminum lead (8) to one end.

一方、負極活物質として厚さ0.046mm 、長さ4
00mmのリチウム箔を、上記正極板幅W I(32m
+w)よりもそれぞれ片側:2+n+、  1 mm、
 0.5mff1大きくなるように当該リチウム箔の幅
W!を36mm、 34mm、 33mmとして切断し
た後、端部にニッケルリードを圧着して負極板(2)を
各々作成した。
On the other hand, the negative electrode active material has a thickness of 0.046 mm and a length of 4
00 mm of lithium foil was placed with the above positive electrode plate width W I (32 m
+w) on each side: 2+n+, 1 mm,
The width W of the lithium foil is increased by 0.5mff1! After cutting into 36 mm, 34 mm, and 33 mm, nickel leads were crimped to the ends to create negative electrode plates (2).

次に、先の正極板(1)とこの負極板(2)とをポリプ
ロピレン製のセパレータ(3)を介してロール状に巻き
取って積層化し、両端面に絶縁板(4)を配置してニッ
ケルメッキを施した鉄製毎(5)に収納した。ここで、
前記鉄製毎(5)の内周面には負極板(2)が接するこ
とになり、当該鉄製缶(5)は負極臼に相当することに
なる。
Next, the above positive electrode plate (1) and this negative electrode plate (2) are rolled up and laminated through a polypropylene separator (3), and insulating plates (4) are arranged on both end faces. It was stored in a nickel-plated iron box (5). here,
The negative electrode plate (2) comes into contact with the inner peripheral surface of the iron can (5), and the iron can (5) corresponds to a negative electrode mill.

次いで、LiPFaを1モル/2の割合で溶解した炭酸
プロピレンと1,2−ジメトキシエタンの混合電解液を
前記鉄製毎(5)内に含浸せしめ、ガスケット(6)を
介してやはりニッケルメッキを施した鉄よりなる蓋体(
7)で封口した。なお、この蓋体(7)の内面には、正
掻板(1)と接続されるリード(8)が溶接され、当該
蓋体(7)が電池の正捲缶となっている。
Next, a mixed electrolyte of propylene carbonate and 1,2-dimethoxyethane in which LiPFa was dissolved at a ratio of 1 mol/2 was impregnated into the steel shell (5), and nickel plating was also applied via the gasket (6). The lid body is made of iron (
7). A lead (8) connected to the winding plate (1) is welded to the inner surface of the lid (7), and the lid (7) serves as a winding can for the battery.

以上により、外形13.8mm、高さ42mmの円筒型
の非水電解液二次電池A、B、Cをそれぞれ組み立てた
。なお、上記電池Aのリチウム箔の幅は36mm、電池
Bのリチウム箔の幅は34mm、電池Cのリチウム箔の
幅は33mmである。
Through the above steps, cylindrical nonaqueous electrolyte secondary batteries A, B, and C each having an outer diameter of 13.8 mm and a height of 42 mm were assembled. The width of the lithium foil in Battery A is 36 mm, the width of the lithium foil in Battery B is 34 mm, and the width of the lithium foil in Battery C is 33 mm.

上較孤上 先の実施例と同様の手法により厚さ0.14mm、幅3
2mm、長さ400Iの正極板(1)を作成し、次に厚
さ0.046mm 、長さ400mm 、正極板(1)
の幅と同じ321III1幅の負極板(2)を作成して
、以下実施例と同じ方法で円筒型の非水電解液二次電池
りを組み立てた。
A thickness of 0.14 mm and a width of 3
Create a positive electrode plate (1) with a thickness of 2 mm and a length of 400I, then create a positive electrode plate (1) with a thickness of 0.046 mm and a length of 400 mm.
A negative electrode plate (2) having a width of 321III1, which is the same as the width of the sample, was prepared, and a cylindrical non-aqueous electrolyte secondary battery was assembled in the same manner as in the example.

止較■又 先の実施例と同様の手法により厚さ0.14mm、幅3
2開、長さ400mmの正極板(1)を作成し、次に厚
さ0.046mm 、長さ4QOmm 、正極板(1)
の幅よりも小さい30mm幅の負極板(2)を作成して
、以下実施例と同じ方法で円筒型の非水電解液二次電池
Eを組み立てた。
Comparison ■Also, using the same method as in the previous example, a thickness of 0.14 mm and a width of 3
Create a positive electrode plate (1) with 2 openings and a length of 400mm, then create a positive electrode plate (1) with a thickness of 0.046mm and a length of 4QOmm.
A negative electrode plate (2) having a width of 30 mm, which is smaller than the width of , was created, and a cylindrical non-aqueous electrolyte secondary battery E was assembled in the same manner as in the example below.

これら電池A、B、C,D、Hについて、250mAの
定電流による終止電圧2.0■までの放電を行った後、
3.9■終止電圧で60mA、8時間の充電を行い、充
電から放電までの休止時間を24時間とし、これを1サ
イクルとしてサイクル寿命試験を実施した。なお、この
サイクル寿命試験におけるサイクル寿命終期は、初期容
量の50%に低下した時点とした。その結果を第1表に
示す。また、第2図には各電池A、B、C,D、Eにつ
いてのサイクル寿命回数と放電容量を示す。なお、第2
図中A線は電池A、B線は電池B、C線は電池C5D線
は電池り、E線は電池已にそれぞれ対応している。
After discharging these batteries A, B, C, D, and H to a final voltage of 2.0 ■ with a constant current of 250 mA,
A cycle life test was carried out by charging at a final voltage of 3.9■ at 60 mA for 8 hours, with a rest period of 24 hours from charging to discharging, and using this as one cycle. The end of the cycle life in this cycle life test was defined as the time when the capacity decreased to 50% of the initial capacity. The results are shown in Table 1. Further, FIG. 2 shows the number of cycle life and discharge capacity for each battery A, B, C, D, and E. In addition, the second
In the figure, the A line corresponds to the battery A, the B line to the battery B, the C line to the battery C, the D line to the battery, and the E line to the battery.

第1表 第1表および第2図から分かるように、負極板(2)の
幅を正極板(1)の幅よりも太き(した実施例の電池A
、B、Cでは、サイクル寿命回数はいずれも125回以
上と長寿命であり、放電容量もlサイクルから125サ
イクルまで約400 mAt1と一定した値を示してお
り、優れたサイクル寿命特性を示していることが判明し
た。これに対して、負極板(2)の幅が正極板(1)の
幅と同じかあるいはそれ以下の電池り、  Eでは、サ
イクル寿命回数はそれぞれ84回、54回と短寿命であ
り、放電容量も1サイクル目から減少し最終サイクルま
で一途下降し、その最終サイクル目ではその放電容量は
約230 mAH程度と低い値を示している。
As can be seen from Table 1 and FIG.
, B, and C all have a long cycle life of 125 times or more, and the discharge capacity remains constant at approximately 400 mAt1 from 1 cycle to 125 cycles, indicating excellent cycle life characteristics. It turned out that there was. On the other hand, battery E, in which the width of the negative electrode plate (2) is the same as or smaller than the width of the positive electrode plate (1), has a short cycle life of 84 and 54 cycles, respectively, and has a short discharge life. The capacity also decreases from the first cycle and continues to decrease until the final cycle, and at the final cycle, the discharge capacity shows a low value of about 230 mAH.

これら短寿命であった電池り、 Eを解体調査したとこ
ろ、負極板(2)の幅方向の両端部で当該負極板(2)
表面から脱離したリチウムがデンドライト状に発生し成
長しており、そのリチウムのデンドライトがセパレータ
を乗り越えて正極板(1)と接触して内部短絡している
ことが認められた。これに対して、負極板(2)の幅を
正極板(1)の幅よりも大きくした電池A、B、Cでは
、正極板(1)の幅よりも広い部分の負極板(2)〔す
なわち正極板と対向していない負極板(2)〕のリチウ
ムが充放電に使用されておらず、未反応のリチウムとし
て負極板(2)表面に残っており、リチウムのデンドラ
イト発生は認められなかった。
When we disassembled and inspected these short-life batteries, we found that the negative electrode plate (2) was damaged at both widthwise ends of the negative electrode plate (2).
It was observed that lithium desorbed from the surface was generated and grown in the form of dendrites, and that the lithium dendrites climbed over the separator and came into contact with the positive electrode plate (1), causing an internal short circuit. On the other hand, in batteries A, B, and C in which the width of the negative electrode plate (2) is larger than the width of the positive electrode plate (1), the width of the negative electrode plate (2) is larger than the width of the positive electrode plate (1). In other words, the lithium on the negative electrode plate (2), which is not facing the positive electrode plate, is not used for charging and discharging, and remains as unreacted lithium on the surface of the negative electrode plate (2), and no lithium dendrite formation is observed. Ta.

上記負極板(2)の幅が正極板(1)の幅と同じかある
いはそれ以下で、リチウムのデンドライトがなぜ発生す
るかは明らかではないが、負極板(2)の幅を正極板(
1)の幅より大きくすることによりリチウムのデンドラ
イト発生が抑制されて内部短絡が防止され、電池のリサ
イクル寿命特性が向上するのは以上のことから明らかで
ある。
It is not clear why lithium dendrites occur when the width of the negative electrode plate (2) is the same as or less than the width of the positive electrode plate (1), but the width of the negative electrode plate (2) is the same as or less than the width of the positive electrode plate (1).
It is clear from the above that by making the width larger than 1), the generation of lithium dendrites is suppressed, internal short circuits are prevented, and the recycling life characteristics of the battery are improved.

また、上記負極板(2)の幅を正極板の幅よりも大きく
設定することによりリチウムのデンドライト発生が抑制
されることが分かったが、その負極板(2)の幅は、第
1表および第2図からも分かるように正極板(1)の幅
に対して片側0.5 mm以上とした場合、サイクル寿
命回数と放電容量特性の両方とも良好な値となっている
。これに対して負極板(2)の幅を正極板(1)の幅に
対して片側11大きくした電池Bは、正極板(1)の幅
に対して片側2、C1大きくした電池Aよりも僅かなが
ら放電容量特性が優れている。このため、負極板(2)
の幅の上限は、正極板(1)の幅に対して片側2.0m
m以下であることが好ましい。
In addition, it was found that the generation of lithium dendrites was suppressed by setting the width of the negative electrode plate (2) larger than the width of the positive electrode plate. As can be seen from FIG. 2, when the width of the positive electrode plate (1) is set to 0.5 mm or more on one side, both the number of cycle life and the discharge capacity characteristics have good values. On the other hand, battery B, in which the width of the negative electrode plate (2) is 11 larger on one side than the width of the positive electrode plate (1), is larger than battery A, in which the width of the negative electrode plate (2) is larger on one side by 2, C1 than the width of the positive electrode plate (1). The discharge capacity characteristics are slightly superior. For this reason, the negative electrode plate (2)
The upper limit of the width is 2.0 m on one side relative to the width of the positive electrode plate (1).
It is preferable that it is below m.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかように、本発明の非水電解液二
次電池においては、リチウムを主体とする負極板とLi
MnzOaを主体とする正極板とを用い、その負極板の
幅を正極板の幅よりも大きくしているので、負極板表面
から脱離するリチウムのデンドライト発生を抑制するこ
とができ、内部短絡を防止することができる。したがっ
て、優れた充放電サイクル特性を有する二次電池とする
ことができ、その工業的価値は大である。
As is clear from the above description, in the non-aqueous electrolyte secondary battery of the present invention, a negative electrode plate mainly composed of lithium and a
Since a positive electrode plate mainly composed of MnzOa is used, and the width of the negative electrode plate is made larger than the width of the positive electrode plate, it is possible to suppress the generation of dendrites of lithium desorbed from the surface of the negative electrode plate, and to prevent internal short circuits. It can be prevented. Therefore, a secondary battery having excellent charge/discharge cycle characteristics can be obtained, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は円筒型の非水電解液二次電池の構成を示す一部
破断側面図であり、第2図はかかる構成の非水電解液二
次電池におけるサイクル回数と放電容量の関係を示す特
性図である。 1・・・正極板 2・・・負極板 3・ ・ ・セパレータ
FIG. 1 is a partially cutaway side view showing the configuration of a cylindrical non-aqueous electrolyte secondary battery, and FIG. 2 shows the relationship between the number of cycles and discharge capacity in a non-aqueous electrolyte secondary battery with such a configuration. It is a characteristic diagram. 1... Positive electrode plate 2... Negative electrode plate 3... Separator

Claims (1)

【特許請求の範囲】  リチウムを主体とする負極板とLiMn_2O_4を
主体とする正極板とがセパレータを介して積層巻回され
電池缶内に収納されてなる非水電解液二次電池において
、 上記負極板の幅が上記正極板の幅よりも大であることを
特徴とする非水電解液二次電池。
[Scope of Claims] A non-aqueous electrolyte secondary battery in which a negative electrode plate mainly composed of lithium and a positive electrode plate mainly composed of LiMn_2O_4 are laminated and wound through a separator and housed in a battery can, A non-aqueous electrolyte secondary battery characterized in that the width of the plate is larger than the width of the positive electrode plate.
JP62284466A 1987-11-11 1987-11-11 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2600214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284466A JP2600214B2 (en) 1987-11-11 1987-11-11 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284466A JP2600214B2 (en) 1987-11-11 1987-11-11 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH01128371A true JPH01128371A (en) 1989-05-22
JP2600214B2 JP2600214B2 (en) 1997-04-16

Family

ID=17678892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284466A Expired - Lifetime JP2600214B2 (en) 1987-11-11 1987-11-11 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2600214B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690520A1 (en) * 1994-05-30 1996-01-03 Canon Kabushiki Kaisha Rechargeable batteries
JPH11162522A (en) * 1997-12-02 1999-06-18 Toshiba Battery Co Ltd Nonaqueous electrolytic solution secondary battery
EP0989623A1 (en) * 1998-09-21 2000-03-29 Wilson Greatbatch Ltd. Hermetically sealed lithium ion secondary electrochemical cell
EP0989624A1 (en) * 1998-09-21 2000-03-29 Wilson Greatbatch Ltd. Lithium-ion secondary electrochemical cell constructed of low magnetic susceptibility materials
CN104241675A (en) * 2014-08-29 2014-12-24 孙旭阳 Magnetic control metal secondary battery
CN110024204A (en) * 2016-12-07 2019-07-16 日本碍子株式会社 Electrode/partition laminated body and has the electrode/partition laminated body nickel-zinc cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220362A (en) * 1982-06-02 1983-12-21 インプリコ・ベー・ベー electrochemical cell
JPS59146878U (en) * 1983-03-20 1984-10-01 日立マクセル株式会社 Coin-type lithium secondary battery
JPS59205160A (en) * 1983-05-07 1984-11-20 Toshiba Battery Co Ltd Cylindrical nonaqueous electrolyte battery
JPS60175378A (en) * 1984-02-20 1985-09-09 Hitachi Maxell Ltd Production of spiral electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220362A (en) * 1982-06-02 1983-12-21 インプリコ・ベー・ベー electrochemical cell
JPS59146878U (en) * 1983-03-20 1984-10-01 日立マクセル株式会社 Coin-type lithium secondary battery
JPS59205160A (en) * 1983-05-07 1984-11-20 Toshiba Battery Co Ltd Cylindrical nonaqueous electrolyte battery
JPS60175378A (en) * 1984-02-20 1985-09-09 Hitachi Maxell Ltd Production of spiral electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690520A1 (en) * 1994-05-30 1996-01-03 Canon Kabushiki Kaisha Rechargeable batteries
JPH11162522A (en) * 1997-12-02 1999-06-18 Toshiba Battery Co Ltd Nonaqueous electrolytic solution secondary battery
EP0989623A1 (en) * 1998-09-21 2000-03-29 Wilson Greatbatch Ltd. Hermetically sealed lithium ion secondary electrochemical cell
EP0989624A1 (en) * 1998-09-21 2000-03-29 Wilson Greatbatch Ltd. Lithium-ion secondary electrochemical cell constructed of low magnetic susceptibility materials
US6245464B1 (en) 1998-09-21 2001-06-12 Wilson Greatbatch Ltd. Hermetically sealed lithium-ion secondary electrochemical cell
CN104241675A (en) * 2014-08-29 2014-12-24 孙旭阳 Magnetic control metal secondary battery
CN110024204A (en) * 2016-12-07 2019-07-16 日本碍子株式会社 Electrode/partition laminated body and has the electrode/partition laminated body nickel-zinc cell

Also Published As

Publication number Publication date
JP2600214B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
EP0573040B1 (en) A positive electrode for lithium secondary battery and its method of manufacture, and a nonaqueous electrolyte lithium secondary battery employing the positive electrode
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH08171917A (en) Cell
JP2000011996A (en) Non-aqueous electrolyte secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP3396696B2 (en) Rechargeable battery
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JP2751624B2 (en) Non-aqueous electrolyte secondary battery
JPH09259863A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH0536411A (en) Nonaqueous solvent secondary battery
JP3508411B2 (en) Lithium ion secondary battery
JPH01128371A (en) Nonaqueous electrolyte secondary cell
JPH0547383A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JPH07153496A (en) Secondary battery
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JP3363585B2 (en) Non-aqueous electrolyte battery
JPH0817471A (en) Non-aqueous electrolytic secondary battery
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JP2002231312A (en) Nonaqueous electrolyte secondary battery
JPH03266372A (en) Lithium secondary battery
JPH0963562A (en) Nonaqueous-electrolyte secondary battery
JP2699364B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term