[go: up one dir, main page]

JPH0325412B2 - - Google Patents

Info

Publication number
JPH0325412B2
JPH0325412B2 JP57183433A JP18343382A JPH0325412B2 JP H0325412 B2 JPH0325412 B2 JP H0325412B2 JP 57183433 A JP57183433 A JP 57183433A JP 18343382 A JP18343382 A JP 18343382A JP H0325412 B2 JPH0325412 B2 JP H0325412B2
Authority
JP
Japan
Prior art keywords
group
formula
reaction
compound
protected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57183433A
Other languages
Japanese (ja)
Other versions
JPS5973549A (en
Inventor
Satoshi Horii
Yukihiko Kameda
Hiroshi Fukase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP57183433A priority Critical patent/JPS5973549A/en
Priority to US06/475,615 priority patent/US4595678A/en
Priority to EP83301482A priority patent/EP0089812B1/en
Priority to DE8383301482T priority patent/DE3366520D1/en
Priority to CA000424008A priority patent/CA1208211A/en
Publication of JPS5973549A publication Critical patent/JPS5973549A/en
Publication of JPH0325412B2 publication Critical patent/JPH0325412B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Alcoholic Beverages (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fodder In General (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一般式 〔式中、Zは水酸基またはアミノ基を示す。〕
で表わされる化合物に関する。 本発明の化合物〔〕は擬似アミノ糖〔ザ・ジ
ヤーナル・オブ・オーガニツク・ケミストリー
(J.Org.Chem.)第31巻,1516〜1521頁(1966年)
に擬似糖(pseudo−sugar)なる用語が定義され
ている〕のN−置換誘導体である。これまでに、
擬似アミノ糖およびそれらのN−置換誘導体類に
ついては、バリエナミン(valiena−mine)およ
びバリエナミンのN−置換誘導体がα−グルコシ
ダーゼ阻害活性を有すること〔ザ・ジヤーナル・
オブ・アンテイバイオテイクス(J.Antibiotics)
第33巻,1575〜1576頁(1980年),特開昭57−
59813および特開昭57−64648〕が知られている
が、これらの化合物のα−グルコシダーゼ阻害活
性はまだ満足のいくものではない。 本発明者らは、擬似アミノ糖類の一つであるバ
リオールアミン(valiolamine)、すなわち式 〔式中の水酸基は保護されていてもよい〕で表
わされる化合物の各種N−置換誘導体について鋭
意研究を行なつていたところ、一般式〔〕で表
わされる擬似アミノ糖のN−置換誘導体が強いα
−グルコシダーゼ阻害活性を有することを知見し
さらにこれらの知見に基づき種々検討した結果本
発明を完成した。 すなわち、本発明は (1) 一般式〔〕で表わされる化合物、 〔式中、Z′は保護されているアミノ基を示す。
式中の水酸基は保護されていてもよい〕で表わさ
れる環状ケトンとを反応させ、ついで還元反応に
付し、所望により脱保護基反応に付することを特
徴とする一般式 〔式中、Z″はアミノ基を示す。〕で表わされる
化合物の製造法、 (3) 式〔〕で表わされる化合物と一般式〔〕
で表わされる環状ケトンとを反応させ、ついで
還元反応に付して得られる一般式 〔式中の記号は前記と同意義。式中の水酸基は
保護されていてもよい〕で表わされる化合物のア
ミノ基の保護基を除去した後、酸化的脱アミノ化
剤を作用させて得られる一般式 〔式中の水酸基は保護されていてもよい〕で表
わされる化合物を還元剤と作用させ、所望により
脱保護基反応に付すことを特徴とする一般式 で表わされる化合物の製造法及び (4) 一般式〔〕で表わされる化合物を含有する
α−グルコシダーゼ阻害剤に関する。 なお、本発明の明細書中に化合物の慣用名と
してバリダミンおよびバリオールアミンなる用
語を用いた場合の各々の化合物の化学構造およ
び各炭素原子の位置番号は次式で表わされる。
The present invention is based on the general formula [In the formula, Z represents a hydroxyl group or an amino group. ]
It relates to a compound represented by The compound of the present invention [] is a pseudo-amino sugar [The Journal of Organic Chemistry (J.Org.Chem.) Vol. 31, pp. 1516-1521 (1966)
The term "pseudo-sugar" is defined in So far,
Regarding pseudo-amino sugars and their N-substituted derivatives, valienamine and N-substituted derivatives of valienamine have α-glucosidase inhibitory activity [The Journal.
Of Antibiotics (J.Antibiotics)
Volume 33, pages 1575-1576 (1980), JP-A-57-
59813 and JP-A-57-64648], but the α-glucosidase inhibitory activity of these compounds is still not satisfactory. The present inventors have discovered that one of the pseudo-amino sugars, valiolamine, has the formula As a result of intensive research on various N-substituted derivatives of the compound represented by [the hydroxyl group in the formula may be protected], it was found that the N-substituted derivative of the pseudo-amino sugar represented by the general formula [] is the strongest. α
- It was discovered that the present invention has glucosidase inhibitory activity, and as a result of various studies based on these findings, the present invention was completed. That is, the present invention provides (1) a compound represented by the general formula [], [In the formula, Z′ represents a protected amino group.
The hydroxyl group in the formula may be protected] is reacted with a cyclic ketone, then subjected to a reduction reaction, and optionally subjected to a deprotection reaction. [In the formula, Z'' represents an amino group.] A method for producing a compound represented by (3) a compound represented by the formula [] and the general formula []
The general formula obtained by reacting with a cyclic ketone represented by and then subjecting it to a reduction reaction [Symbols in the formula have the same meanings as above. The hydroxyl group in the formula may be protected] After removing the protecting group of the amino group of the compound represented by the formula, the general formula obtained by reacting with an oxidative deaminating agent A general formula characterized in that a compound represented by [the hydroxyl group in the formula may be protected] is reacted with a reducing agent and optionally subjected to a deprotection reaction. The present invention relates to a method for producing a compound represented by the formula (4) and an α-glucosidase inhibitor containing the compound represented by the general formula []. In addition, when the terms validamine and variolamine are used as common names of compounds in the specification of the present invention, the chemical structure of each compound and the position number of each carbon atom are represented by the following formula.

【式】【formula】

【式】 一般式〔〕で表わされる擬似アミノ糖のN−
置換誘導体におけるN−置換分は次式(各炭素原
子の位置番号を付記した)、即ち4−置換−2,
3−ジヒドロキシ−6−メチルシクロヘキシル基
であり、 〔式中の記号は前記と同意義〕 Zで表わされる置換基、2個のヒドロキシル基お
よび1個のメチル基の立体配置の違いにより各種
の立体異性体が存在する。これらを例示すれば
(2,4,6/3)−,(2,3,6/4)−,(2,
3,4/6)−,(2,3/4,6)−,(2,4/
3,6)−,(2,6/3,4)−,(2/3,4,
6)−,(2,3,4,6/0)−異性体などであ
る〔この立体配置の命名法についてはIuPAC−
IuBシクリトール1973年勧告(IuPAC−
IuB1973Recommendation for cyclitol),ピユ
ア・アンド・アプライド・ケミストリー(Pure
Appl.Chem.)第37巻,285〜297頁(1975年)参
照〕。更に一般式〔〕で表わされる擬似アミノ
糖のN−置換誘導体にはバリオールアミン部分の
アミノ基と4−置換−2,3−ジヒドロキシ−6
−メチルシクロヘキシル基との結合部分での立体
配置の相違によつてN−〔(1R)−4−置換−2,
3−ジヒドロキシ−6−メチルシクロヘキシル〕
バリオールアミン(以下(1R)−異性体と称す
る)とN−〔(1S)−4−置換−2,3−ジヒドロ
キシ−6−メチルシクロヘキシル〕バリオールア
ミン(以下(1S)−異性体と称する)の2種類の
立体異性体が存在する。 (1R)−異性体のうち好ましいものを更に具体
的に示せば一般式 〔式中の記号は前記と同意義、結合手〜〜はR
配位またはS配位のいずれかを示す〕で表わされ
る化合物であり、このような化合物の具体例とし
ては、N−〔(1R,2R)−(2,6/3,4)−4
−アミノ−2,3−ジヒドロキシ−6−メチルシ
クロヘキシル〕バリオールアミン,N−〔(1R,
2S)−(2,6/3,4)−2,3,4−トリヒド
ロキシ−6−メチルシクロヘキシル〕バリオール
アミン,N−〔(1R,2S)−(2,4,6/3)−
2,3,4−トリヒドロキシ−6−メチルシクロ
ヘキシル〕バリオールアミンなどが挙げられる。 (1S)−異性体のうち好ましいものをさらに具
体的に示せば一般式 〔式中の記号は前記と同意義、結合手〜〜はR
配位またはS配位のいずれかを示す〕で表わされ
る化合物であり、このような化合物の具体例とし
ては、N−〔(1S,2S)−(2,6/3,4)−4−
アミノ−2,3−ジヒドロキシ−6−メチルシク
ロヘキシル〕バリオールアミン,N−〔(1S,2S)
−(2,6/3,4)−2,3,4−トリヒドロキ
シ−6−メチルシクロヘキシル〕バリオールアミ
ン,N−〔(1S,2S)−(2,4,6/3)−2,
3,4−トリヒドロキシ−6−メチルシクロヘキ
シル〕バリオールアミンなどが挙げられる。 上記化合物〔a〕および〔b〕は両者とも
α−グルコシダーゼ阻害活性を有しているが〔
a〕すなわち(1R,2S)異性体の方が対応する
〔b〕すなわち(1S,2S)異性体よりも一般に
強いα−グルコシダーゼ阻害活性を有する。 上記式中のアミノ基の保護基としては、アミノ
糖、アミノシクリトールおよびペプチドの化学で
アミノ基の保護基として用いられる保護基、例え
ば、ホルミル,アセチル,プロピオニル,ブチリ
ル,トリフルオロアセチル,トリクロロアセチル
などのハロゲンで置換されていてもよい炭素数1
から5のアルカノイル基、ベンゾイル,p−クロ
ロベンゾイル,p−ニトロベンゾイル,p−メト
キシベンゾイルなどのニトロ基,炭素数1から4
の低級アルコキシ基,ハロゲンで置換されていて
もよいアロイル基、メトキシカルボニル基,エト
キシカルボニル,1−プロポキシカルボニル,
tert−ブトキシカルボニルなどの炭素数2から6
のアルコキシカルボニル基、ベンジルオキシカル
ボニル,p−ニトロベンジルオキシカルボニル,
p−メトキシベンジルオキシカルボニル,2,4
−ジクロロベンジルオキシカルボニルなどのニト
ロ基,炭素数1から4の低級アルコキシ基,ハロ
ゲンで置換されていてもよいアラルキルオキシカ
ルボニル基、2,4−ジニトロフエニル基などの
ニトロ基置換フエニル基、フタリル基等が用いら
れる。 上記式中の水酸基の保護基としては、糖の化学
で水酸基の保護基として用いられる保護基、例え
ば、アシル型保護基、エーテル型保護基、アセタ
ール型保護基、ケタール型保護基、オルトエステ
ル型保護基等が用いられる。 アシル型保護基としては例えば、ハロゲン,炭
素数1〜4の低級アルコキシ基;ハロゲンを有し
ていてもよいフエノキシ基で置換されていてもよ
い炭素数1〜5のアルカノイル基;ニトロ基,フ
エニル基で置換されていてもよいベンゾイル基;
ハロゲンで置換されていてもよい炭素数2〜6の
アルコキシカルボニル基;炭素数2〜4のアルケ
ニルオキシカルボニル基;炭素数1〜4の低級ア
ルコキシ基またはニトロ基で置換されていてもよ
いベンジルオキシカルボニル基またはニトロ置換
フエノキシカルボニル基等が用いられる。 上記のハロゲンとしてはフツ素,塩素,臭素,
ヨウ素等が用いられる。 上記の炭素数1〜4の低級アルコキシル基とし
ては、例えば上記ハロゲンで置換されていてもよ
いメトキシル,エトキシル,プロポキシル,ブト
キシル基等が用いられる。 上記の炭素数1〜5のアルカノイル基として
は、例えば、ホルミル,アセチル,プロピオニ
ル,ブチリル,イソブチリル,バレリル,イソバ
レリル,ピバロイル基等が用いられる。 上記の炭素数2〜6のアルコキシカルボニル基
におけるアルコキシル基としては、例えば上記の
ハロゲンで置換されていてもよいメトキシル,エ
トキシル,プロポキシル,ブトキシル,ペンチル
オキシル,ビニルオキシル,アリルオキシル基等
が用いられる。 上記の炭素数2〜4のアルケニルオキシカルボ
ニル基における炭素数2〜4のアルケニル基とし
てはビニル,アリル,イソプロペニル,1−プロ
ペニル,1−ブテニル,2−ブテニル,3−ブテ
ニル等が用いられる。 アシル型保護基の例を更に具体的に示せば、ホ
ルミル,アセチル,クロロアセチル,ジクロロア
セチル,トリクロロアセチル,トリフルオロアセ
チル,メトキシアセチル,トリフエニルメトキシ
アセチル,フエノキシアセチル,p−クロロフエ
ノキシアセチル,プロピオニル,イソプロピオニ
ル、3−フエニルプロピオニル,イソブチリル,
ピバロイル;ベンゾイル,p−ニトロベンゾイ
ル,p−フエニルベンゾイル;メトキシカルボニ
ル,エトキシカルボニル,2,2,2−トリクロ
ロエトキシカルボニル,イソブチルオキシカルボ
ニル;ビニルオキシカルボニル,アリルオキシカ
ルボニル;ベンジルオキシカルボニル,p−メト
キシベンジルオキシカルボニル,3,4−ジメト
キシベンジルオキシカルボニル,p−ニトロベン
ジルオキシカルボニル;p−ニトロフエノキシカ
ルボニル等である。 エーテル型保護基としては例えば、ハロゲン,
炭素数1〜4の低級アルコキシル基,ベンジルオ
キシル基,フエニル基で置換されていてもよい炭
素数1〜5の低級アルキル基;炭素数2〜4のア
ルケニル基;炭素数1〜5の低級アルキル基,フ
エニル基,ベンジル基等が置換基であるトリ置換
シリル基;炭素数1〜4の低級アルコキシル基,
ニトロ基で置換されていてもよいベンジル基;炭
素数1〜4の低級アルコキシル基,ハロゲンで置
換されていてもよいテトラヒドロピラニル基また
はテトラヒドロフラニル基等が用いられる。 上記の炭素数1〜5の低級アルキル基として
は、例えばメチル,エチル,プロピル,イソプロ
ピル,ブチル,イソブチル,sec−ブチル,tert
−ブチル,ペンチル,イソペンチル,ネオペンチ
ル等が用いられる。上記のハロゲン、炭素数1〜
4の低級アルコキシル基および炭素数2〜4のア
ルケニル基はアシル型保護基の場合と同様のもの
が用いられる。 エーテル型保護基を更に具体的に示せば、メチ
ル,メトキシメチル,ベンジルオキシメチル,
tert−ブトキシメチル,2−メトキシエトキシメ
チル,2,2,2−トリクロロメトキシメチル,
エチル,1−エトキシエチル,1−メチル−1−
メトキシエチル,2,2,2−トリクロロエチ
ル,プロピル,イソプロピル,ブチル,イソブチ
ル,sec−ブチル,tert−ブチル,エトキシエチ
ル,トリフエニルメチル,p−メトキシフエニル
ジフエニルメチル;アリル;トリメチルシリル,
tert−ブチルシリル,tert−ブチルジフエニルシ
リル;ベンジル,p−メトキシベンジル,p−ニ
トロベンジル,p−クロロベンジル;テトラヒド
ロピラニル,3−ブロモテトラヒドロピラニル,
4−メトキシテトラヒドロピラニル,テトラヒド
ロフラニル等である。 アセタール型,ケタール型およびオルトエステ
ル型保護基は好ましくは1〜10の炭素数からな
る。その具体例を示せば、メチレン,エチリデ
ン,1−tert−ブチルエチリデン,1−フエニル
エチリデン,2,2,2−トリクロロエチリデ
ン;イソプロピリデン,ブチリデン,シクロペン
チリデン,シクロヘキシリデン,シクロヘプチリ
デン;ベンジリデン,p−メトキシベンジリデ
ン,2,4−ジメトキシベンジリデン,p−ジメ
チルアミノベンジリデン,O−ニトロベンジリデ
ン;メトキシメチレン,エトキシメチレン,ジメ
トキシメチレン,1−メトキシエチリデン,1,
2−ジメトキシエチリデン等である。 またスタンオキサン型保護基,環状カルボナー
ト型保護基,環状ボロナート型保護基等も同様に
用いられる。 本発明の化合物〔〕は例えば塩酸,臭化水素
酸,硫酸,リン酸,硝酸などの無機酸や例えば酢
酸,りんご酸,くえん酸,アスコルビン酸,マン
デル酸,メタンスルホン酸などの有機酸と塩を形
成するがこれらの塩も本発明に含まれる。 上記の擬似アミノ糖のN−置換誘導体〔〕ま
たはその塩は安定な結晶または粉末で毒性もほと
んどない(ラツトLD50,500mg/Kg以上)。 化合物〔〕またはその塩はα−グルコシダー
ゼ阻害作用を有し、人間および人間以外の動物の
炭水化物の代謝を抑制するために、例えば血糖上
昇抑制作用を有しており、過血糖症状および過血
糖に起因する種々の疾患、例えば、肥満症,脂肪
過多症,過脂肪血症(動脈硬化症),糖尿病,前
糖尿病及び口腔微生物による糖代謝に帰因する疾
病、例えば、虫歯等の予防に有用な化合物であ
る。 本発明の化合物〔〕またはその塩は、例え
ば、水,エタノール,エチレングリコール,ポリ
エチレングリコール等の液状担体、デンプン,セ
ルロース,ポリアミド粉末等の固型担体等の無毒
性担体で希釈して、アンプル剤,顆粒剤,錠剤,
丸剤,カプセル剤,シロツプ剤等に常法にしたが
つて調製し、上記種々の用途に供することができ
る。また、甘味剤,保存剤,分散剤,着色剤も共
用することができる。 本発明の化合物〔〕またはその塩は、単独ま
たは無毒性の担体と混合して、食事ごとに、食事
とともに、あるいは食前または食後に、経口的ま
たは非経口的に、好ましくは経口的に投与する。 具体的には、例えば、成人一人あたり、化合物
〔〕またはその塩を約10〜200mg含有する製剤を
食事ごとに、食事とともにあるいは食前または食
後に服用することによつて喫食による血中のグル
コースの濃度の増加を抑制することができるの
で、上記の疾病の予防および治療に有効である。 本発明の化合物〔〕またはその塩はα−グル
コシダーゼ阻害剤として医薬品だけでなく食品添
加物、低脂肪の良質の食用獣肉を得るための動物
用飼料添加剤としても有用である。 化合物〔〕またはその塩は食品に添加して用
いてもよい。すなわち、例えばコーヒー,清涼飲
料水,果汁,ビール,牛乳,ジヤム,あん,ゼリ
ー等の液状あるいは固状の食品,調味料,あるい
は種々の主食ならびに副食と共に用いてもよい。 化合物〔〕またはその塩を添加して製造した
食品は代謝異常の患者用の食品として、および代
謝異状の予防食品として健康な人にも適してい
る。その添加量としては、例えば食品中の炭水化
物の含量の0.0001〜1%程度の化合物〔〕また
はその塩を種々の食品に添加してもよい。飼料に
混ぜる場合は、飼料中の炭水化物含量の0.0001〜
1%が望ましい。 本発明の擬似アミノ糖のN−置換誘導体〔〕
のうち、Zが保護されていてもよいアミノ基であ
る化合物、即ち〔〕式で表わされる化合物は下
記のような方法によつて製造することができる。 すなわち、適当な溶媒中、バリオールアミン
〔〕と、環状ケトン〔〕を反応させて得られ
るシツフ塩基を還元反応に付すことによつて製造
することができる。 バリオールアミン〔〕のアミノ基と環状ケト
ン〔〕との縮合反応(即ち、シツフ塩基の形成
反応)、それに続くシツフ塩基の還元反応は、同
一の反応容器中で連続的に行なつてもよいし、二
段階に分けて行なつてもよい。環状ケトン〔〕
はバリオールアミン〔〕に対し通常約1〜2倍
モル用いる。 バリオールアミン〔〕と環状ケトン〔〕と
の縮合反応およびそれに続く還元反応における反
応溶媒としては、例えば、水、メタノール,エタ
ノール,プロパノール,ブタノール等のアルコー
ル類、ジメチルスルホキシド、ジメチルホルムア
ミド、N−メチルアセトアミド、メチルセロソル
ブ,ジメチルセロソルブ,ジエチレングリコール
ジメチルエーテル等のグライム類、ジオキサン,
テトラヒドロフラン等のエーテル類、アセトニト
リル等の極性溶媒、または、これらの混合溶媒、
または、それらの極性溶媒とクロロホルム,ジク
ロロメタン等の非極性溶媒との混合物を用いるこ
とができる。 該シツフ塩基の形成反応における反応温度は特
に限定されないが、通常室温ないし100℃程度に
まで加熱して行なわれる。反応時間は反応温度に
より差異があるが、通常、数分ないし24時間程度
反応させることによつて目的を達することができ
る。 形成されたシツフ塩基の還元反応には各種の金
属水素錯化合物やジボランおよび置換ジボラン、
例えば、水素化ホウ素ナトリウム,水素化ホウ素
カリウム,水素化ホウ素リチウム,水素化トリメ
トキシホウ素ナトリウム,水素化トリ−sec−ブ
チルホウ素カリウム,水素化トリ−sec−ブチル
ホウ素リチウム等の水素化ホウ素アルカリ金属、
例えば、シアノ水素化ホウ素ナトリウム,水素化
シアノホウ素テトラ−n−ブチルアンモニウム等
のシアノ水素化ホウ素アルカリ金属、例えば水素
化アルミニウムリチウム,水素化トリメトキシア
ルミニウムリチウム等の水素化アルミニウムアル
カリ金属、例えば2,3−ジメチル−2−ブチル
ボラン,ビス−3−メチル−2−ブチルボラン,
ジイソピノカンフエニルボラン,ジシクロヘキシ
ルボラン,9−ボラビシクロ〔3,3,1〕ノナ
ン等のアルキルボラン、ジメチルアミンボラン,
水素化ホウ素テトラメチルアンモニウム等のアル
キルアミンボラン等が有利に用いられる。なお、
シアノ水素化ホウ素アルカリ金属、例えばシアノ
水素化ホウ素ナトリウムを用いる場合には、酸性
の条件、例えば、塩酸、酢酸等の存在下に反応を
行なうことが好ましい。 この還元反応の温度は特に限定されないが、通
常室温で、場合によつては、特に反応の初期にお
いては氷冷下に、また場合によつては100℃程度
にまで加熱して行なわれ、還元するシツフ塩基お
よび還元剤の種類によつて差異がある。反応時間
も反応温度により、また還元するシツフ塩基や還
元剤の種類によつて差異があるが、通常数分ない
し24時間程度反応させることによつて目的を達す
ることができる。 形成されたシツフ塩基の還元反応として接触還
元の手段を用いることもできる。すなわち、シツ
フ塩基を適当な溶媒中で接触還元用触媒の存在下
に水素気流中で振盪または撹拌することにより行
われる。接触還元用触媒としては、例えば、白金
黒,二酸化白金,パラジウム黒,パラジウムカー
ボン,ラネーニツケル等が用いられる。通常用い
られる溶媒としては、例えば、水、メタノール,
エタノール等のアルコール類、ジオキサン,テト
ラヒドロフラン等のエーテル類、ジメチルホルム
アミドまたは、これらの混合溶媒等が用いられ
る。反応は通常、室温常圧で行なわれるが、加圧
下に行なつてもよく、また加温してもよい。 このようにして得られる化合物〔〕(即ち、
一般式〔〕で表わされる化合物において、
Z″が保護されているアミノ基である化合物)の
アミノ基の保護基を脱離させて一般式 〔式中の水酸基は保護されていてもよい〕で表
わされる化合物(即ち、一般式〔〕で表わされ
る化合物において、Z″がアミノ基である化合物)
に変換する場合には、アミノ基の保護基の脱離反
応はそれ自体公知の方法を用いて行なうことがで
きる。 例えば、アミノ基の保護基が、上記したハロゲ
ンで置換されていてもよい炭素数1から5のアル
カノイル基、ニトロ基,炭素数1から4の低級ア
ルコキシ基,ハロゲン等で置換されていてもよい
アロイル基,炭素数2から6のアルコキシカルボ
ニル基、ニトロ基,炭素数1から4の低級アルコ
キシ基,ハロゲン等で置換されていてもよいアラ
ルキルオキシカルボニル基、およびフタリル基等
の場合はアンモニア,水酸化ナトリウム,水酸化
バリウム,抱水ヒドラジンなどのアルカリの存在
下に加水分解することによつて、あるいは硫酸,
塩酸などの酸の存在下に加水分解することによつ
て、また、tert−ブトキシカルボニル基はトリフ
ルオロ酢酸などの酸の存在下で加水分解すること
によつて、また、ニトロ基,炭素数1から4の低
級アルコキシ基またはハロゲンで置換されていて
もよいベンジルオキシカルボニル基はパラジウム
カーボン,パラジウム黒等の還元触媒の存在下接
触還元による水素化分解によつて、保護基を脱離
することができる。 上記の化合物が保護されている水酸基を有して
いる場合、水酸基の保護基の脱離反応はそれれ自
体公知の方法を用いて行なうことができる。例え
ば、シクロヘキシリデン基,イソプロピリデン
基,ベンジリデン基などのアセタール型またはケ
タール型保護基やトリチル基などは塩酸,酢酸,
スルホン酸型イオン交換樹脂などの酸で加水分解
することによつて、例えばアセチル基,ベンゾイ
ル基などのアシル型保護基はアンモニア,水酸化
ナトリウム,水酸化バリウム,ナトリウムメトキ
シドなどのアルカリで加水分解することによつ
て、また、ベンジル基,p−メトキシベンジル基
などのベンジルエーテル型保護基は接触還元によ
る水素化分解あるいは液体アンモニア中での金属
ナトリウムによる還元分解等によつて脱離するこ
とができる。 化合物〔〕が遊離塩基の形で得られる場合、
それ自体公知の方法に従い適当な溶媒中で例えば
塩酸,臭化水素酸,硫酸,リン酸,硝酸などの無
機酸、酢酸,りんご酸,くえん酸,アスコルビン
酸,マンデル酸,メタンスルホン酸などの有機酸
等を作用させて化合物〔〕の塩を製造すること
ができる。 このようにして得られる上記一般式〔〕で表
わされる化合物およびそれらの合成中間体などは
自体公知の手段、例えばろ過,遠心分離,濃縮,
減圧濃縮,乾燥,凍結乾燥,吸着,脱着,各種溶
媒に対する溶解度の差を利用する方法(例えば、
溶媒抽出,転溶,沈澱,結晶化,再結晶化など),
クロマトグラフイー(例えば、イオン交換樹脂,
活性炭,ハイポーラスポリマー,セフアデツク
ス,セフアデツクスイオン交換体,セルローズ,
イオン交換セルローズ,シリカゲル,アルミナな
どを用いるクロマトグラフイー)などにより単
離、精製できる。 本発明の擬似アミノ糖のN−置換誘導体〔〕
のうちZが水酸基である化合物、即ち〔〕式で
表わされる化合物は、例えば下記のような方法に
よつて製造することができる。即ち、化合物
〔〕の一級アミン部分を酸化的脱アミノ化剤
(oxi−dative deaminating agents)を用いてケ
トンに変換して化合物〔〕となし、ついで化合
物〔〕のケトン部分を二級水酸基に還元するこ
とによつて目的とする化合物〔〕を製造するこ
とができる。 酸化的脱アミノ化剤としては3,5−ジ−tert
−ブチル−1,2−ベンゾキノン,メシチルグリ
オキサール,3−ニトロメシチルグリオキサー
ル,3−ニトロメシチルグリオキサール,3,5
−ジニトロメシチルグリオキサールなどが、好ま
しくは3,5−ジ−tert−ブチル−1,2−ベン
ゾキノンが挙げられる〔コーリー(Corey),阿
知波(Achiwa);ジヤーナル・オブ・ジ・アメ
リカン・ケミカル・ソサイエテイ(J.Am.Chem.
Soc.),91巻,1429〜1432頁(1969年)参照〕。 上記の酸化的脱アミノ化剤は、原料化合物
〔〕1モルに対して1ないし5モル程度、好ま
しくは1ないし3モル程度用いてもよい。通常反
応は酸化的脱アミノ化剤に対して不活性な溶媒中
で行なわれる。 反応溶媒は水酸基が保護基で保護されている場
合には保護基の種類によつても異なるが、通常、
例えば、メタノール、エタノールなどの炭素数1
ないし4の低級アルコール類、テトラヒドロフラ
ン,ジオキサン等のエーテル類、水、ジメチルス
ルホキシド、ジクロロメタン,クロロホルム等の
ハロゲン化炭化水素類、酢酸メチル,酢酸エチル
などの低級脂肪酸エステル類が単独または適宜混
合して用いられる。 反応温度は約−30゜から80℃、好ましくは約−
10゜から40℃の範囲である。反応時間は、反応溶
媒や反応温度、あるいは酸化的脱アミノ化剤の種
類等によつても異なるが通常1〜25時間程度であ
る。 酸化的脱アミノ化剤として3,5−ジ−tert−
ブチル−1,2−ベンゾキノンを用いた場合に
は、化合物〔〕のアミノ基との間に生じたイミ
ン中間体(シツフ塩基)をプロトトロピツク異性
化(prototropic isomerization)させ、そして
加水分解させるために無機酸の水溶液(硫酸,塩
酸等)あるいは有機酸の水溶液(酢酸,シユウ酸
等)で反応液をPH1ないし5の範囲に調節する。
また、用いた酸化剤の種類によつてはプロトトロ
ピツク異性化のためにトリエチルアミン,ナトリ
ウムメトキシド,カリウム−tert−ブトキシド,
DBN(1,5−ジアザビシクロ〔4,3,0〕ノ
ン−5−エン)等の塩基を0.1〜1.0当量用いるの
が有利な場合がある。 この様にして得られた化合物〔〕を、金属水
素錯化合物やジボランおよび置換ジボランを用い
て還元反応に付すことによつて化合物〔〕を製
造することができる。この反応で用いられる金属
水素錯化合物やジボランおよび置換ジボラン等の
還元剤としては上記した化合物〔〕と化合物
〔〕とを反応させて得られるシツフ塩基の還元
反応に用いられるものと同様のものが用いられ
る。これらの還元剤は原料化合物〔〕1モルに
対して約1から10モル、通常、約2から5モルル
用いられる。反応は通常溶媒中で行なわれる。 このような溶媒としては、例えば、水、メタノ
ール,エタノール,プロパノール,ブタノール等
のアルコール類,ジメチルスルホキシド,ジメチ
ルホルムアミド、N−メチルアセトアミド、メチ
ルセロソルブ,ジメチルセロソルブ,ジエチレン
グリコールジメチルエーテル等のグライム類、ジ
オキサン,テトラヒドロフラン等のエーテル類、
アセトニトリル等の極性溶媒、または、これらの
混合溶媒、または、それらの極性溶媒とクロロホ
ルム,ジクロロメタン等の非極性溶媒との混合物
が用いられる。 この還元反応の温度は、通常室温(10〜35℃)
で、場合によつては、特に反応の初期においては
氷冷下に、また場合によつては100℃程度にまで
加熱して行なわれ、還元剤や反応溶媒の種類によ
つて差異がある。反応時間も反応温度や還元剤の
種類によつて差異があるが、通常数分ないし24時
間程度である。 さらに化合物〔〕の化合物〔〕への還元反
応は、化合物〔〕と化合物〔〕とを反応させ
て得られるシツフ塩基の還元反応に際し用いられ
る接触還元の手段をも用いて行なうことができ
る。得られた化合物〔〕が保護されている水酸
基を有している場合、その保護基の脱離反応は上
述した方法と同様に行なうことができる。また化
合物〔〕が遊離塩基の形で得られた場合、化合
物〔〕の場合と同様に自体公知の手段に従つて
化合物〔〕と前記した無機酸及び有機酸との塩
とすることができる。このようにして得られる化
合物〔〕及びそれらの合成中間体などは、前記
した自体公知の手段によつて単離、精製すること
ができる。 本発明で用いる原料化合物のバリオールアミン
(式〔〕で示される化合物)は、例えば特願昭
56−55907に記載されたストレプトマイセス属に
属する微生物を培養する方法によつて、また、特
願昭56−64370および特願昭56−144309に記載さ
れたバリエナミンあるいはバリダミンを原料とす
る有機化学的合成手段によつて製造することがで
きる。また一般式〔〕で表わされる環状ケトン
は例えば、バリダミンを原料として、図表1に示
した方法で製造することができる。なお、式中の
アミノ基および水酸基の保護基としては下図表1
に示したものの他、上記したアミノ基の保護基
(アミノ糖、アミノシクリトール及びペプチドの
化学でアミノ基の保護基として用いられる保護基
等)や水酸基の保護基(例えば、アシル型,エー
テル型,アセタール型およびケタール型保護基
等)も同様にして用いることができる。 〔上記式中、Cbzはベンジルオキシカルボニ
ル,Phはフエニル,Buはブチル,Bzはベンゾイ
ル,NBSはN−ブロモコハク酸イミド,TosOH
はp−トルエンスルホン酸,AIBMはα,α′−ア
ゾビス−iso−ブチロニトリル,DMSOはジメチ
ルスルホキシドを示す。〕得られる化合物および
合成中間体は前記した自体公知の手段で単離精製
できる。 以下に試験例,参考例,実施例を記載してこの
発明の内容を詳述するのが、発明の範囲はこれら
に限定されるものではない。 試験例 グルコシダーゼ阻害活性の測定方法 基質としてマルトースおよびシヨ糖を用いた場
合の豚の小腸の粘膜から調製したマルターゼおよ
びサツカラーゼ〔ボルグストレム(B.Borgstro¨
m)およびダールクイスト(A.Dahlqvist)によ
つてアクタ・ケミカ・スカンジナビカ(Acta
Chem.Scand.)12巻,1997〜2006頁,1958年に記
載の方法に従つて調製〕に対する阻害活性は、
0.02Mリン酸緩衝溶液(PH6.8)で適当に希釈し
た酵素溶液(0.25ml)に試験すべき阻害物質(化
合物〔〕またはその塩)の同緩衝溶液(0.5ml)
および基質の0.05Mマルトースあるいは0.05Mシ
ヨ糖の同緩衝溶液(0.25ml)を加え、この混合物
を37℃で10分間反応させる。これにグルコースB
−テスト試薬(ヴドウ糖測定用グルコースオキシ
ダーゼ試薬、和光純薬製)(3ml)を加え、更に
37℃で20分間加温し、発色させた反応液の505nm
における吸光度を測定して算出した。 実施例に記載した化合物〔〕またはその塩の
マルターゼ〔豚,腸粘膜)に対する50%阻害濃度
〔以下、IC50(マルターゼ)と略記する〕およびサ
ツカラーゼ(豚、腸粘膜)に対する50%阻害濃度
〔以下、IC50(サツカラーゼ)と略記する〕はそれ
ぞれの阻害物質について3ないし5種の異つた濃
度で上記の測定法を用いて測定した阻害率(%)
から求めた。 参考例および実施例に記載した各化合物の精製
工程におけるカラムクロマトグラフイーの溶出画
分は、通常、薄層クロマトグラフイー(TLC)
で含有成分をしらべ、必要な成分を含んでいる画
分を集めて、次の工程に供した。実施例に記載し
た各化合物のTLCのRf値は、特にことわらない
限りは、薄層プレートはプレコーテツド(pre−
coated)TLCプレート・シリカゲル60F254(メル
ク社製,西ドイツ)を用い、展開溶媒としてn−
プロピルアルコール・酢酸.水(4:1:1)を
用いて測定した。(対照試料として上記の方法で
測定した擬似アミノ糖のRf値:バリエナミンRf
=0.42,バリダミンRf=0.35,バリオールアミン
Rf=0.30) なお、参考例,実施例で用いた記号は次のよう
な意義を有する。 s,シングレツト;d,ダブレツト;dd,ダ
ブルダブレツト;t,トリプレツト;q,カルテ
ツト;m,マルチプレツト;J,結合定数 参考例 1 4,7−O−ベンジリデン−N−ベンジルオキ
シカルボニルバリダミン N−ベンジルオキシカルボニルバリダミン(特
願昭56−144309,30頁記載の方法に従つて製造)
(55.3g)をジメチルホルムアミド(190ml)に溶
解し、α,α−ジメトキシトルエン(27.7g)お
よびp−トルエンスルホン酸(177mg)を加え、
減圧下(60〜65mmHg)で60〜65℃で1時間撹拌
する。反応液を減圧濃縮し、残留物を酢酸エチル
(600ml)に溶解する。酢酸エチル抽出液を水およ
び飽和炭酸水素ナトリウム溶液で洗浄し、無水硫
酸ナトリウムで乾燥し、減圧濃縮する。残留物に
トルエンを加えて再び減圧濃縮し、残留物にエチ
ルエーテル(200ml)および石油エーテル(2)
を加えると4,7−O−ベンジリデン−N−ベン
ジルオキシカルボニルバリダミンの白色粉末
(67.7g)が得られる。 〔α〕24 D+54.1゜(c=1,CH3OH) 元素分析:C22H25NO6 計算値(%):C66.15;H6.31;N3.51 実験値(%):C66.07;H6.43;N3.39 NMR(DMSO−d6)δ:0.8〜2.2(3H,m),
3.1〜4.2(6H,m),4.70(1H,d,J=5
Hz),4.78(1H,d,J=4.5Hz),5.02(2H,
s),5.47(1H,s),6.98(1H,d,J=7.5
Hz),7.2〜7.6(10H,m). 参考例 2 4−O−ベンゾイル−N−ベンジルオキシカル
ボニル−7−プロモ−7−デオキシバリダミン 4,7−O−ベンジリデン−N−ベンジルオキ
シカルボニルバリダミン(42.5g)を四塩化炭素
(500ml)と1,1,2,2−テトラクロロエタン
(100ml)の混液に溶解し、N−ブロムコハク酸イ
ミド(21.5g)と炭酸バリウム(35g)を加え、
撹拌下に、1時間加熱還流する。反応液を熱時ろ
過し、不溶物を四塩化炭素で洗浄後、ろ液と洗液
を合わせて減圧濃縮する。残留物を酢酸エチルに
溶解し、2N塩酸と飽和炭酸水素ナトリウム溶液
で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を
減圧留去する。残留物をシリカゲル(600ml)(キ
ーゼルゲル60,メルク社製,西ドイツ,以下で用
いるシリカゲルも同様)のカラムクロマトに付
し、カラムをトルエン−酢酸エチル(4:1)で
洗浄後、トルエン−酢酸エチル(1:1)で溶出
する。溶出画分を減圧濃縮し、残留物にエチルエ
ーテル−石油エーテル(1:5,約800ml)を加
えて冷蔵庫中に一夜放置すると4−O−ベンゾイ
ル−N−ベンジルオキシカルボニル−7−ブロモ
−7−デオキシバリダミンの白色沈澱(29.8g)
が得られる。 元素分析:C22H24NO6Br 計算値(%):C55.24;H5.06;N2.93; Br16.70 実験値(%):C55.14;H5.02;N2.62; Br16.65 NMR(DMSO−d6)δ:1.3〜1.75(1H,m),
1.8〜2.6(2H,m),2.9〜4.2(m),4.87(1H,
t,J=9Hz),5.07(2H,s),7.08(1H,
d,J=8Hz),7.40(5H,s),7.25〜7.75
(3H,m),7.95〜8.15(2H,m). 参考例 3 4−O−ベンゾイル−N−ベンジルオキシカル
ボニル−2,3−O−シクロヘキシリデン−7
−ブロモ−7−デオキシバリダミン 4−O−ベンゾイル−N−ベンジルオキシカル
ボニル−7−ブロモ−7−デオキシバリダミン
(20g)をジメチルホルムアミド(50ml)に溶解
し、1,1−ジメトキシシクロヘキサン(20ml)
とp−トルエンスルホン酸(0.5g)を加え、減
圧下(45〜50mmHg)、55℃で2時間撹拌する。反
応液を酢酸エチルに溶解し、飽和炭酸水素ナトリ
ウム溶液で洗浄し、無水硫酸ナトリウムで乾燥
後、減圧濃縮する。残留物をシリカゲル(550ml)
のカラムクロマトに付し、トルエンで洗浄後、ト
ルエン−酢酸エチル(19:1)で溶出する。溶出
画分を減圧濃縮し、残留物をデシケーター中で減
圧下に乾燥すると4−O−ベンゾイル−N−ベン
ジルオキシカルボニル−2,3−O−シクロヘキ
シリデン−7−ブロモ−7−デオキシバリダミン
(25.5g)がシロツプ状物質として得られる。 元素分析:C28H32NO6Br 計算値(%):C60.21;H5.78;N2.51; Br14.31 実験値(%):C60.69;H5.71;N2.49; Br14.61 NMR(CDCL3)δ:1.2〜1.8(10H,m),3.42
(2H,d,J=5Hz),3.66(1H,dd,J=
4Hz,10Hz),3.88(1H,t,J=10Hz),
4.27(1H,m),4.97(1H,d,J=5Hz),
5.13(2H,s),5.33(1H,t,J=10Hz),
7.1〜7.7(3H,m),7.38(5H,s),8.0〜8.2
(2H,m). 参考例 4 4−O−ベンゾイル−N−ベンジルオキシカル
ボニル−2,3−O−シクロヘキシリデン−7
−デオキシバリダミン 4−O−ベンゾイル−N−ベンジルオキシカル
ボニル−2,3−O−シクロヘキシリデン−7−
ブロモ−7−デオキシバリダミン(25g)をトル
エン(300ml)に溶解し、水素化トリ−n−ブチ
ルスズ(20ml)とα,α′−アゾビス−iso−ブチ
ロニトリル(0.1g)を加えて1時間加熱還流す
る。反応液を室温に冷却後、IN塩酸と飽和炭酸
水素ナトリウム溶液で洗浄し、無水硫酸ナトリウ
ムで乾燥し、減圧濃縮する。残留物をシリカゲル
(600ml)のカラムクロマトに付し、カラムをトル
エンで洗浄後、トルエン−酢酸エチル(9:1)
で溶出する。溶出画分を減圧濃縮し、残留物をデ
シケーター中で減圧下に乾燥すると4−O−ベン
ゾイル−N−ベンジルオキシカルボニル−2,3
−O−シクロヘキシリデン−7−デオキシバリダ
ミン(21g)がシロツプ状物質として得られる。 元素分析:C28H33NO6 計算値(%):C70.12;H6.94;N2.92 実験値(%):C70.58;H6.95;N2.71 NMR(CDCl3)δ:0.96(3H,d,J=6.5Hz),
1.15〜2.2(12H,m),2.2〜2.6(1H,m),
3.63(1H,dd,J=4Hz,10Hz),3.83(1H,
t,J=10Hz),4.22(1H,m),4.9〜5.25
(2H,m),5.13(2H,s),7.15〜7.7(3H,
m),7.38(5H,s),8.0〜8.2(2H,m). 参考例 5 N−ベンジルオキシカルボニル−2,3−O−
シクロヘキシリデン−7−デオキシバリダミン 4−O−ベンゾイル−N−ベンジルオキシカル
ボニル−2,3−O−シクロヘキシリデン−7−
デオキシバリダミン(20g)をアセトン−エタノ
ール(3:2,500ml)に溶解し、1N水酸化ナト
リウム(100ml)を加えて室温で1時間撹拌する。
氷水で冷却下に反応液を2N塩酸でPH4.5に調節
後、25〜28%アンモニア水でPH7.5に調節し、水
(約500ml)を加えて、減圧下に有機溶媒を留去す
る。得られる油状物を酢酸エチルで抽出し、抽出
液を飽和炭酸水素ナトリウム溶液で洗浄し、無水
硫酸ナトリウムで乾燥後、溶媒を減圧留去する。
残留物をシリカゲル(550ml)のカラムクロマト
に付し、トルエン−酢酸エチル(3:1)で溶出
する。溶出画分を減圧濃縮し、残留物にエチルエ
ーテル−石油エーテル(1:4500ml)を加えて一
夜冷蔵庫中に放置するとN−ベンジルオキシカル
ボニル−2,3−O−シクロヘキシリデン−7−
デオキシバリダミンの結晶(13.9g)が得られ
る。 元素分析:C21H29NO5 計算値(%):C67.18;H7.79;N3.73 実験値(%):C67.02;H7.70;N3.55 NMR(CDCl3)δ:1.03(3H,d,J=7Hz),
1.1〜1.9(12H,m),2.1〜2.4(1H,m),
2.45(1H,d,J=4Hz),3.15〜3.6(3H,
m),4.17(1H,m),4.89(1H,d,J=6
Hz),5.10(2H,s),7.37(5H,s). 参考例 6 (2R)−(2,6/3,4)−2,3−O−シク
ロヘキシリデン−4−ベンジルオキシカルボニ
ルアミノ−2,3−ジヒドロキシ−6−メチル
シクロヘキサノン ジメチルスルホキシド(9ml)のジクロロメタ
ン(50ml)溶液に無水トリフルオロ酢酸(13.5
ml)のジクロロメタン(50ml)溶液を、−65℃以
下に冷却下、滴下し、20分間同温度で撹拌後、N
−ベンジルオキシカルボニル−2,3−O−シク
ロヘキシリデン−7−デオキシバリダミン(12
g)を−70℃以下に冷却下に加え、更に同温度で
1時間撹拌する。反応液にトリエチルアミン
(26.7ml)のジクロロメタン(50ml)溶液を−65
℃以下に冷却下滴下後、冷却浴を取りのぞき反応
液の温度が20℃に上昇するまで撹拌する。反応液
を氷水(約300ml)に加え、1時間撹拌し、ジク
ロロメタン層を分取し、水層をジクロロメタンで
もう一度抽出する。ジクロロメタン抽出液を集め
2N塩酸と飽和炭酸水素ナトリウム液で洗浄し、
無水硫酸ナトリウムで乾燥し、減圧濃縮する。残
留物をシリカゲル(400ml)のカラムクロマトに
付し、トルエン−酢酸エチル(5:1)で溶出す
る。溶出画分を減圧濃縮し、残留物をデシケータ
ー中で減圧下に乾燥すると(2R)−(2,6/3,
4)−2,3−O−シクロヘキシリデン−4−ベ
ンジルオキシカルボニルアミノ−2,3−ジヒド
ロキシ−6−メチルシクロヘキサノン(9.8g)
がシロツプ状物質として得られる。 元素分析:C21H27NO5 計算値(%):C67.54;H7.29;N3.75 実験値(%):C67.49;H7.41;N3.67 NMR(CDCl3)δ:1.06(3H,d,J=6Hz),
1.2〜1.9(11H,m),2.3〜2.85(2H,m),
3.74(1H,dd,J=4Hz,10.5Hz),4.2〜
4.45(1H,m),4.43(1H,d,J=10.5Hz),
5.14(2H,s),5.15〜5.4(1H,m),7.40
(5H,s). 実施例 1 N−〔(1R,2S)−(2,6/3,4)−4−アミ
ノ−2,3−ジヒドロキシ−6−メチルシクロ
ヘキシル〕バリオールアミンおよびN−〔(1S,
2S)−(2,6/3,4)−4−アミノ−2,3
−ジヒドロキシ−6−メチルシクロヘキシル〕
バリオールアミン バリオールアミン(4.0g)と(2R)−(2,
6/3,4)−2,3−O−シクロヘキシリデン
−4−ベンジルオキシカルボニルアミノ−2,3
−ジヒドロキシ−6−メチルシクロヘキサノン
(9.2g)をジメチルホルムアミド(120ml)に溶
解し、2N塩酸(3ml)とシアノ化水素化ホウ素
ナトリウム(5.6g)を加えて50〜60℃で18時間
撹拌する。反応液を減圧濃縮し、更にトルエンを
加えて共沸下にジメチルホルムアミドを留去し、
残留物を酢酸エチルと水の混合液に加えて分配さ
せる。酢酸エチル層を分取し、水洗し、無水硫酸
ナトリウムで乾燥し、溶媒を減圧留去する。残留
物にエチルエーテル(500ml)を加え一夜冷蔵庫
中に放置し、生じた沈澱をろ取し、エチルエーテ
ルで洗浄後、デシケーター中で減圧下に乾燥す
る。得られた粉末(3.0g)を80%酢酸(100ml)
に溶解し、50〜60℃で1時間撹拌する。反応液を
減圧濃縮し、酸留物を酢酸エチルと水の混合液に
加えて分配させ、水層を分取し、酢酸エチルで洗
浄し、溶媒を減圧留去する。残留物を水−メタノ
ール−酢酸(50:30:2100ml)に溶解し、パラジ
ウム黒(600mg)を加えて水素気流中、室温で8
時間撹拌する。触媒をろ去し、水洗後、ろ液と洗
液を集め減圧濃縮する。残留物をアンバーライト
CG−50(NH4 +型,250ml)(ローム・アンド・ハ
ース社製,米国)のカラムクロマトに付し、カラ
ムを水洗後、0.1Nアンモニア水で溶出すると、
先に溶出される画分(0.8〜1.0)と後に溶出さ
れる画分(1.3〜1.7)の2成分に分離されて溶
出される。先に溶出される画分を減圧濃縮し、残
留物を再びアンバーライトCG−50(NH4 +型,
400ml)のカラムクロマトに付し、0.1Nアンモニ
ア水で溶出し、溶出画分を減圧濃縮後、凍結乾燥
するとN−〔(1R,2S)−(2,6/3,4)−4−
アミノ−2,3−ジヒドロキシ−6−メチルシク
ロヘキシル〕バリオールアミン(505mg)が白色
粉末として得られる。後に溶出される画分を減圧
濃縮し、得られる残留物をダウエツクス1×2
(OH-型,150ml)(ダウ・ケミカル社製,米国)
のカラムクロマトに付し、水で溶出する。溶出画
分を減圧濃縮し、凍結乾燥するとN−〔(1S,2S)
−(2,6/3,4)−4−アミノ−2,3−ジヒ
ドロキシ−6−メチルシクロヘキシル〕バリオー
ルアミン(490mg)が得られる。 N−〔(1R,2S)−(2,6/3,4)−4−アミ
ノ−2,3−ジヒドロキシ−6−メチルシクロヘ
キシル〕バリオールアミン(先に溶出される異性
体,異性体(a)と略称) 元素分析:C14H28N2O7・H2O 計算値(%):C47.45;H8.53;N7.90 実験値(%):C47.59;H8.30;N8.03 〔α〕26 D+42.6゜(c=1,H2O) NMR(D2O)δ:1.25(3H,d,J=6Hz),
1.4〜2.7(6H,m),3.4〜4.2(9H,m). IC50(マルターゼ):2.8×10-8M IC50(サツカラーゼ):7.5×10-9M N−〔(1S,2S)−(2,6/3,4)−4−アミ
ノ−2,3−ジヒドロキシ−6−メチルシクロヘ
キシル〕バリオールアミン(後に溶出される異性
体,異性体(b)と略称) 元素分析:C14H28N2O7・H2O 計算値(%):C47.45;H8.53;N7.90 実験値(%):C47.50;H8.87;N7.98 〔α〕26 D+2.0゜(c=1,H2O) NMR(D2O)δ:1.24(3H,d,J=6.5Hz),
1.5〜2.7(5H,m),3.1〜3.3(1H,m),3.3
〜4.3(9H,m). IC50(マルターゼ):1.5×10-6M IC50(サツカラーゼ):5.3×10-8M 実施例 2 N−〔(1R,2S)−(2,6/3,4)−2,3,
4−トリヒドロキシ−6−メチルシクロヘキシ
ル〕バリオールアミンおよびN−〔(1R,2S)−
(2,4,6/3)−2,3,4−トリヒドロキ
シ−6−メチルシクロヘキシル〕バリオールア
ミン N−〔(1R,2S)−(2,6/3,4)−4−アミ
ノ−2,3−ジヒドロキシ−6−メチルシクロヘ
キシル〕バリオールアミン(200mg)をメタノー
ル(5ml)に溶解し、3,5−ジ−tert−ブチル
−1,2−ベンゾキノン(180mg)を加えて室温
で15時間撹拌する。反応液を1N硫酸でPH1〜2
に調節し、3時間室温で撹拌し、水(100ml)と
クロロホルム(50ml)を加える。水層を分取し、
クロロホルムで洗浄後、約50mlにまで減圧濃縮す
る。氷水で冷却下、濃縮液に水素化ホウ素ナトリ
ウム(200mg)を加え、同温度で2時間、更に室
温で1時間撹拌する。反応液を酢酸でPH5に調節
後、ダウエツクス50W×8(H+型,160ml)(ダ
ウ・ケミカル社製,米国)のカラムクロマトに付
し、カラムを水洗後、0.5Nアンモニウ水で溶出
する。溶出画分を減圧濃縮し、残留物をアンバー
ライトCG−50(NH4 +型,180ml)(ローム・アン
ド・ハース社製,米国)のカラムクロマトに付
し、水で溶出すると、先に溶出される画分(320
〜480ml)と後に溶出される画分(510〜900ml)
の2成分に分離されて溶出される。それぞれの溶
出画分を減圧濃縮後、凍結乾燥すると先に溶出さ
れる画分から〔α〕26 D+18.9゜(c=1,H2O)を示
す白色粉末(57mg)が、後に溶出される画分から
〔α〕26 D+31.1゜(c=1,H2O)を示す白色粉末
(31mg)が得られる。 先に溶出される異性体(異性体(a)と略称) 元素分析:C14H27NO8・1/2H2O 計算値(%):C48.55;H8.15;N4.04 実験値(%):C48.45;H8.69;N3.92 NMR(D2O)δ:1.28(3H,d,J=6Hz),
1.3〜2.4(5H,m),2.50(1H,t,J=10
Hz),3.3〜4.2(9H,m). TLC Rf=0.29 IC50(マルターゼ):7.0×10-8M IC50(サツカラーゼ):3.5×10-8M 後に溶出される異性体(異性体(b)と略称) 元素分析:C14H27NO8・1/2H2O 計算値(%):C48.55;H8.15;N4.04 実験値(%):C48.23;H8.45;N3.92 NMR(D2O)δ:1.26(3H,d,J=6Hz),
1.5〜2.4(5H,m),2.45(1H,t,J=10
Hz),3.5〜4.35(9H,m). TLC Rf=0.30 IC50(マルターゼ):6.8×10-8M IC50(サツカラーゼ):3.6×10-8M 実施例 3 N−〔(1S,2S)−(2,6/3)−2,3,4−
トリヒドロキシ−6−メチルシクロヘキシル〕
バリオールアミン N−〔(1S,2S)−(2,6/3,4)−4−アミ
ノ−2,3−ジヒドロキシ−6−メチルシクロヘ
キシル〕バリオールアミン(300mg)をメタノー
ル(5ml)に溶解し、3,5−ジ−tert−ブチル
−1,2−ベンゾキノン(300mg)を加えて室温
で18時間撹拌する。反応液を1N硫酸でPH1〜2
に調節後、3時間室温で撹拌する。反応液に水
(100ml)とクロロホルム(100ml)を加えて、水
層を分取し、クロロホルムで洗浄後、約50mlまで
減圧濃縮する。氷水で冷却下に濃縮液に水素化ホ
ウ素ナトリウム(400mg)を加え、同温度で2時
間、更に室温で2時間撹拌する。反応液を酢酸で
PH4.5に調節し、ダウエツクス50W×8(H+型,
150ml)(ダウ・ケミカル社製,米国)のカラムク
ロマトに付し、カラムを水洗後、0.5Nアンモニ
ア水で溶出する。溶出画分を減圧濃縮し、残留物
をアンバーライトCG−50(NH4 +型,150ml)(ロ
ーム・アンド・ハース社製,米国)のカラムクロ
マトに付し、カラムを水洗後、0.1Nアンモニア
水で溶出する。溶出画分を減圧濃縮し、残留物を
アンバーライトCG−50(NH4 +型,75ml)(ロー
ム・アンド・ハース社製,米国)のカラムクロマ
トに付し、0.025Nアンモニア水で溶出する。溶
出画分(150〜270ml)を減圧濃縮後、凍結乾燥す
るとN−〔(1S,2S)−(2,6/3)−2,3,4
−トリヒドロキシ−6−メチルシクロヘキシル〕
バリオールアミン(但し、2,3,4−トリヒド
ロキシ−6−メチルシクロヘキシル部分の4位の
水酸基の立体配置は未決定)の白色粉末(30mg)
が得られる。 元素分析:C14H27NO8・1/2H2O 計算値(%):C48.55;H8.15;N4.04 実験値(%):C48.16;H8.34;N3.95 〔α〕26 D+25.9゜(c=1,H2O) NMR(D2O)δ:1.28(3H,d,J=6.5Hz),
1.5〜2.25(4H,m),2.43(1H,dd,J=3
Hz,15Hz),3.13(1H,t,J=3.5Hz),3.37
(1H,q,J=3.5Hz),3.5〜4.25(8H,m). TLC:Rf=0.28 実施例 4 みかん果汁10%含有する飲料200mlに対して実
施例1の異性体(a)10mgを加えて均一に撹拌溶解し
てα−グルコシダーゼ阻害剤を含有する果汁入り
飲料を得る。 実施例 5 実施例2の異性体(a) 20重量部 乳 糖 80重量部 結晶セルローズ 20重量部 を均一に混合し、水で練合した後乾燥し、常法に
従つて粉末または細粒状として散剤とする。
[Formula] N- of the pseudo-amino sugar represented by the general formula []
The N-substituted moiety in the substituted derivative is represented by the following formula (with the position number of each carbon atom added): 4-substituted-2,
3-dihydroxy-6-methylcyclohexyl group, [Symbols in the formula have the same meanings as above] Various stereoisomers exist due to differences in steric configuration of the substituent represented by Z, two hydroxyl groups, and one methyl group. Examples of these are (2, 4, 6/3)-, (2, 3, 6/4)-, (2,
3,4/6)-,(2,3/4,6)-,(2,4/
3,6)-, (2,6/3,4)-, (2/3,4,
6)-, (2,3,4,6/0)-isomer, etc. [For the nomenclature of this configuration, IuPAC-
IuB Cyclitol 1973 Recommendation (IuPAC-
IuB1973Recommendation for cyclitol), Pure and Applied Chemistry (Pure
Appl.Chem.) Vol. 37, pp. 285-297 (1975)]. Furthermore, the N-substituted derivative of the pseudo-amino sugar represented by the general formula [] has the amino group of the variolamine moiety and the 4-substituted-2,3-dihydroxy-6
-N-[(1R)-4-substituted-2,
3-dihydroxy-6-methylcyclohexyl]
Variolamine (hereinafter referred to as (1R)-isomer) and N-[(1S)-4-substituted-2,3-dihydroxy-6-methylcyclohexyl]variolamine (hereinafter referred to as (1S)-isomer) ) There are two types of stereoisomers. (1R) - Preferred isomers are shown more specifically by the general formula [Symbols in the formula have the same meanings as above, the bond ~ ~ is R
It is a compound represented by [(1R,2R)-(2,6/3,4)-4] as a specific example of such a compound.
-amino-2,3-dihydroxy-6-methylcyclohexyl]variolamine, N-[(1R,
2S)-(2,6/3,4)-2,3,4-trihydroxy-6-methylcyclohexyl]variolamine, N-[(1R,2S)-(2,4,6/3)-
Examples include 2,3,4-trihydroxy-6-methylcyclohexyl variolamine. (1S) - Preferred isomers are shown more specifically by the general formula [Symbols in the formula have the same meanings as above, the bond ~ ~ is R
[(1S,2S)-(2,6/3,4)-4-]
Amino-2,3-dihydroxy-6-methylcyclohexyl]variolamine, N-[(1S,2S)
-(2,6/3,4)-2,3,4-trihydroxy-6-methylcyclohexyl]variolamine, N-[(1S,2S)-(2,4,6/3)-2,
Examples include 3,4-trihydroxy-6-methylcyclohexyl variolamine. The above compounds [a] and [b] both have α-glucosidase inhibitory activity, but [
The a] or (1R, 2S) isomer generally has stronger α-glucosidase inhibitory activity than the corresponding [b] or (1S, 2S) isomer. Protecting groups for the amino group in the above formula include amino sugars, aminocyclitol, and protecting groups used as amino group protecting groups in peptide chemistry, such as formyl, acetyl, propionyl, butyryl, trifluoroacetyl, trichloroacetyl. 1 carbon number which may be substituted with halogen such as
to 5 alkanoyl groups, nitro groups such as benzoyl, p-chlorobenzoyl, p-nitrobenzoyl, p-methoxybenzoyl, carbon atoms 1 to 4
lower alkoxy group, aroyl group optionally substituted with halogen, methoxycarbonyl group, ethoxycarbonyl, 1-propoxycarbonyl,
2 to 6 carbon atoms such as tert-butoxycarbonyl
alkoxycarbonyl group, benzyloxycarbonyl, p-nitrobenzyloxycarbonyl,
p-methoxybenzyloxycarbonyl, 2,4
- Nitro groups such as dichlorobenzyloxycarbonyl, lower alkoxy groups having 1 to 4 carbon atoms, aralkyloxycarbonyl groups optionally substituted with halogen, nitro-substituted phenyl groups such as 2,4-dinitrophenyl groups, phthalyl groups, etc. is used. The hydroxyl-protecting group in the above formula is a protecting group used as a hydroxyl-protecting group in sugar chemistry, such as an acyl-type protecting group, an ether-type protecting group, an acetal-type protecting group, a ketal-type protecting group, orthoester-type protecting group. Protective groups etc. are used. Examples of acyl-type protecting groups include halogen, lower alkoxy groups having 1 to 4 carbon atoms; alkanoyl groups having 1 to 5 carbon atoms optionally substituted with phenoxy groups optionally having halogen; nitro group, phenyl a benzoyl group optionally substituted with a group;
Alkoxycarbonyl group having 2 to 6 carbon atoms which may be substituted with halogen; Alkenyloxycarbonyl group having 2 to 4 carbon atoms; Benzyloxy which may be substituted with lower alkoxy group having 1 to 4 carbon atoms or nitro group A carbonyl group or a nitro-substituted phenoxycarbonyl group is used. The above halogens include fluorine, chlorine, bromine,
Iodine etc. are used. Examples of the above-mentioned lower alkoxyl group having 1 to 4 carbon atoms include methoxyl, ethoxyl, propoxyl, butoxyl groups, which may be substituted with the above-mentioned halogen. Examples of the alkanoyl group having 1 to 5 carbon atoms include formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, and pivaloyl groups. Examples of the alkoxyl group in the above alkoxycarbonyl group having 2 to 6 carbon atoms include the above-mentioned methoxyl, ethoxyl, propoxyl, butoxyl, pentyloxyl, vinyloxyl, allyloxyl group which may be substituted with halogen, etc. . Examples of the alkenyl group having 2 to 4 carbon atoms in the above alkenyloxycarbonyl group having 2 to 4 carbon atoms include vinyl, allyl, isopropenyl, 1-propenyl, 1-butenyl, 2-butenyl, and 3-butenyl. More specific examples of acyl protecting groups include formyl, acetyl, chloroacetyl, dichloroacetyl, trichloroacetyl, trifluoroacetyl, methoxyacetyl, triphenylmethoxyacetyl, phenoxyacetyl, p-chlorophenoxyacetyl. , propionyl, isopropionyl, 3-phenylpropionyl, isobutyryl,
Pivaloyl; benzoyl, p-nitrobenzoyl, p-phenylbenzoyl; methoxycarbonyl, ethoxycarbonyl, 2,2,2-trichloroethoxycarbonyl, isobutyloxycarbonyl; vinyloxycarbonyl, allyloxycarbonyl; benzyloxycarbonyl, p-methoxy These include benzyloxycarbonyl, 3,4-dimethoxybenzyloxycarbonyl, p-nitrobenzyloxycarbonyl; p-nitrophenoxycarbonyl, and the like. Examples of ether-type protecting groups include halogen,
Lower alkyl group having 1 to 5 carbon atoms, optionally substituted with lower alkoxyl group having 1 to 4 carbon atoms, benzyloxyl group, or phenyl group; Alkenyl group having 2 to 4 carbon atoms; Lower alkyl group having 1 to 5 carbon atoms; tri-substituted silyl group whose substituents are phenyl group, benzyl group, etc.; lower alkoxyl group having 1 to 4 carbon atoms;
A benzyl group which may be substituted with a nitro group; a lower alkoxyl group having 1 to 4 carbon atoms, a tetrahydropyranyl group or a tetrahydrofuranyl group which may be substituted with a halogen, etc. are used. Examples of the lower alkyl group having 1 to 5 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert
-Butyl, pentyl, isopentyl, neopentyl, etc. are used. The above halogens, carbon number 1~
As the lower alkoxyl group and the alkenyl group having 2 to 4 carbon atoms in 4, the same ones as in the case of the acyl type protecting group are used. More specific examples of ether protecting groups include methyl, methoxymethyl, benzyloxymethyl,
tert-butoxymethyl, 2-methoxyethoxymethyl, 2,2,2-trichloromethoxymethyl,
Ethyl, 1-ethoxyethyl, 1-methyl-1-
Methoxyethyl, 2,2,2-trichloroethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, ethoxyethyl, triphenylmethyl, p-methoxyphenyldiphenylmethyl; allyl; trimethylsilyl,
tert-butylsilyl, tert-butyldiphenylsilyl; benzyl, p-methoxybenzyl, p-nitrobenzyl, p-chlorobenzyl; tetrahydropyranyl, 3-bromotetrahydropyranyl,
4-methoxytetrahydropyranyl, tetrahydrofuranyl, etc. Acetal type, ketal type and orthoester type protecting groups preferably consist of 1 to 10 carbon atoms. Specific examples include methylene, ethylidene, 1-tert-butylethylidene, 1-phenylethylidene, 2,2,2-trichloroethylidene; isopropylidene, butylidene, cyclopentylidene, cyclohexylidene, cycloheptylidene. ; Benzylidene, p-methoxybenzylidene, 2,4-dimethoxybenzylidene, p-dimethylaminobenzylidene, O-nitrobenzylidene; methoxymethylene, ethoxymethylene, dimethoxymethylene, 1-methoxyethylidene, 1,
2-dimethoxyethylidene and the like. Furthermore, stanoxane type protective groups, cyclic carbonate type protective groups, cyclic boronate type protective groups, etc. can be similarly used. The compounds [ ] of the present invention are salts with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, and nitric acid, and organic acids such as acetic acid, malic acid, citric acid, ascorbic acid, mandelic acid, and methanesulfonic acid. These salts are also included in the present invention. The above-mentioned N-substituted derivatives of pseudo-amino sugars [ ] or salts thereof are stable crystals or powders and have almost no toxicity (rat LD 50 , 500 mg/Kg or more). Compound [ ] or a salt thereof has an α-glucosidase inhibitory effect, and in order to suppress carbohydrate metabolism in humans and non-human animals, it has, for example, a blood sugar rise suppressing effect, and is effective against hyperglycemic symptoms and hyperglycemia. It is useful for the prevention of various diseases caused by obesity, obesity, hyperlipidemia (arteriosclerosis), diabetes, prediabetes, and diseases caused by sugar metabolism by oral microorganisms, such as dental caries. It is a compound. The compound [ ] of the present invention or a salt thereof can be diluted with a non-toxic carrier such as a liquid carrier such as water, ethanol, ethylene glycol, or polyethylene glycol, or a solid carrier such as starch, cellulose, or polyamide powder, and then prepared into ampules. , granules, tablets,
Pills, capsules, syrups, etc. can be prepared according to conventional methods and used for the various uses mentioned above. In addition, sweeteners, preservatives, dispersants, and coloring agents can also be used. The compound [ ] of the present invention or a salt thereof is administered orally or parenterally, preferably orally, with each meal, with a meal, before or after a meal, either alone or mixed with a non-toxic carrier. . Specifically, for example, by taking a preparation containing about 10 to 200 mg of the compound [ ] or its salt per meal, with, before, or after a meal per adult, blood glucose levels caused by eating can be reduced. Since the increase in concentration can be suppressed, it is effective in preventing and treating the above-mentioned diseases. The compound [ ] of the present invention or a salt thereof is useful as an α-glucosidase inhibitor not only as a medicine but also as a food additive and an animal feed additive for obtaining low-fat, high-quality edible meat. The compound [] or its salt may be added to foods. That is, it may be used with liquid or solid foods such as coffee, soft drinks, fruit juices, beer, milk, diam, bean paste, and jelly, seasonings, or various staple foods and side foods. Foods produced by adding the compound [ ] or its salts are suitable as foods for patients with metabolic disorders, and also for healthy people as preventive foods for metabolic disorders. As for the addition amount, for example, the compound [] or its salt may be added to various foods in an amount of about 0.0001 to 1% of the carbohydrate content in the food. When mixed with feed, the carbohydrate content of the feed should be 0.0001~
1% is desirable. N-substituted derivatives of pseudo-amino sugars of the present invention []
Among these, compounds in which Z is an optionally protected amino group, ie, compounds represented by the formula [], can be produced by the following method. That is, it can be produced by subjecting a Schiff base obtained by reacting variolamine [ ] with a cyclic ketone [ ] in an appropriate solvent to a reduction reaction. The condensation reaction between the amino group of variolamine [] and the cyclic ketone [] (i.e., Schiff base formation reaction), and the subsequent Schiff base reduction reaction may be performed continuously in the same reaction vessel. However, it may be carried out in two stages. Cyclic ketone []
is usually used in an amount of about 1 to 2 times the mole of variolamine []. Examples of reaction solvents for the condensation reaction of variolamine [] and cyclic ketone [] and the subsequent reduction reaction include water, alcohols such as methanol, ethanol, propanol, and butanol, dimethyl sulfoxide, dimethylformamide, and N-methyl. Acetamide, methyl cellosolve, dimethyl cellosolve, glymes such as diethylene glycol dimethyl ether, dioxane,
Ethers such as tetrahydrofuran, polar solvents such as acetonitrile, or mixed solvents thereof,
Alternatively, a mixture of these polar solvents and a nonpolar solvent such as chloroform or dichloromethane can be used. The reaction temperature in the Schiff base formation reaction is not particularly limited, but it is usually carried out at room temperature to about 100°C. Although the reaction time varies depending on the reaction temperature, the purpose can usually be achieved by allowing the reaction to occur for a few minutes to 24 hours. Various metal hydrogen complexes, diborane and substituted diborane,
For example, alkali metal borohydrides such as sodium borohydride, potassium borohydride, lithium borohydride, sodium trimethoxyborohydride, potassium tri-sec-butylborohydride, lithium tri-sec-butylborohydride, etc. ,
For example, alkali metal cyanoborohydride such as sodium cyanoborohydride, tetra-n-butylammonium cyanoborohydride, alkali metal aluminum hydride such as lithium aluminum hydride, lithium trimethoxyaluminum hydride, etc. 3-dimethyl-2-butylborane, bis-3-methyl-2-butylborane,
Alkylboranes such as diisopinocamphenylborane, dicyclohexylborane, 9-borabicyclo[3,3,1]nonane, dimethylamineborane,
Alkylamine borane such as tetramethylammonium borohydride and the like are advantageously used. In addition,
When using an alkali metal cyanoborohydride, such as sodium cyanoborohydride, the reaction is preferably carried out under acidic conditions, such as in the presence of hydrochloric acid, acetic acid, or the like. The temperature of this reduction reaction is not particularly limited, but it is usually carried out at room temperature, in some cases, especially at the beginning of the reaction, under ice cooling, and in some cases heated to about 100°C. There are differences depending on the type of Schiff base and reducing agent used. The reaction time also varies depending on the reaction temperature and the type of Schiff base and reducing agent to be reduced, but the purpose can usually be achieved by allowing the reaction to occur for about several minutes to 24 hours. Catalytic reduction can also be used to reduce the Schiff base formed. That is, the reaction is carried out by shaking or stirring Schiff's base in a suitable solvent in the presence of a catalyst for catalytic reduction in a hydrogen stream. As the catalyst for catalytic reduction, for example, platinum black, platinum dioxide, palladium black, palladium carbon, Raney nickel, etc. are used. Commonly used solvents include, for example, water, methanol,
Alcohols such as ethanol, ethers such as dioxane and tetrahydrofuran, dimethylformamide, or a mixed solvent thereof are used. The reaction is usually carried out at room temperature and normal pressure, but may also be carried out under pressure or with heating. The compound obtained in this way [] (i.e.
In the compound represented by the general formula [],
Compounds in which Z″ is a protected amino group) are removed to form the general formula A compound represented by [the hydroxyl group in the formula may be protected] (i.e., a compound represented by the general formula [], in which Z'' is an amino group)
In the case of conversion, the reaction of removing the protecting group of the amino group can be carried out using a method known per se. For example, the protecting group for the amino group may be substituted with an alkanoyl group having 1 to 5 carbon atoms, a nitro group, a lower alkoxy group having 1 to 4 carbon atoms, or a halogen, which may be substituted with the above-mentioned halogen. For aroyl groups, alkoxycarbonyl groups having 2 to 6 carbon atoms, nitro groups, lower alkoxy groups having 1 to 4 carbon atoms, aralkyloxycarbonyl groups that may be substituted with halogen, etc., and phthalyl groups, ammonia, water, etc. By hydrolysis in the presence of alkalis such as sodium oxide, barium hydroxide, hydrazine hydrate, or by hydrolysis in the presence of sulfuric acid,
By hydrolysis in the presence of an acid such as hydrochloric acid, tert-butoxycarbonyl group can be hydrolyzed in the presence of an acid such as trifluoroacetic acid; The lower alkoxy group or benzyloxycarbonyl group which may be substituted with halogen in 4 can be removed from the protective group by hydrogenolysis by catalytic reduction in the presence of a reduction catalyst such as palladium carbon or palladium black. can. When the above-mentioned compound has a protected hydroxyl group, the elimination reaction of the protecting group for the hydroxyl group can be carried out using a method known per se. For example, acetal-type or ketal-type protecting groups such as cyclohexylidene group, isopropylidene group, benzylidene group, trityl group, etc.
By hydrolyzing with acids such as sulfonic acid type ion exchange resins, acyl type protecting groups such as acetyl groups and benzoyl groups can be hydrolyzed with alkalis such as ammonia, sodium hydroxide, barium hydroxide, and sodium methoxide. By doing so, benzyl ether type protecting groups such as benzyl group and p-methoxybenzyl group can be removed by hydrogenolysis by catalytic reduction or reductive decomposition with metallic sodium in liquid ammonia. can. If the compound [] is obtained in the form of a free base,
For example, inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, organic acids such as acetic acid, malic acid, citric acid, ascorbic acid, mandelic acid, methanesulfonic acid, etc., in a suitable solvent according to methods known per se. A salt of the compound [] can be produced by reacting with an acid or the like. The compounds represented by the above general formula [] and their synthetic intermediates obtained in this way can be prepared by means known per se, such as filtration, centrifugation, concentration, etc.
Vacuum concentration, drying, freeze-drying, adsorption, desorption, methods that utilize differences in solubility in various solvents (e.g.
(solvent extraction, dissolution, precipitation, crystallization, recrystallization, etc.),
Chromatography (e.g. ion exchange resin,
Activated carbon, high porous polymer, Cephadex, Cephadex ion exchanger, cellulose,
It can be isolated and purified by chromatography using ion-exchange cellulose, silica gel, alumina, etc. N-substituted derivatives of pseudo-amino sugars of the present invention []
Among these, the compound in which Z is a hydroxyl group, that is, the compound represented by the formula [], can be produced, for example, by the following method. That is, the primary amine moiety of compound [] is converted into a ketone using oxidative deaminating agents to form compound [], and then the ketone moiety of compound [] is reduced to a secondary hydroxyl group. By doing so, the desired compound [] can be produced. As an oxidative deamination agent, 3,5-di-tert
-Butyl-1,2-benzoquinone, mesitylglyoxal, 3-nitromesityglyoxal, 3-nitromesityglyoxal, 3,5
- dinitromesitylglyoxal, preferably 3,5-di-tert-butyl-1,2-benzoquinone [Corey, Achiwa; Journal of the American Chemical Society]. (J.Am.Chem.
Soc.), Vol. 91, pp. 1429-1432 (1969)]. The above-mentioned oxidative deamination agent may be used in an amount of about 1 to 5 moles, preferably about 1 to 3 moles, per mole of the starting compound []. Usually the reaction is carried out in a solvent that is inert to the oxidative deaminating agent. The reaction solvent varies depending on the type of protecting group when the hydroxyl group is protected by a protecting group, but usually,
For example, methanol, ethanol, etc. with a carbon number of 1
or 4 lower alcohols, ethers such as tetrahydrofuran and dioxane, water, halogenated hydrocarbons such as dimethyl sulfoxide, dichloromethane and chloroform, and lower fatty acid esters such as methyl acetate and ethyl acetate, used alone or in appropriate mixtures. It will be done. The reaction temperature is about -30° to 80°C, preferably about -
The temperature ranges from 10° to 40°C. The reaction time varies depending on the reaction solvent, reaction temperature, type of oxidative deamination agent, etc., but is usually about 1 to 25 hours. 3,5-di-tert- as an oxidative deamination agent
When butyl-1,2-benzoquinone is used, the imine intermediate (Schiff base) generated between the amino group of the compound [] is subjected to prototropic isomerization and then hydrolyzed. Next, adjust the reaction solution to a pH of 1 to 5 with an aqueous solution of an inorganic acid (sulfuric acid, hydrochloric acid, etc.) or an aqueous solution of an organic acid (acetic acid, oxalic acid, etc.).
Depending on the type of oxidizing agent used, triethylamine, sodium methoxide, potassium tert-butoxide,
It may be advantageous to use 0.1 to 1.0 equivalents of a base such as DBN (1,5-diazabicyclo[4,3,0]non-5-ene). Compound [] can be produced by subjecting the thus obtained compound [] to a reduction reaction using a metal hydrogen complex compound, diborane, and substituted diborane. As reducing agents such as metal hydrogen complex compounds, diborane, and substituted diborane used in this reaction, those similar to those used in the reduction reaction of the Schiff base obtained by reacting the above-mentioned compound [] and compound [] are used. used. These reducing agents are used in an amount of about 1 to 10 mol, usually about 2 to 5 mol, per 1 mol of the starting compound. The reaction is usually carried out in a solvent. Examples of such solvents include water, alcohols such as methanol, ethanol, propanol, and butanol, glymes such as dimethyl sulfoxide, dimethylformamide, N-methylacetamide, methyl cellosolve, dimethyl cellosolve, and diethylene glycol dimethyl ether, dioxane, and tetrahydrofuran. ethers such as
A polar solvent such as acetonitrile, a mixed solvent thereof, or a mixture of these polar solvents and a nonpolar solvent such as chloroform or dichloromethane is used. The temperature of this reduction reaction is usually room temperature (10-35℃)
In some cases, especially in the early stages of the reaction, the reaction is carried out under ice-cooling, or in some cases heated to about 100°C, which varies depending on the type of reducing agent and reaction solvent. The reaction time also varies depending on the reaction temperature and the type of reducing agent, but is usually about several minutes to 24 hours. Furthermore, the reduction reaction of compound [] to compound [] can also be carried out using a catalytic reduction method used in the reduction reaction of Schiff's base obtained by reacting compound [] and compound []. When the obtained compound [] has a protected hydroxyl group, the elimination reaction of the protecting group can be carried out in the same manner as described above. In addition, when the compound [] is obtained in the form of a free base, it can be converted into a salt of the compound [] with the above-mentioned inorganic acid or organic acid according to a method known per se as in the case of the compound []. The compounds thus obtained and their synthetic intermediates can be isolated and purified by the above-mentioned means known per se. Variolamine (a compound represented by the formula []) as a raw material compound used in the present invention is, for example,
56-55907, and organic chemistry using valienamine or validamine as a raw material as described in Japanese Patent Applications 1982-64370 and 1987-144309. It can be produced by synthetic means. Further, the cyclic ketone represented by the general formula [] can be produced, for example, by the method shown in Figure 1 using validamine as a raw material. In addition, the protecting groups for the amino group and hydroxyl group in the formula are shown in Table 1 below.
In addition to the above-mentioned protecting groups for amino groups (such as those used as protecting groups for amino groups in the chemistry of amino sugars, aminocyclitol, and peptides) and protecting groups for hydroxyl groups (for example, acyl type, ether type), , acetal type and ketal type protecting groups) can also be used in the same manner. [In the above formula, Cbz is benzyloxycarbonyl, Ph is phenyl, Bu is butyl, Bz is benzoyl, NBS is N-bromosuccinimide, TosOH
indicates p-toluenesulfonic acid, AIBM indicates α,α′-azobis-iso-butyronitrile, and DMSO indicates dimethylsulfoxide. ] The resulting compounds and synthetic intermediates can be isolated and purified by the above-mentioned methods known per se. The content of the present invention will be explained in detail by describing test examples, reference examples, and examples below, but the scope of the invention is not limited thereto. Test Example Method for Measuring Glucosidase Inhibitory Activity Maltase and satucalase prepared from pig small intestine mucosa using maltose and sucrose as substrates [B. Borgstro¨
m) and Acta Chemica Scandinavica (Acta Chemica Scandinavica) by A. Dahlqvist.
Chem. Scand.) Vol. 12, pp. 1997-2006, 1958]
Add the enzyme solution (0.25 ml) appropriately diluted with 0.02M phosphate buffer solution (PH6.8) and the same buffer solution (0.5 ml) of the inhibitor (compound [] or its salt) to be tested.
and a substrate solution of 0.05M maltose or 0.05M sucrose in the same buffer (0.25 ml), and this mixture is reacted at 37°C for 10 minutes. This includes glucose B
- Add test reagent (glucose oxidase reagent for glucose measurement, manufactured by Wako Pure Chemical Industries, Ltd.) (3 ml), and
505nm of the reaction solution heated at 37℃ for 20 minutes to develop color.
It was calculated by measuring the absorbance at . 50% inhibitory concentration for maltase (pig, intestinal mucosa) [hereinafter abbreviated as IC 50 (maltase)] and 50% inhibitory concentration for satucalase (pig, intestinal mucosa) of the compound [ ] or a salt thereof described in the Examples [ Hereinafter, abbreviated as IC 50 (Satsucalase)] is the inhibition rate (%) measured using the above measurement method at 3 to 5 different concentrations of each inhibitor.
I asked for it from. The elution fraction of column chromatography in the purification process of each compound described in Reference Examples and Examples is usually thin layer chromatography (TLC).
The components contained were examined, and fractions containing the necessary components were collected and used in the next step. Unless otherwise specified, the TLC Rf values for each compound described in the Examples are based on the thin layer plate being pre-coated (pre-coated).
n- coated) TLC plate silica gel 60F 254 (Merck & Co., West Germany) was used as the developing solvent.
Propyl alcohol/acetic acid. It was measured using water (4:1:1). (Rf value of pseudo-amino sugar measured by the above method as a control sample: Valienamine Rf
= 0.42, Validamine Rf = 0.35, Variolamine
Rf=0.30) The symbols used in the reference examples and examples have the following meanings. s, singlet; d, doublet; dd, double doublet; t, triplet; q, quartet; m, multiplet; J, coupling constant reference example 1 4,7-O-benzylidene-N-benzyloxycarbonylvalidamine N -Benzyloxycarbonylvalidamine (manufactured according to the method described in Japanese Patent Application No. 144309, p. 30)
(55.3g) was dissolved in dimethylformamide (190ml), and α,α-dimethoxytoluene (27.7g) and p-toluenesulfonic acid (177mg) were added.
Stir at 60-65° C. for 1 hour under reduced pressure (60-65 mmHg). The reaction solution was concentrated under reduced pressure, and the residue was dissolved in ethyl acetate (600 ml). The ethyl acetate extract is washed with water and saturated sodium bicarbonate solution, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. Add toluene to the residue and concentrate again under reduced pressure, and add ethyl ether (200ml) and petroleum ether (2) to the residue.
A white powder (67.7 g) of 4,7-O-benzylidene-N-benzyloxycarbonylvalidamine is obtained. [α] 24 D +54.1° (c=1, CH 3 OH) Elemental analysis: C 22 H 25 NO 6 Calculated value (%): C66.15; H6.31; N3.51 Experimental value (%): C66.07; H6.43; N3.39 NMR (DMSO-d 6 ) δ: 0.8-2.2 (3H, m),
3.1~4.2 (6H, m), 4.70 (1H, d, J=5
Hz), 4.78 (1H, d, J = 4.5Hz), 5.02 (2H,
s), 5.47 (1H, s), 6.98 (1H, d, J = 7.5
Hz), 7.2-7.6 (10H, m). Reference example 2 4-O-benzoyl-N-benzyloxycarbonyl-7-promo-7-deoxyvalidamine 4,7-O-benzylidene-N-benzyloxycarbonylvalidamine (42.5 g) was dissolved in carbon tetrachloride (500 ml). and 1,1,2,2-tetrachloroethane (100 ml), and added N-bromosuccinimide (21.5 g) and barium carbonate (35 g).
Heat to reflux for 1 hour while stirring. The reaction solution is filtered while hot, and after washing insoluble matter with carbon tetrachloride, the filtrate and washing solution are combined and concentrated under reduced pressure. The residue is dissolved in ethyl acetate, washed with 2N hydrochloric acid and saturated sodium bicarbonate solution, dried over anhydrous sodium sulfate, and then the solvent is distilled off under reduced pressure. The residue was subjected to column chromatography on silica gel (600 ml) (Kieselgel 60, Merck, West Germany, the same applies to the silica gel used below), and after washing the column with toluene-ethyl acetate (4:1), toluene-ethyl acetate was added. (1:1). The eluted fraction was concentrated under reduced pressure, ethyl ether-petroleum ether (1:5, about 800 ml) was added to the residue, and the mixture was left in the refrigerator overnight to give 4-O-benzoyl-N-benzyloxycarbonyl-7-bromo-7. -White precipitate of deoxyvalidamine (29.8g)
is obtained. Elemental analysis: C 22 H 24 NO 6 Br Calculated value (%): C55.24; H5.06; N2.93; Br16.70 Experimental value (%): C55.14; H5.02; N2.62; Br16 .65 NMR (DMSO-d 6 ) δ: 1.3-1.75 (1H, m),
1.8~2.6 (2H, m), 2.9~4.2 (m), 4.87 (1H,
t, J=9Hz), 5.07 (2H, s), 7.08 (1H,
d, J=8Hz), 7.40 (5H, s), 7.25-7.75
(3H, m), 7.95-8.15 (2H, m). Reference example 3 4-O-benzoyl-N-benzyloxycarbonyl-2,3-O-cyclohexylidene-7
-Bromo-7-deoxyvalidamine 4-O-benzoyl-N-benzyloxycarbonyl-7-bromo-7-deoxyvalidamine (20 g) was dissolved in dimethylformamide (50 ml), and 1,1-dimethoxycyclohexane (20 ml) was dissolved in dimethylformamide (50 ml). )
and p-toluenesulfonic acid (0.5 g), and stirred at 55° C. for 2 hours under reduced pressure (45-50 mmHg). The reaction solution is dissolved in ethyl acetate, washed with saturated sodium bicarbonate solution, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. Pour the residue into silica gel (550ml)
After washing with toluene, the mixture was eluted with toluene-ethyl acetate (19:1). The eluted fractions were concentrated under reduced pressure, and the residue was dried under reduced pressure in a desiccator to give 4-O-benzoyl-N-benzyloxycarbonyl-2,3-O-cyclohexylidene-7-bromo-7-deoxyvalidamine. (25.5 g) is obtained as a syrupy substance. Elemental analysis: C 28 H 32 NO 6 Br Calculated value (%): C60.21; H5.78; N2.51; Br14.31 Experimental value (%): C60.69; H5.71; N2.49; Br14 .61 NMR (CDCL 3 ) δ: 1.2-1.8 (10H, m), 3.42
(2H, d, J=5Hz), 3.66 (1H, dd, J=
4Hz, 10Hz), 3.88 (1H, t, J = 10Hz),
4.27 (1H, m), 4.97 (1H, d, J=5Hz),
5.13 (2H, s), 5.33 (1H, t, J=10Hz),
7.1~7.7 (3H, m), 7.38 (5H, s), 8.0~8.2
(2H, m). Reference example 4 4-O-benzoyl-N-benzyloxycarbonyl-2,3-O-cyclohexylidene-7
-deoxyvalidamine 4-O-benzoyl-N-benzyloxycarbonyl-2,3-O-cyclohexylidene-7-
Bromo-7-deoxyvalidamine (25 g) was dissolved in toluene (300 ml), tri-n-butyltin hydride (20 ml) and α,α'-azobis-iso-butyronitrile (0.1 g) were added and heated for 1 hour. Reflux. After cooling the reaction solution to room temperature, it is washed with IN hydrochloric acid and saturated sodium bicarbonate solution, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (600ml), and after washing the column with toluene, toluene-ethyl acetate (9:1)
It elutes with The eluted fractions were concentrated under reduced pressure, and the residue was dried under reduced pressure in a desiccator to give 4-O-benzoyl-N-benzyloxycarbonyl-2,3.
-O-cyclohexylidene-7-deoxyvalidamine (21 g) is obtained as a syrupy substance. Elemental analysis: C28H33NO6 Calculated value (%): C70.12; H6.94; N2.92 Experimental value (% ) : C70.58; H6.95; N2.71 NMR ( CDCl3 ) δ: 0.96 (3H, d, J = 6.5Hz),
1.15~2.2 (12H, m), 2.2~2.6 (1H, m),
3.63 (1H, dd, J=4Hz, 10Hz), 3.83 (1H,
t, J=10Hz), 4.22 (1H, m), 4.9-5.25
(2H, m), 5.13 (2H, s), 7.15~7.7 (3H,
m), 7.38 (5H, s), 8.0-8.2 (2H, m). Reference example 5 N-benzyloxycarbonyl-2,3-O-
Cyclohexylidene-7-deoxyvalidamine 4-O-benzoyl-N-benzyloxycarbonyl-2,3-O-cyclohexylidene-7-
Deoxyvalidamine (20 g) was dissolved in acetone-ethanol (3:2, 500 ml), 1N sodium hydroxide (100 ml) was added, and the mixture was stirred at room temperature for 1 hour.
Adjust the reaction solution to PH4.5 with 2N hydrochloric acid while cooling with ice water, then adjust the pH to 7.5 with 25-28% ammonia water, add water (about 500ml), and distill off the organic solvent under reduced pressure. . The resulting oil is extracted with ethyl acetate, the extract is washed with saturated sodium bicarbonate solution, dried over anhydrous sodium sulfate, and the solvent is distilled off under reduced pressure.
The residue was subjected to column chromatography on silica gel (550 ml) and eluted with toluene-ethyl acetate (3:1). The eluted fraction was concentrated under reduced pressure, ethyl ether-petroleum ether (1:4500 ml) was added to the residue, and the mixture was left in the refrigerator overnight to give N-benzyloxycarbonyl-2,3-O-cyclohexylidene-7-
Deoxyvalidamine crystals (13.9 g) are obtained. Elemental analysis: C21H29NO5 Calculated value (%): C67.18; H7.79 ; N3.73 Experimental value (%): C67.02; H7.70; N3.55 NMR ( CDCl3 ) δ: 1.03 (3H, d, J=7Hz),
1.1~1.9 (12H, m), 2.1~2.4 (1H, m),
2.45 (1H, d, J = 4Hz), 3.15~3.6 (3H,
m), 4.17 (1H, m), 4.89 (1H, d, J=6
Hz), 5.10 (2H, s), 7.37 (5H, s). Reference example 6 (2R)-(2,6/3,4)-2,3-O-cyclohexylidene-4-benzyloxycarbonylamino-2,3-dihydroxy-6-methylcyclohexanone in dimethyl sulfoxide (9 ml) Trifluoroacetic anhydride (13.5
ml) in dichloromethane (50 ml) was added dropwise while cooling to below -65°C, stirred at the same temperature for 20 minutes, and then
-benzyloxycarbonyl-2,3-O-cyclohexylidene-7-deoxyvalidamine (12
g) is added while cooling to below -70°C, and further stirred at the same temperature for 1 hour. Add a solution of triethylamine (26.7 ml) in dichloromethane (50 ml) to the reaction solution at -65
After dropping the mixture while cooling to below ℃, remove the cooling bath and stir until the temperature of the reaction solution rises to 20℃. Add the reaction solution to ice water (approximately 300 ml), stir for 1 hour, separate the dichloromethane layer, and extract the aqueous layer once again with dichloromethane. Collect dichloromethane extract
Wash with 2N hydrochloric acid and saturated sodium bicarbonate solution,
Dry over anhydrous sodium sulfate and concentrate under reduced pressure. The residue was subjected to column chromatography on silica gel (400 ml) and eluted with toluene-ethyl acetate (5:1). The eluted fraction was concentrated under reduced pressure and the residue was dried under reduced pressure in a desiccator to give (2R)-(2,6/3,
4) -2,3-O-cyclohexylidene-4-benzyloxycarbonylamino-2,3-dihydroxy-6-methylcyclohexanone (9.8g)
is obtained as a syrupy substance. Elemental analysis: C21H27NO5 Calculated value (%): C67.54; H7.29 ; N3.75 Experimental value (%): C67.49; H7.41; N3.67 NMR ( CDCl3 ) δ: 1.06 (3H, d, J=6Hz),
1.2~1.9 (11H, m), 2.3~2.85 (2H, m),
3.74 (1H, dd, J=4Hz, 10.5Hz), 4.2~
4.45 (1H, m), 4.43 (1H, d, J = 10.5Hz),
5.14 (2H, s), 5.15-5.4 (1H, m), 7.40
(5H, s). Example 1 N-[(1R,2S)-(2,6/3,4)-4-amino-2,3-dihydroxy-6-methylcyclohexyl]variolamine and N-[(1S,
2S)-(2,6/3,4)-4-amino-2,3
-dihydroxy-6-methylcyclohexyl]
Variolamine Variolamine (4.0g) and (2R)-(2,
6/3,4)-2,3-O-cyclohexylidene-4-benzyloxycarbonylamino-2,3
-Dihydroxy-6-methylcyclohexanone (9.2 g) is dissolved in dimethylformamide (120 ml), 2N hydrochloric acid (3 ml) and sodium cyanoborohydride (5.6 g) are added, and the mixture is stirred at 50-60°C for 18 hours. The reaction solution was concentrated under reduced pressure, toluene was further added, and dimethylformamide was distilled off azeotropically.
The residue is partitioned into a mixture of ethyl acetate and water. The ethyl acetate layer is separated, washed with water, dried over anhydrous sodium sulfate, and the solvent is distilled off under reduced pressure. Ethyl ether (500 ml) was added to the residue and left in the refrigerator overnight, and the resulting precipitate was collected by filtration, washed with ethyl ether, and dried under reduced pressure in a desiccator. The obtained powder (3.0g) was mixed with 80% acetic acid (100ml).
and stir at 50-60°C for 1 hour. The reaction solution is concentrated under reduced pressure, the acid distillate is added to a mixture of ethyl acetate and water for partitioning, the aqueous layer is separated, washed with ethyl acetate, and the solvent is distilled off under reduced pressure. The residue was dissolved in water-methanol-acetic acid (50:30:2100 ml), palladium black (600 mg) was added, and the solution was dissolved at room temperature in a hydrogen stream for 80 minutes.
Stir for an hour. After removing the catalyst by filtration and washing with water, the filtrate and washing liquid are collected and concentrated under reduced pressure. amber light residue
When subjected to column chromatography using CG-50 (NH 4 + form, 250 ml) (manufactured by Rohm and Haas, USA), the column was washed with water and eluted with 0.1N aqueous ammonia.
It is separated and eluted into two components: the first eluted fraction (0.8 to 1.0) and the second eluted fraction (1.3 to 1.7). The fraction eluted first was concentrated under reduced pressure, and the residue was purified using Amberlite CG-50 (NH 4 + type,
400ml) column chromatography, eluted with 0.1N aqueous ammonia, concentrated the eluted fraction under reduced pressure, and lyophilized it to obtain N-[(1R,2S)-(2,6/3,4)-4-
Amino-2,3-dihydroxy-6-methylcyclohexyl]variolamine (505 mg) is obtained as a white powder. The fraction eluted later was concentrated under reduced pressure, and the resulting residue was passed through a 1×2 Dowex tube.
(OH - type, 150ml) (manufactured by Dow Chemical Company, USA)
column chromatography and elute with water. The eluted fraction was concentrated under reduced pressure and lyophilized to give N-[(1S, 2S)
-(2,6/3,4)-4-amino-2,3-dihydroxy-6-methylcyclohexyl]variolamine (490 mg) is obtained. N-[(1R,2S)-(2,6/3,4)-4-amino-2,3-dihydroxy-6-methylcyclohexyl]variolamine (isomer eluted first, isomer (a ) Elemental analysis: C 14 H 28 N 2 O 7・H 2 O Calculated value (%): C47.45; H8.53; N7.90 Experimental value (%): C47.59; H8.30; N8.03 [α] 26 D +42.6° (c=1, H 2 O) NMR (D 2 O) δ: 1.25 (3H, d, J=6Hz),
1.4-2.7 (6H, m), 3.4-4.2 (9H, m). IC 50 (maltase): 2.8×10 -8 M IC 50 (satucarase): 7.5×10 -9 M N-[(1S,2S)-(2,6/3,4)-4-amino-2,3 -dihydroxy-6-methylcyclohexyl]variolamine (isomer eluted later, abbreviated as isomer (b)) Elemental analysis: C 14 H 28 N 2 O 7・H 2 O Calculated value (%): C47. 45; H8.53; N7.90 Experimental value (%): C47.50; H8.87; N7.98 [α] 26 D +2.0° (c=1, H 2 O) NMR (D 2 O) δ: 1.24 (3H, d, J = 6.5Hz),
1.5-2.7 (5H, m), 3.1-3.3 (1H, m), 3.3
~4.3 (9H, m). IC 50 (maltase): 1.5×10 -6 M IC 50 (satucalase): 5.3×10 -8 M Example 2 N-[(1R,2S)-(2,6/3,4)-2,3,
4-trihydroxy-6-methylcyclohexyl]variolamine and N-[(1R,2S)-
(2,4,6/3)-2,3,4-trihydroxy-6-methylcyclohexyl]variolamine N-[(1R,2S)-(2,6/3,4)-4-amino- 2,3-dihydroxy-6-methylcyclohexyl]variolamine (200 mg) was dissolved in methanol (5 ml), 3,5-di-tert-butyl-1,2-benzoquinone (180 mg) was added, and the solution was heated to 150 mg at room temperature. Stir for an hour. Adjust the reaction solution to PH1-2 with 1N sulfuric acid.
The mixture was stirred at room temperature for 3 hours, and water (100 ml) and chloroform (50 ml) were added. Separate the aqueous layer,
After washing with chloroform, concentrate under reduced pressure to approximately 50 ml. While cooling with ice water, add sodium borohydride (200 mg) to the concentrated solution, and stir at the same temperature for 2 hours and then at room temperature for 1 hour. The reaction solution was adjusted to pH 5 with acetic acid, then subjected to column chromatography using DOWEX 50W x 8 (H + type, 160 ml) (manufactured by Dow Chemical Co., USA), washed with water, and eluted with 0.5N aqueous ammonia. The eluted fraction was concentrated under reduced pressure, and the residue was applied to Amberlite CG-50 (NH 4 + type, 180 ml) (Rohm & Haas, USA) column chromatography and eluted with water. fraction (320
~480ml) and later eluted fractions (510-900ml)
It is separated into two components and eluted. After concentrating each eluted fraction under reduced pressure and freeze-drying, a white powder (57 mg) showing [α] 26 D +18.9° (c = 1, H 2 O) was eluted later from the first eluted fraction. A white powder (31 mg) exhibiting [α] 26 D +31.1° (c=1, H 2 O) is obtained from the fraction. Isomer eluted first (abbreviated as isomer (a)) Elemental analysis: C 14 H 27 NO 8・1/2H 2 O Calculated value (%): C48.55; H8.15; N4.04 Experimental value (%): C48.45; H8.69; N3.92 NMR (D 2 O) δ: 1.28 (3H, d, J = 6Hz),
1.3~2.4 (5H, m), 2.50 (1H, t, J=10
Hz), 3.3-4.2 (9H, m). TLC Rf=0.29 IC 50 (maltase): 7.0×10 -8 M IC 50 (satucalase): 3.5×10 -8 M Isomer eluted later (abbreviated as isomer (b)) Elemental analysis: C 14 H 27 NO 8・1/2H 2 O Calculated value (%): C48.55; H8.15; N4.04 Experimental value (%): C48.23; H8.45; N3.92 NMR (D 2 O) δ: 1.26 (3H, d, J = 6Hz),
1.5-2.4 (5H, m), 2.45 (1H, t, J=10
Hz), 3.5-4.35 (9H, m). TLC Rf=0.30 IC 50 (maltase): 6.8×10 -8 M IC 50 (satucalase): 3.6×10 -8 M Example 3 N-[(1S, 2S)-(2,6/3)-2, 3,4-
trihydroxy-6-methylcyclohexyl]
Variolamine N-[(1S,2S)-(2,6/3,4)-4-amino-2,3-dihydroxy-6-methylcyclohexyl] Variolamine (300 mg) was dissolved in methanol (5 ml). Then, 3,5-di-tert-butyl-1,2-benzoquinone (300 mg) was added, and the mixture was stirred at room temperature for 18 hours. Adjust the reaction solution to PH1-2 with 1N sulfuric acid.
After adjusting to , stir at room temperature for 3 hours. Add water (100 ml) and chloroform (100 ml) to the reaction solution, separate the aqueous layer, wash with chloroform, and concentrate under reduced pressure to about 50 ml. Sodium borohydride (400 mg) was added to the concentrated solution while cooling with ice water, and the mixture was stirred at the same temperature for 2 hours and then at room temperature for 2 hours. The reaction solution was diluted with acetic acid.
Adjust to PH4.5, Dowex 50W x 8 (H + type,
After washing the column with water, elute with 0.5N aqueous ammonia. The eluted fraction was concentrated under reduced pressure, and the residue was subjected to column chromatography using Amberlite CG-50 (NH 4 + type, 150 ml) (Rohm & Haas, USA). After washing the column with water, 0.1N ammonia was added. Elutes with water. The eluted fractions are concentrated under reduced pressure, and the residue is subjected to column chromatography using Amberlite CG-50 (NH 4 + type, 75 ml) (manufactured by Rohm and Haas, USA) and eluted with 0.025N aqueous ammonia. The eluted fraction (150-270ml) was concentrated under reduced pressure and then lyophilized to give N-[(1S,2S)-(2,6/3)-2,3,4
-trihydroxy-6-methylcyclohexyl]
White powder (30 mg) of variolamine (however, the configuration of the hydroxyl group at the 4-position of the 2,3,4-trihydroxy-6-methylcyclohexyl moiety has not been determined)
is obtained. Elemental analysis: C 14 H 27 NO 8・1/2H 2 O Calculated value (%): C48.55; H8.15; N4.04 Experimental value (%): C48.16; H8.34; N3.95 [ α] 26 D +25.9° (c=1, H 2 O) NMR (D 2 O) δ: 1.28 (3H, d, J = 6.5Hz),
1.5-2.25 (4H, m), 2.43 (1H, dd, J=3
Hz, 15Hz), 3.13 (1H, t, J = 3.5Hz), 3.37
(1H, q, J = 3.5Hz), 3.5-4.25 (8H, m). TLC: Rf=0.28 Example 4 Add 10 mg of the isomer (a) of Example 1 to 200 ml of a beverage containing 10% tangerine juice, stir and dissolve uniformly to obtain a fruit juice beverage containing an α-glucosidase inhibitor. obtain. Example 5 20 parts by weight of the isomer (a) of Example 2, 80 parts by weight of lactose, 20 parts by weight of crystalline cellulose were mixed uniformly, kneaded with water, dried, and processed into powder or fine granules according to a conventional method. Use as a powder.

Claims (1)

【特許請求の範囲】 1 一般式 [式中、Zは水酸基またはアミノ基を示す。]
で表わされる化合物。 2 式 [式中、水酸基は保護されていてもよい]で表
わされる化合物と一般式 [式中、Z′は保護されているアミノ基を示す。
式中の水酸基は保護されていてもよい]で表わさ
れる環状ケトンとを反応させ、ついで還元反応に
付し、所望により脱保護基反応に付することを特
徴とする一般式 [式中、Z″はアミノ基を示す。]で表わされる
化合物の製造法。 3 一般式 [式中、水酸基は保護されていてもよい]で表
わされる化合物と一般式 [式中、Z′は保護されているアミノ基を示す。
式中の水酸基は保護されていてもよい]で表わさ
れる環状ケトンとを反応させ、ついで還元反応に
付して得られる一般式 [式中の記号は前記と同意義。式中の水酸基は
保護されていてもよい]で表わされる化合物のア
ミノ基の保護基を除去した後、酸化的脱アミノ化
剤を作用させて得られる一般式 [式中の水酸基は保護されていてもよい]で表
わされる化合物を還元剤と作用させ、所望により
脱保護基反応に付すことを特徴とする一般式 で表わされる化合物の製造法。 4 一般式 [式中、Zは水酸基またはアミノ基を示す。]
で表わされる化合物を含有するα−グルコシダー
ゼ阻害剤。
[Claims] 1. General formula [In the formula, Z represents a hydroxyl group or an amino group. ]
A compound represented by 2 formulas Compounds represented by [In the formula, the hydroxyl group may be protected] and the general formula [In the formula, Z′ represents a protected amino group.
The hydroxyl group in the formula may be protected] is reacted with a cyclic ketone, then subjected to a reduction reaction, and optionally subjected to a deprotection reaction. A method for producing a compound represented by [In the formula, Z'' represents an amino group.] 3 General formula Compounds represented by [In the formula, the hydroxyl group may be protected] and the general formula [In the formula, Z′ represents a protected amino group.
The general formula obtained by reacting with a cyclic ketone represented by [the hydroxyl group in the formula may be protected] and then subjecting it to a reduction reaction [Symbols in the formula have the same meanings as above. The general formula obtained by removing the protecting group of the amino group of the compound represented by [the hydroxyl group in the formula may be protected] and then reacting with an oxidative deaminating agent A general formula characterized in that a compound represented by [the hydroxyl group in the formula may be protected] is reacted with a reducing agent and optionally subjected to a deprotecting group reaction. A method for producing a compound represented by 4 General formula [In the formula, Z represents a hydroxyl group or an amino group. ]
An α-glucosidase inhibitor containing a compound represented by:
JP57183433A 1982-03-19 1982-10-19 N-substituted derivative of pseudo-aminosugar, its preparation and use Granted JPS5973549A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57183433A JPS5973549A (en) 1982-10-19 1982-10-19 N-substituted derivative of pseudo-aminosugar, its preparation and use
US06/475,615 US4595678A (en) 1982-03-19 1983-03-15 N-substituted pseudo-aminosugars and pharmaceutical compositions containing same
EP83301482A EP0089812B1 (en) 1982-03-19 1983-03-17 N-substituted pseudo-aminosugars, their production and use
DE8383301482T DE3366520D1 (en) 1982-03-19 1983-03-17 N-substituted pseudo-aminosugars, their production and use
CA000424008A CA1208211A (en) 1982-03-19 1983-03-18 N-substituted pseudo-aminosugars, their production and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57183433A JPS5973549A (en) 1982-10-19 1982-10-19 N-substituted derivative of pseudo-aminosugar, its preparation and use

Publications (2)

Publication Number Publication Date
JPS5973549A JPS5973549A (en) 1984-04-25
JPH0325412B2 true JPH0325412B2 (en) 1991-04-05

Family

ID=16135686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57183433A Granted JPS5973549A (en) 1982-03-19 1982-10-19 N-substituted derivative of pseudo-aminosugar, its preparation and use

Country Status (1)

Country Link
JP (1) JPS5973549A (en)

Also Published As

Publication number Publication date
JPS5973549A (en) 1984-04-25

Similar Documents

Publication Publication Date Title
EP0056194B1 (en) N-substituted pseudo-aminosugars, their production and use
EP0089812B1 (en) N-substituted pseudo-aminosugars, their production and use
JPH07228558A (en) Stilbene derivative and carcinostatic agent containing the same
JPS6340418B2 (en)
BE1000158A4 (en) New anthracycline glycosides, preparation process and their use as antitumor agents.
JPH0325412B2 (en)
JPS63258485A (en) Antitumor anthracycline glycoside, its production method and uses
Ogawa et al. Synthesis of Ether‐and Imino‐Linked Octyl N‐Acetyl‐5a′‐carba‐β‐lactosaminides and‐isolactosaminides: Acceptor Substrates for α‐(1→ 3/4)‐Fucosyltransferase, and Enzymatic Synthesis of 5a′‐Carbatrisaccharides
JPH0238580B2 (en) BARIOORUAMINNONNCHIKANJUDOTAI * SONOSEIZOHOOYOBYOTO
BE1001688A5 (en) NOVEL 4-demethoxy ANTHRACYCLINE.
Hayman et al. A stereoselective synthesis of 6, 6, 6-trifluoro-l-daunosamine and 6, 6, 6-trifluoro-l-acosamine
FR2554450A1 (en) 4'-HALO-ANTHRACYCLINE GLYCOSIDES, PROCESS FOR THEIR PREPARATION AND THEIR USE AS A MEDICINAL PRODUCT
JP3068258B2 (en) 13-dihydro-3 '-(2-alkoxy-4-morpholinyl) anthracycline
JPH03504609A (en) Novel 3'-(4-morpholinyl)- and 3'-(2-methoxy-4-morpholinyl)-anthracycline derivatives
JPH0323537B2 (en)
Hayashida et al. Displacement of “pseudoanomeric” hydroxyl groups by using the diethyl azodicarboxylate-triphenylphosphine system
JPH0372637B2 (en)
FR2646081A1 (en)
FR2860234A1 (en) NEW THIOXYLOSE DERIVATIVES 666
Hashimoto et al. Synthesis and biological activities of 4-(d-alanylamino)-2-amino-2, 3, 4-trideoxy-l-threo-pentose (3-deoxyprumycin)
JPH0118904B2 (en)
Reist et al. Neighboring group participation in carbohydrates. Synthesis of 2, 3-diamino-2, 3-dideoxy-L-ribose
JPH0631297B2 (en) Novel anthracyclines and method for producing the same
JPH0239501B2 (en)
Kurihara et al. Chemistry of Benzeneglycols Part XVIII. Synthesis of (-)-N-Methyl-2-deoxystreptamine and Its Absolute Configuration