[go: up one dir, main page]

JPH0323537B2 - - Google Patents

Info

Publication number
JPH0323537B2
JPH0323537B2 JP57100325A JP10032582A JPH0323537B2 JP H0323537 B2 JPH0323537 B2 JP H0323537B2 JP 57100325 A JP57100325 A JP 57100325A JP 10032582 A JP10032582 A JP 10032582A JP H0323537 B2 JPH0323537 B2 JP H0323537B2
Authority
JP
Japan
Prior art keywords
trihydroxy
hydroxymethylcyclohexyl
variolamine
reaction
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57100325A
Other languages
Japanese (ja)
Other versions
JPS58216145A (en
Inventor
Satoshi Horii
Yukihiko Kameda
Hiroshi Fukase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP57100325A priority Critical patent/JPS58216145A/en
Priority to US06/475,615 priority patent/US4595678A/en
Priority to DE8383301482T priority patent/DE3366520D1/en
Priority to EP83301482A priority patent/EP0089812B1/en
Priority to CA000424008A priority patent/CA1208211A/en
Publication of JPS58216145A publication Critical patent/JPS58216145A/en
Publication of JPH0323537B2 publication Critical patent/JPH0323537B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fodder In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一般式 〔式中、Aは水素原子または水酸基を示す。〕
で表わされる化合物またはその塩に関する。 本発明の化合物〔〕は擬似アミノ糖〔ザ・ジ
ヤーナル・オブ・オーガニツク・ケミストリー
(J.Org.Chem.)第31巻,1516〜1521頁(1966年)
に擬似糖(pseudo−sugar)なる用語が定義され
ている〕のN−置換誘導体である。これまでに、
擬似アミノ糖およびそれらのN−置換誘導体類に
ついては、バリエナミン(valienamine)および
バリエナミンのN−置換誘導体がα−グルコシダ
ーゼ阻害活性を有すること〔ザ・ジヤーナル・オ
ブ・アンテイバイオテイクス(J.Antibiotics)第
33巻、1575〜1576頁(1980年),特開昭57−59813
および特開昭57−64648〕が知られており、また
放線菌によつて生産され、バリエナミンを構成成
分として分子内に有しているα−グルコシダーゼ
阻害活性を有する化合物として、アカルボーズ
〔(acarbose),BAYg5421,ナトウ−アヴイツセ
ンシヤフテン(Naturwissenschaften),第64巻,
535〜537頁(1977年),特公昭54−39474〕,トレ
スタチン〔(trestatin),第23回天然有機化合物討
論会講演要旨集(23rd Symposium,The
Chemistry of Natural Products;Symposium
papers),632〜639頁(1980年10月);特開昭54
−163511〕,アデイポシン〔(adiposin),TAI−
A,Bその他,ザ・ジヤパニーズ・ジヤーナル・
オブ・アンテイバイオテイクス(Jap,J.
Antibiotics),第36巻,119頁(1981年);澱粉化
学(J.Jap.Soc.Starch Sci.)第26巻,134〜144頁
(1979年),第27巻,107〜113頁(1980年);特開
昭54−106402;特開昭54−106403;特開昭55−
64509;特開昭56−123986;特開昭56−125398〕,
アミロスタチン〔(amylostatin),第4回糖質シ
ンポジウム講演要旨集,58〜59頁(1981年8
月);特開昭50−123891;特開昭55−71494;特開
昭55−157595〕、オリゴスタチン〔(oligostatin),
SF−1130X,特開昭53−26398;特開昭56−
43294,ザ・ジヤーナル・オブ・アンテイバイオ
テイクス(J.Antibiotics),第34巻,1424〜1433
頁(1981年);オリゴスタチンCはバリエナミン
の代わりにヒドロキシバリダミン
(hydroxyvalidamine,ザ・ジヤーナル・オブ・
アンテイバイオテイクス(J.Antibiotics),第24
巻,59〜63頁(1971年)〕を構成成分として含有
している〕,アミノ糖化合物(特開昭54−92909)
などが知られている。また上記の化合物を含む微
生物起源のα−グルコシダーゼ阻害物質について
のエー・トルシヤイト(E.Truscheit)らの総説
〔アンゲバンテ・ヘミー(Angewandte Chemie)
第93巻,738〜755頁(1981年)〕が報告されてい
る。 また、アカルボース(acarbose)およびオリ
ゴスタチンC(oligostatin C)のメタノリシスに
より、メチル4−〔(1S,6S)−(4,6/5)−
4,5,6−トリヒドロキシ−3−ヒドロキシメ
チル−2−シクロヘキセン−1−イル〕アミノ−
4,6−ジデオキシ−α−D−グルコピラノシド
が得られることも報告されている〔第182回アメ
リカ化学会講演要旨集(182nd ACS National
meeting Abstracts paper)MEDI69,1981年8
月,ニユーヨーク;ザ・ジヤーナル・オブ・アン
テイバイオテイクス(J.Antibiotics),第34巻,
1429〜1433頁(1981年);および特開昭57−
24397〕。しかしこれらの化合物のα−グルコシダ
ーゼ阻害活性はまだ満足のいくものではない。 さらにバリエナミン誘導体としてはイネ紋枯病
菌に対して活性を示すバリドキシルアミンA
(validoxylamine A)が知られており〔ジヤー
ナル・オブ・ザ・ケミカル・ソサイアテイ・ケミ
カル・コミユニケーシヨン(J.Chem.Soc.Chem.
Commun.)1972年,747〜748頁〕、またその他の
バリドキシルアミン類およびその類似体が報告さ
れている〔ケミストリー・レターズ(Chemistry
Letters)1981年,947〜950頁,1982年,279〜
282頁および749〜752頁;日本化学会第45春季年
会講演予稿集,811頁(1982年)〕が、これらの
α−グルコシダーゼ阻害活性についての報告はな
い。 なお、本発明の明細書中に化合物の慣用名とし
てバリエナミン、バリダミンおよびバリオールア
ミンなる用語を用いた場合の各々の化合物の化学
構造および各炭素原子の位置番号は次式で表わさ
れる。
The present invention is based on the general formula [In the formula, A represents a hydrogen atom or a hydroxyl group. ]
It relates to a compound represented by or a salt thereof. The compound of the present invention [] is a pseudo-amino sugar [The Journal of Organic Chemistry (J.Org.Chem.) Vol. 31, pp. 1516-1521 (1966)
The term "pseudo-sugar" is defined in So far,
Regarding pseudo-amino sugars and their N-substituted derivatives, valienamine and N-substituted derivatives of valienamine have α-glucosidase inhibitory activity [The Journal of Antibiotics, Vol.
Volume 33, pages 1575-1576 (1980), JP-A-57-59813
and JP-A-57-64648], and acarbose is a compound produced by actinomycetes and has valienamine as a constituent component and has α-glucosidase inhibitory activity. , BAYg5421, Naturwissenschaften, Volume 64,
pp. 535-537 (1977), Special Publication No. 54-39474], Trestatin [(trestatin), 23rd Symposium, The
Chemistry of Natural Products;Symposium
papers), pp. 632-639 (October 1980);
-163511], adiposin [(adiposin), TAI-
A, B Others, The Japanese Journal
Of Antibiotics (Jap, J.
Antibiotics, Vol. 36, p. 119 (1981); Starch Sci., Vol. 26, pp. 134-144 (1979), Vol. 27, pp. 107-113 (1980) 1972-106402; 1977-106403; 1977-
64509; JP-A-56-123986; JP-A-56-125398],
Amylostatin, Abstracts of the 4th Carbohydrate Symposium, pp. 58-59 (August 1981)
); JP 50-123891; JP 55-71494; JP 55-157595], oligostatin [(oligostatin),
SF-1130X, JP-A-53-26398; JP-A-56-
43294, The Journal of Antibiotics, Volume 34, 1424-1433
(1981); Oligostatin C contains hydroxyvalidamine instead of valienamine, The Journal of
J.Antibiotics, No. 24
Vol., pp. 59-63 (1971)], an amino sugar compound (Japanese Unexamined Patent Publication No. 1983-92909)
etc. are known. Also, a review by E. Truscheit et al. of α-glucosidase inhibitors of microbial origin, including the above-mentioned compounds [Angewandte Chemie]
Vol. 93, pp. 738-755 (1981)]. In addition, methyl 4-[(1S,6S)-(4,6/5)-
4,5,6-trihydroxy-3-hydroxymethyl-2-cyclohexen-1-yl]amino-
It has also been reported that 4,6-dideoxy-α-D-glucopyranoside can be obtained [182nd ACS National
meeting Abstracts paper) MEDI69, 1981 8
May, New York; The Journal of Antibiotics, Volume 34,
pp. 1429-1433 (1981); and Japanese Patent Application Publication No. 1986-
24397]. However, the α-glucosidase inhibitory activity of these compounds is still not satisfactory. Furthermore, as a valienamine derivative, validoxylamine A is active against rice sheath blight fungus.
(validoxylamine A) is known [J.Chem.Soc.Chem.
Commun., 1972, pp. 747-748], and other validoxylamines and their analogs have been reported [Chemistry Letters.
Letters) 1981, pp. 947-950, 1982, 279-
282 and 749-752; Proceedings of the 45th Spring Annual Meeting of the Chemical Society of Japan, page 811 (1982)], but there is no report on their α-glucosidase inhibitory activity. In addition, when the terms valienamine, validamine, and variolamine are used as common names of compounds in the specification of the present invention, the chemical structure of each compound and the position number of each carbon atom are represented by the following formula.

【式】【formula】

【式】【formula】

【式】 また、2,3,4−トリヒドロキシ−5−ヒド
ロキシメチルシクロヘキシル基(バリダミンおよ
びバリオールアミンのN−置換誘導体におけるN
−置換分)の各炭素原子の位置番号は次式で表わ
される。 上記一般式〔〕で表わされる擬似アミノ糖の
N−置換誘導体は新規化合物であり、これらの化
合物がα−グルコシダーゼ阻害活性を示すことに
ついては知られていない。本発明者らは、バリダ
ミン,バリオールアミンなどを含む各種の擬似ア
ミノ糖類およびそれらの各種N−置換誘導体につ
いて研究を行なつた結果、一般式〔〕で表わさ
れる擬似アミノ糖のN−置換誘導体がα−グルコ
シダーゼ阻害活性を有すること、一般式〔〕で
表わされる擬似アミノ糖のN−置換誘導体は上記
した公知化合物よりも強いα−グルコシダーゼ阻
害活性を有することを知見し本発明を完成した。 すなわち、本発明は (1) 一般式〔〕で表わされる化合物またはその
塩、 (2) 一般式 〔式中、Aは水素原子または水酸基を示す。水
酸基はいずれも保護されていてもよい〕で表わさ
れる化合物と、式 〔式中、水酸基はいずれも保護されていてもよ
い〕で表わされる環状ケトンとを反応させ、つい
で還元反応に付し、所望により脱保護基反応に付
することを特徴とする一般式〔〕で表わされる
化合物またはその塩の製造法に関する。 一般式〔〕で表わされるバリダミンおよびバ
リオールアミンのN−置換誘導体はそのN−置換
分である2,3,4−トリヒドロキシ−5−ヒド
ロキシメチルシクロヘキシル基の3個のヒドロキ
シル基および1個のヒドロキシメチル基の立体配
置の違いにより各種の立体異性体が存在する。こ
れらを例示すれば、 N−〔(2,4/3,5)−2,3,4−トリヒ
ドロキシ−5−ヒドロキシメチルシクロヘキシ
ル〕バリダミンまたはバリオールアミン; N−〔(2,3,4/5)−2,3,4−トリヒ
ドロキシ−5−ヒドロキシメチルシクロヘキシ
ル〕バリダミンまたはバリオールアミン; N−〔(2/3,4,5)−2,3,4−トリヒ
ドロキシ−5−ヒドロキシメチルシクロヘキシ
ル〕バリダミンまたはバリオールアミン; N−〔(2,3,5/4)−2,3,4−トリヒ
ドロキシ−5−ヒドロキシメチルシクロヘキシ
ル〕バリダミンまたはバリオールアミン; N−〔(2,4,5/3)−2,3,4−トリヒ
ドロキシ−5−ヒドロキシメチルシクロヘキシ
ル〕バリダミンまたはバリオールアミン、などで
ある。更に具体的な例としては一般式 〔式中の記号は前記と同意義を示す〕 で表わされる化合物、すなわちN−〔(2S)−(2,
4/3,5)−2,3,4−トリヒドロキシ−5
−ヒドロキシメチルシクロヘキシル〕バリダミン
またはN−〔(2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシク
ロヘキシル〕バリオールアミン、などが挙げられ
る。 更に、一般式〔〕で表わされる化合物は2,
3,4−トリヒドロキシ−5−ヒドロキシメチル
シクロヘキシル基と擬似アミノ糖であるバリダミ
ンおよびバリオールアミンのアミノ基との結合部
分での立体配置の相違によりバリダミンまたはバ
リオールアミンのN−〔(1R)−2,3,4−トリ
ヒドロキシ−5−ヒドロキシメチルシクロヘキシ
ル〕誘導体およびN−〔(1S)−2,3,4−トリ
ヒドロキシ−5−ヒドロキシメチルシクロヘキシ
ル〕誘導体の2種類の立体異性体が存在する。こ
れらの各種異性体の具体的な例は一般式 〔式中の記号は前記と同意義を示す〕 で表わされる化合物、すなわちN−〔(1R,2S)−
(2,4/3,5)−2,3,4−トリヒドロキシ
−5−ヒドロキシメチルシクロヘキシル〕バリダ
ミンまたはN−〔(1R,2S)−2,4/3,5)−
2,3,4−トリヒドロキシ−5−ヒドロキシメ
チルシクロヘキシル〕バリオールアミン、および
一般式 〔式中の記号は前記と同意義を示す〕 で表わされる化合物、すなわちN−〔(1S,2S)−
(2,4/3,5)−2,3,4−トリヒドロキシ
−5−ヒドロキシメチルシクロヘキシル〕バリダ
ミンまたはN−〔(1S,2S)−(2,4/3,5)−
2,3,4−トリヒドロキシ−5−ヒドロキシメ
チルシクロヘキシル〕バリオールアミン、などで
ある。 上記化合物〔b〕および〔c〕は両者とも
α−グルコシダーゼ阻害活性を有しているが〔
b〕すなわち(1R,2S)異性体の方が〔c〕
すなわち(1S,2S)異性体よりも一般に強いα
−グルコシダーゼ阻害作用を有する。また、一般
式〔〕,〔a〕,〔b〕,〔c〕においてAは
水素原子または水酸基を示すが、好ましくは水酸
基である。 上記式中の水酸基はいずれも保護されていても
よく、該水酸基の保護基としては、糖の化学で水
酸基の保護基として用いられる保護基、例えば、
アシル型保護基,エーテル型保護基,アセタール
型またはケタール型保護基が用いられる。 アシル型保護基としては例えば、ベンゾイル,
トリフルオロメチル,フエノキシまたは炭素数1
〜5のアルコキシで置換されていてもよい炭素数
1〜5のアルカノイル基;炭素数2〜6のアルコ
キシカルボニル基;ニトロまたはフエニルで置換
されていてもよいベンゾイル基;ニトロで置換さ
れていてもよいフエノキシカルボニル基;ベンジ
ルオキシカルボニル基等が用いられる。 上記の炭素数1〜5のアルカノイル基は、例え
ば、ホルミル,アセチル,プロピオニル,ブチリ
ル,バレリル,イソバレリル,ピバロイル等が用
いられる。 上記の炭素数1〜5のアルコキシ又は炭素数2
〜6のアルコキシカルボニルにおけるアルコキシ
は、例えばメトキシ,エトキシ,プロポキシ,ブ
トキシ,ペンチルオキシ等が用いられる。 アシル型保護基の例をさらに具体的に示せば、
ホルミル,アセチル,トリフルオロアセチル,メ
トキシアセチル,フエノキシアセチル,プロピオ
ニル,イソプロピオニル,ブチリル,バレリル,
イソバレリル,ピバロイル,ベンゾイル,p−ニ
トロベンゾイル,p−フエニルベンゾイル,エト
キシカルボニル,イソブチルオキシカルボニル,
ベンジルオキシカルボニル,p−ニトロフエノキ
シカルボニル,3−ベンゾイルプロピオニル,ベ
ンゾイルホルミルなどである。 エーテル型保護基としては例えば、炭素数1〜
5のアルキル基;炭素数2〜4のアルケニル基;
炭素数3〜6のトリアルキルシリル基;炭素数1
〜3のアルコキシで置換されていてもよいベンジ
ル基等が用いられる。 エーテル型保護基をさらに具体的に示せば、メ
チル,エチル,プロピル,イソプロピル,ブチ
ル,イソブチル,sec−ブチル,tert−ブチル,
エトキシエチル,アリル,トリチル,トリメチル
シリル,ジメチルエチルシリル,ベンジル,p−
メトキシベンジルなどである。 アセタール型またはケタール型保護基は好まし
くは1〜10の炭素数からなる。その具体例を示せ
ば、メチレン,エチリデン,イソプロピリデン,
メトキシメチレン,エトキシメチレン,メトキシ
エチリデン,ジメトキシメチレン,シクロプロピ
リデン,シクロペンチリデン,シクロヘキシリデ
ン,ベンジリデン,テトラヒドロピラニル,メト
キシテトラヒドロピラニルなどである。 本発明に含まれている化合物〔〕の塩として
は、薬学的に許容できる酸と化合物〔〕との酸
付加塩が用いられる。このような酸としては、例
えば、塩酸,臭化水素酸,硫酸,リン酸,硝酸な
どの無機酸、例えば、酢酸,りんご酸,くえん
酸,アスコルビン酸,マンデル酸,メタンスルホ
ン酸などの有機酸等が用いられる。 一般式〔〕で表わされる擬似アミノ糖のN−
置換誘導体またはその塩を具体的に示せば、N−
〔(1R,2S)−(2,4/3,5)−2,3,4−ト
リヒドロキシ−5−ヒドロキシメチルシクロヘキ
シル〕バリオールアミン; N−〔(1R,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシク
ロヘキシル〕バリダミン; N−〔(1S,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシク
ロヘキシル〕バリオールアミン; N−〔(1S,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシク
ロヘキシル〕バリダミン; N−〔(1R,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシク
ロヘキシル〕バリオールアミン硫酸塩; N−〔(1S,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシク
ロヘキシル〕バリオールアミン塩酸塩; N−〔(1R,2S)−(2,4/3,5)−2,3,
4−トリベンジルオキシ−5−ベンジルオキシメ
チルシクロヘキシル〕バリオールアミン; N−〔(1R,2S)−(2,4/3,5)−2,3:
4,7−ジ−O−イソプロピリデン−2,3,4
−トリヒドロキシ−5−ヒドロキシメチルシクロ
ヘキシル〕バリオールアミン; N−〔(1R,2S)−(2,4/3,5)−4,7−
O−シクロヘキシリデン−2,3,4−トリヒド
ロキシ−5−ヒドロキシメチルシクロヘキシル〕
バリダミン; N−〔(1S,2S)−(2,4/3,5)−2,3,
4−トリアセトキシ−5−アセトキシメチルシク
ロヘキシル〕バリオールアミン; N−〔(1S,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−トリチルオキシメチル
シクロヘキシル〕バリダミンなどである。 上記の擬似アミノ糖のN−置換誘導体〔〕ま
たはその塩は安定な結晶または粉末で毒性もほと
んどない(ラツトLD50500mg/Kg以上)。 化合物〔〕またはその塩はα−グルコシダー
ゼ阻害作用を有し、人間および人間以外の動物の
炭水化物の代謝を抑制するために、例えば血糖上
昇抑制作用を有しており、過血糖症状および過血
糖に起因する種々の疾患、例えば、脂満症,脂肪
過多症,過脂肪血症(動脈硬化症),糖尿病,前
糖尿病及び口腔微生物による糖代謝に帰因する疾
病、例えば、虫歯等の予防に有用な化合物であ
る。 本発明の化合物〔〕またはその塩は、例え
ば、水,エタノール,エチレングリコール,ポリ
エチレングリコール等の液状担体、デンプン,セ
ルロース,ポリアミド粉末等の固型担体等の無毒
性担体で希釈して、アンプル剤,顆粒剤,錠剤,
丸剤,カプセル剤,シロツプ剤等に常法にしたが
つて調製し、上記種々の用途に供することができ
る。また、甘味剤,保存剤,分散剤,着色剤も共
用することができる。 本発明の化合物〔〕またはその塩は、単独ま
たは無毒性の担体と混合して、食事とともに、あ
るいは食前または食後に、経口的または非経口的
に、好ましくは経口的に投与する。 具体的には、例えば、成人一人あたり、化合物
〔)またはその塩を約10〜200mg含有する製剤を
食事とともに、あるいは食前または食後に服用す
ることによつて喫食による血中のグルコースの濃
度の増加を抑制することができるので、上記の疾
病の予防および治療に有効である。 本発明の化合物〔〕またはその塩はα−グル
コシダーゼ阻害剤として医薬品だけでなく食品添
加物、低脂肪の良質の食用獣肉を得るための動物
用飼料添加剤としても有用である。 化合物〔〕またはその塩は食品に添加して用
いてもよい。すなわち、例えばコーヒー,清涼飲
料水,果汁,ビール,牛乳,ジヤム,あん,ゼリ
ー等の液状あるいは固状の食品,調味料,あるい
は種々の主食ならびに副食と共に用いてもよい。 化合物〔〕またはその塩を添加して製造した
食品は代謝異常の患者用の食品として、および代
謝異状の予防食品として健康な人にも適してい
る。その添加量としては、例えば食品中の炭水化
物の含量の0.0001〜1%程度の化合物〔〕また
はその塩を種々の食品に添加してもよい。飼料に
混ぜる場合は、飼料中の炭水化物含量の0.0001〜
1%が望ましい。 本発明の擬似アミノ糖のN−置換誘導体〔〕
またはその塩は、下記のような方法によつて製造
することができる。すなわち、適当な溶媒中、バ
リダミン,バリオールアミンなどの擬似アミノ糖
〔〕と、式〔〕で表わされる環状ケトンを反
応させて得られるシツフ塩基を還元反応に付すこ
とによつて製造することができる。 擬似アミノ糖類〔〕のアミノ基と環状ケトン
〔〕との縮合反応、それに続く還元反応は、同
一の反応容器中で連続的に行なつてもよいし、二
段階に分けて行なつてもよい。 擬似アミノ糖類〔〕と環状ケトン〔〕との
縮合反応およびそれに続く還元反応における反応
溶媒としては、例えば、水、例えばメタノール,
プロパノール,ブタノール等のアルコール類、ジ
メチルスルホキシド、ジメチルホルムアミド、N
−メチルアセトアミド、例えばメチルセロソル
ブ,ジメチルセロソルブ,ジエチレングリコール
ジメチルエーテル等のグライム類、例えばジオキ
サン,テトラヒドロフラン等のエーテル類、アセ
トニトリル等の極性溶媒、または、これらの混合
溶媒、または、それらの極性溶媒とクロロホル
ム,ジクロロメタン等の非極性溶媒との混合物を
用いることができる。 該シツフ塩基の形成反応における反応温度は特
に限定されないが、通常室温ないし100℃程度に
まで加熱して行なわれる。反応時間は反応温度に
より差異があるが、通常、数分ないし24時間程度
反応させることによつて目的を達することができ
る。 形成されたシツフ塩基の還元反応のためには各
種の水素化金属錯体還元剤、例えば、水素化ホウ
素ナトリウム,水素化ホウ素カリウム,水素化ホ
ウ素リチウム,水素化トリメトキシホウ素ナトリ
ウム等の水素化ホウ素アルカリ金属、例えば、シ
アノ水素化ホウ素ナトリウム等のシアノ水素化ホ
ウ素アルカリ金属、例えば水素化アルミニウムリ
チウム等の水素化アルミニウムアルカリ金属、例
えばジメチルアミンボラン等のジアルキルアミン
ボラン等が有利に用いられる。なお、シアノ水素
化ホウ素アルカリ金属、例えばシアノ水素化ホウ
素ナトリウムを用いる場合には、酸性の条件、例
えば、塩酸、酢酸等の存在下に反応を行なうこと
が好ましい。 反応温度は特に限定されないが、通常室温で、
場合によつては、特に反応の初期においては氷冷
下に、また場合によつては100℃程度にまで加熱
して行なわれ、還元するシツフ塩基および還元剤
の種類によつて差異がある。反応時間も反応温度
により、また還元するシツフ塩基や還元剤の種類
によつて差異があるが、通常数分ないし24時間程
度反応させることによつて目的を達することがで
きる。 形成されたシツフ塩基の還元反応として接触還
元の手段を用いることもできる。すなわち、シツ
フ塩基を適当な溶媒中で接触還元用触媒の存在下
に水素気流中で振盪または撹拌することにより行
われる。接触還元用触媒としては、例えば、白金
黒,二酸化白金,パラジウム黒,パラジウムカー
ボン,ラネーニツケル等が用いられ、通常用いら
れる溶媒としては、例えば、水、例えば、メタノ
ール,エタノール等のアルコール類、例えば、ジ
オキサン,テトラヒドロフラン等のエーテル類、
ジメチルホルムアミドまたは、これらの混合溶媒
等が用いられる。反応は通常、室温常圧で行なわ
れるが、加圧下に行なつてもよく、また加温して
もよい。 化合物〔〕が保護されている水酸基を有して
いる場合、水酸基の保護基の脱離反応はそれ自体
公知の方法を用いて行なうことができる。即ち、
例えば、シクロヘキシリデン基,イソプロピリデ
ン基,ベンジリデン基などのアセタール型または
ケタール型保護基やトリチル基などは塩酸,酢
酸,スルホン酸型イオン交換樹脂などの酸で加水
分解することによつて、例えばアセチル基,ベン
ゾイル基などのアシル型保護基はアンモニア水,
水酸化バリウムなどのアルカリで加水分解するこ
とによつて、また、ベンジル基は接触還元による
水素化分解によつて脱離することができる。 化合物〔〕が遊離塩基の形で得られる場合、
それ自体公知の方法に従い適当な溶媒中で塩酸,
臭化水素酸,硫酸,リン酸,硝酸などの無機酸、
酢酸,りんご酸,くえん酸,アスコルビン酸,マ
ンデル酸,メタンスルホン酸などの有機酸等を作
用させて化合物〔〕の塩を製造することができ
る。 化合物〔〕またはその塩は、下記のような方
法により合成することもできる。 すなわち、化合物〔〕を適当な溶媒中で 一般式 〔式中、Xは塩素,臭素,ヨウ素などのハロゲ
ンを示す。水酸基はいずれも保護されていてもよ
い〕で表わされる環状アルキルハライドと反応さ
せることによつて製造できる。 適当な反応溶媒としては、例えば水、例えばメ
タノール,エタノール,プロパノール,ブタノー
ル等の低級アルカノール類、例えばアセトン,メ
チルエチルケトン,メチルイソブチルケトン等の
ケトン類、ジメチルスルホキシド、ジメチルホル
ムアミド、N−メチルアセトアミド、例えばメチ
ルセロソルブ,エチレングリコールジメチルエー
テル,ジエチレングリコールジメチルエーテル等
のグライム類、例えばジオキサン,テトラヒドロ
フラン等のエーテル類、アセトニトリル等の極性
溶媒またはそれらの混合溶媒、あるいはそれらと
ベンゼン,ヘキサン,クロロホルム,ジクロロメ
タン,酢酸エチル等の非極性溶媒との混合溶媒等
が用いられ、混合溶媒が均一相でない場合には相
間移動触媒の存在下に反応を行なつてもよい。 反応を促進させるために、例えば炭酸水素アル
カリ金属(例、炭素水素ナトリウム),炭酸アル
カリ金属(例、炭酸ナトリウム),水酸化アルカ
リ金属(例,水酸化カリウム)等の無機塩基、ト
リメチルアミン,トリエチルアミン,トリブチル
アミン,N−メチルモルホリン,N−メチルピペ
リジン,N,N−ジメチルアニリン,ピリジン,
ピコリン,ルチジン等の有機塩基を用いることも
できる。 反応温度は特に限定されないが、通常室温ない
し100℃程度にまで加熱して行なわれる。反応時
間は反応温度により差異があるが通常数分ないし
24時間程度反応させることによつて目的を達する
ことができる。 本発明で用いる原料化合物のバリオールアミン
(一般式〔〕でAが水酸基で示される化合物)
は、例えば特願昭56−55907に記載されたストレ
プトマイセス属に属する微生物を培養する方法に
よつて、また、特願昭56−64370および特願昭56
−144309に記載されたバリエナミンあるいはバリ
ダミンを原料とする有機化学的合成手段によつて
製造することができる。原料化合物のバリダミン
(一般式〔〕でAが水素原子で示される化合物)
は公知であり、例えばザ・ジヤーナル・オブ・ア
ンテイバイオテイクス(J.Antibiotics)、第33巻,
1575〜1576頁(1980年))に記載の方法に従つて
製造することができる。 本発明で用いる原料化合物の一つである式
〔〕で表わされる環状ケトンは、例えば、バリ
ダミン中の一級アミン部分を酸化剤で酸化するこ
とによつて製造することができる。例えば酸化剤
として3,5−ジ−tert−ブチル−1,2−ベン
ゾキノン〔コーリー(Corey),阿知波
(Achiwa);ジヤーナル・オブ・ジ・アメリカ
ン・ケミカル・ソサイエテイ(J.Am.Chem.
Soc.)91巻,1429〜1432頁(1969年)参照〕を用
いてバリダミン中の一級アミン部分を酸化してケ
トンに変換することによつて製造することができ
る。 さらに一般式〔〕で表わされる環状アルキル
ハライドは、それ自体公知の方法(例えば、小川
ら:ブレテイン・オブ・ザ・ケミカル・ソサイア
テイ・オブ・ジヤパン(Bull.Chem.Soc.Jpn.)第
52巻,1174〜1176頁(1979年)参照)により、環
状アルキル化合物より製造できる。 このようにして得られる上記一般式〔〕,
〔〕,〔〕,〔〕で表わされる化合物およびそ
れらの合成中間体などは自体公知の手段、例えば
ろ過,遠心分離,濃縮,減圧濃縮,乾燥,凍結乾
燥,吸着,脱着,各種溶媒に対する溶解度の差を
利用する方法(例えば、溶媒抽出,転溶,沈澱,
結晶化,再結晶化など),クロマトグラフイー
(例えば、イオン交換樹脂,活性炭,ハイポーラ
スポリマー,セフアデツクス,セフアデツクスイ
オン交換体,セルローズ,イオン交換セルロー
ズ,シリカゲル,アルミナなどを用いるクロマト
グラフイー)などにより単離、精製できる。 以下に試験例,参考例,実施例を記載してこの
発明の内容を詳述するが、発明の範囲はこれらに
限定されるものではない。 試験例 グルコシダーゼ阻害活性の測定方法 基質としてマルトースおよびシヨ糖を用いた場
合の豚の小腸の粘膜から調製したマルターゼおよ
びサツカラーゼ〔ボルグストレム(B.Borgstro¨
m)およびダールクイスト(A.Dahlqvist)によ
つてアクタ・ケミカ・スカンジナビカ(Acta
Chem.Scand.)12巻,1997〜2006頁,1958年に記
載の方法に従つて調製〕に対する阻害活性は、
0.02Mリン酸緩衝溶液(PH6.8)で適当に希釈し
た酵素溶液(0.25ml)に試験すべき阻害物質(化
合物〔〕またはその塩)の同緩衝溶液(0.5ml)
および基質の0.05Mマルトースあるいは0.05Mシ
ヨ糖の同緩衝溶液(0.25ml)を加え、この混合物
を37℃で10分間反応させる。これにグルコースB
−テスト試薬(ヴドウ糖測定用グルコースオキシ
ダーゼ試薬、和光純薬製)(3ml)を加え、更に
37℃で20分間加温し、発色させた反応液の505n
mにおける吸光度を測定して算出した。 実施例に記載した化合物〔〕またはその塩の
マルターゼ(豚、腸粘膜)に対する50%阻害濃度
〔以下、IC50(マルターゼ)と略記する〕およびサ
ツカラーゼ(豚、腸粘膜)に対する50%阻害濃度
〔以下、IC50(サツカラーゼ)と略記する〕はそれ
ぞれの阻害物質について3ないし5種の異つた濃
度で上記の測定法を用いて測定した阻害率(%)
から求めた。 参考例および実施例に記載した各化合物の精製
工程におけるカラムクロマトグラフイーの溶出画
分は、通常、薄層クロマトグラフイー(TLC)
で含有成分をしらべ、必要な成分を含んでいる画
分を集めて、次の工程に供した。実施例に記載し
た各化合物のTLCのRf値は、特にことわらない
限りは、薄層プレートはプレコーテツド(pre−
coated)TLCプレート・シリカゲル60F254(メル
ク社製,西ドイツ)を用い、展開溶媒としてn−
プロピルアルコール・酢酸・水(4:1:1)を
用いて測定した。(対照試料として上記の方法で
測定した擬似アミノ糖のRf値:バリエナミンRf
=0.42,バリダミンRf=0.35,バリオールアミン
Rf=0.30) なお、参考例,実施例で用いた記号は次のよう
な意義を有する。 s,シングレツト;d,ダブレツト;dd,ダ
ブルダブレツト;t,トリプレツト;q,カルテ
ツト;dt,ダブルトリプレツト;m,マルチプレ
ツト;J,結合定数 参考例 1 (2R)−(2,4/3,5)−2,3,4−トリ
ヒドロキシ−5−ヒドロキシメチルシクロヘキ
サノン バリダミン(1.8g)と3,5−ジ−tert−ブチ
ル−1,2−ベンゾキノン(2.3g)をメタノー
ル(100ml)に溶解し、窒素気流中、室温で24時
間撹拌する。反応液に水(10ml)を加えた後、
3N硫酸でPH1に調節し、3時間室温で撹拌する。
反応液に水(500ml)を加え、クロロホルムで5
回洗浄する。得られる水層をダウエツクス1×8
(OH-型,ダウ・ケミカル社製,米国)でPH5.5に
調節する。反応混合物を濾過し、濾液を減圧濃縮
後、凍結乾燥すると(2R)−(2,4/3,5)−
2,3,4−トリヒドロキシ−5−ヒドロキシメ
チルシクロヘキサノンの白色粉末(1.3g)が得
られる。 元素分析:C7H12O5・3/4H2O 計算値(%):C,44.33;H,7.17 実験値(%):C,44.33;H,7.23。 IRνKBr naxcm-1:1735(C=O)。 NMR(D2O)δ:4.51(1H,d,J=10Hz,2−
)。 参考例 2 N−〔(1R,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシ
クロヘキシル〕バリダミンのオクタ−O−アセ
チル誘導体 N−〔(1R,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシク
ロヘキシル〕バリダミン(50mg)をピリジン(2
ml)に溶解し、無水酢酸(1.0ml)を加えて室温
で一夜放置する。反応液を減圧濃縮し、残留物を
デシケーター中で一夜減圧下に乾燥し、エチルエ
ーテル・石油エーテル(1:2、約30ml)を加え
て一夜冷蔵庫中に放置する。生じる沈澱をろ取
し、乾燥すると標記のオクタ−O−アセチル誘導
体の白色粉末(75mg)が得られる。 〔α〕25 D+33.8゜(c=0.5,CH3OH) 元素分析:C30H43NO16 計算値(%):C,53.49;H,6.43;N,2.08。 実験値(%):C,53.13;H,6.50;N,1.97。 NMR(CDCl3)δ:1.1〜2.5(6H,m),1.97〜
2.10(24H,C 3COO−×8),2.5〜2.9
(1H,m),3.43(1H,m),3.91(2H,dd,
J=3.5Hz,11Hz),4.11(2H,dd,J=4.8
Hz,11Hz),4.73〜5.13(5H,m),5.43(1H,
t,J=10Hz)。 参考例 3 N−〔(1S,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシ
クロヘキシル〕バリダミンのオクタ−O−アセ
チル誘導体。 N−〔(1S,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシク
ロヘキシル〕バリダミン(100mg)を参考例2と
同様の方法で処理すると標記のオクタ−O−アセ
チル誘導体(115mg)が得られる。 〔α〕25 D+101.2゜(c=0.5,CH3OH) 元素分析:C30H43NO16 計算値(%):C,53.49;H,6.43;N,2.08。 実験値(%):C,53.28;H,6.57;N,2.13。 NMR(CDCl3)δ:1.14〜2.6(6H,m),2.00
〜2.07(24H,C 3COO−×8),3.23(2H,
m),3.89(2H,dd,J=3.5Hz,11.5Hz),
4.16(2H,dd,J=5.4Hz,11.5Hz),4.88
(2H,dd,J=4.5Hz,10.5Hz),4.96(2H,
dd,J=9Hz,10Hz),5.36(2H,dd,J=
9Hz,10.5Hz)。 参考例 4 N−〔(1R,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシ
クロヘキシル〕バリオールアミンのオクタ−O
−アセチル誘導体 N−〔(1R,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシク
ロヘキシル〕バリオールアミン(100mg)を参考
例2と同様の方法で処理すると標記のオクタ−O
−アセチル誘導体(124mg)が得られる。 〔α〕25 D−3.9゜(c=1,CH3OH) 元素分析:C30H43NO17 計算値(%):C,52.25;H,6.28;N,2.03。 実験値(%):C,51.91;H,6.36;N,2.30。 NMR(CDCl3)δ:1.2〜2.5(5H,m),1.9〜
2.2(24H,C 3COO−×8),2.6〜3.2(1H,
m),3.3〜3.6(1H,m),3.6〜4.2(4H,m),
4.6〜5.3(5H,m),5.57(1H,t,J=10
Hz)。 参考例 5 N−〔(1S,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシ
クロヘキシル〕バリオールアミンのオクタ−O
−アセチル誘導体 N−〔(1S,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシク
ロヘキシル〕バリオールアミン(200mg)を参考
例2と同様の方法で処理すると標記のオクタ−O
−アセチル誘導体(330mg)が得られる。 〔α〕25 D+79.7゜(c=1,CH3OH) 元素分析:C30H43NO17 計算値(%):C,52.25;H,6.28;N,2.03。 実験値(%):C,52.11;H,6.36;N,2.22。 NMR(CDCl3)δ:1.2〜2.4(5H,m),1.9〜
2.07(24H,C 3COO−×8),3.2〜3.46
(2H,m),3.65(1H,d,J=11.5Hz),
3.84(1H,dd,J=3Hz,11.5Hz),4.00
(1H,d,J=11.5Hz),4.12(1H,dd,J=
6Hz,11.5Hz),4.80(1H,dd,J=4.5Hz,
10.5Hz),4.89(1H,dd,J=9Hz,10Hz),
5.01(1H,dd,J=4.5Hz,10Hz),5.06(1H,
d,J=10Hz),5.26(1H,dd,J=9Hz,
10.5Hz),5.62(1H,t,J=10Hz)。 参考例 6 果汁入り飲料200mlに対してN−〔(1R,2S)−
(2,4/3,5)−トリヒドロキシ−5−ヒドロ
キシメチルシクロヘキシル〕バリダミン100mgを
加えて均一に撹拌溶解してα−グルコシダーゼ阻
害剤含有の果汁入り飲料を得る。 参考例 7 N−〔(1R,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシ
クロヘキシル〕バリオールアミン硫酸 塩 20重量部 乳糖 80重量部 結晶セルローズ 20重量部 を混合し、水で練合した後乾燥し、粉末または細
粒状として散剤とする。 実施例 1 N−〔(1R,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシ
クロヘキシル〕バリダミンおよびN−〔(1S,
2S)−(2,4/3,5)−2,3,4−トリヒ
ドロキシ−5−ヒドロキシメチルシクロヘキシ
ル〕バリダミン バリダミン(1.0g)と(2R)−(2,4/3,
5)−2,3,4−トリヒドロキシ−5−ヒドロ
キシメチルシクロヘキサノン(1.0g)をジメチ
ルホルムアミド(25ml)に溶解し、2N塩酸(0.8
ml)とシアノ水素化ホウ素ナトリウム(1.3g)
を加えて室温で19時間撹拌する。反応液を減圧濃
縮し、更にトルエンを加えて共沸下にジメチルホ
ルムアミドを減圧留去する。残留物を水(100ml)
に溶解し、ダウエツクス50W×8(H+型,ダウ・
ケミカル社製,米国,100ml)を加えて室温で1
時間撹拌する。この混合物をあらかじめ別のダウ
エツクス50W×8(H+型,50ml)を充填したカラ
ムの上に加え、カラムを水洗後0.5Nアンモニア
水で溶出する。溶出画分を減圧濃縮し、残留物を
アンバーライトCG−50(NH4 +型,ローム・アン
ド・ハース社製,米国,550ml)のカラムクロマ
トに付し、水で溶出すると2成分に分離される。
先に溶出する画分(270〜360ml)を減圧濃縮後、
凍結乾燥すると(1S,2S)異性体の白色粉末
(1.0g)が得られる。後に溶出する画分(430〜
580ml)を減圧濃縮後、凍結乾燥すると(1R,
2S)異性体の白色粉末(320mg)が得られる。 N−〔(1S,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシク
ロヘキシル〕バリダミン(先に溶出する画分より
得られる異性体): 〔α〕25 D+115.5゜(c=1,H2O)。 元素分析:C14H27NO8・H2O 計算値(%):C,47.31;H,8.23;N,3.94。 実験値(%):C,47.32;H,8.26;N,4.06。 NMR(D2O)δ:1.2〜1.75(2H,m),1.75〜
2.4(4H,m),3.2〜4.15(12H,m)。 TLC:Rf=0.24 N−〔(1R,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシク
ロヘキシル〕バリダミン(後に溶出する画分より
得られる異性体): 〔α〕25 D+35.5゜(c=1,H2O)。 元素分析:C14H27NO8・H2O 計算値(%):C,47.31;H,8.23;N,3.94。 実験値(%):C,47.28;H,8.01;N,3.86。 NMR(D2O)δ:1.34(1H,q,J=12Hz),
1.5〜2.5(5H,m),2.82(1H,m),3.25〜
4.15(11H,m)。 IC50(サツカラーゼ):2.7×10-7M IC50(マルターゼ):2.2×10-6M TLC:Rf=0.25 実施例 2 N−〔(1R,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシ
クロヘキシル〕バリオールアミンおよびN−
〔(1S,2S)−(2,4/3,5)−2,3,4−
トリヒドロキシ−5−ヒドロキシメチルシクロ
ヘキシル〕バリオールアミン バリオールアミン(2.1g)と(2R)−(2,
4/3,5)−2,3,4−トリヒドロキシ−5
−ヒドロキシメチルシクロヘキサノン(1.9g)
をジメチルホルムアミド(50ml)に溶解し、2N
塩酸(1.5ml)とシアノ水素化ホウ素ナトリウム
(2.6g)を加えて室温で19時間撹拌する。反応液
を減圧濃縮し、さらにトルエンを加えて共沸下に
ジメチルホルムアミドを減圧留去する。残留物を
水(200ml)に溶解し、ダウエツクス50W×8
(H+型,ダウ・ケミカル社製,米国,250ml)を
加えて室温で1時間撹拌する。この混合物をあら
かじめ別のダウエツクス50W×8(H+型,100ml)
を充填したカラムの上に加え、カラムを水洗後、
0.5Nアンモニア水で溶出する。溶出画分を減圧
濃縮し、残留物をアンバーライトCG−50(NH4 +
型,ローム・アンド・ハース社製,米国,450ml)
のカラムクロマトに付し、水で溶出すると2成分
に分離される。先に溶出する画分(400〜580ml)
を減圧濃縮し、残留物をダウエツクス1×2
(OH-型,ダウ・ケミカル社製,米国,270ml)
のカラムクロマトに付し、水で溶出する。溶出画
分(200〜550ml)を減圧濃縮後、凍結乾燥すると
(1S,2S)異性体の白色粉末(1.53g)が得られ、
後に溶出する画分(0.63〜1.00)を減圧濃縮
後、凍結乾燥すると(1R,2S)異性体の白色粉
末(570mg)が得られる。 N−〔(1S,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシク
ロヘキシル〕バリオールアミン(先に溶出する画
分より得られる異性体): 〔α〕25 D+48.5゜(c=1,H2O)。 元素分析:C14H27NO9・1/2H2O 計算値(%):C,46.40;H,7.79;N,3.87。 実験値(%):C,46.29;H,7.94;N,3.73。 NMR(D2O)δ:1.43(1H,dt,J=3.3Hz,
13.5Hz,13.5Hz),1.67(1H,dd,J=3.5Hz,
15.5Hz),1.7〜2.7(2H,m),2.32(1H,dd,
J=3Hz,15.5Hz),3.35〜4.25(12H,m)。 IC50(サツカラーゼ):5.6×10-6M TLC:Rf=0.21 N−〔(1R,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシク
ロヘキシル〕バリオールアミン(後に溶出する画
分より得られる異性体): 〔α〕25 D+5.2゜(c=1,H2O)。 元素分析:C14H27NO9・H2O 計算値(%):C,45.27;H,7.87;N,3.77。 実験値(%):C,45.04;H,7.97;N,3.59。 NMR(D2O)δ:1.1〜2.55(5H,m),2.65〜
3.3(1H,m),3.4〜4.45(11H,m)。 IC50(マルターゼ):4.4×10-8M IC50(サツカラーゼ):4.8×10-8M TLC:Rf=0.23 実施例 3 N−〔(1R,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシ
クロヘキシル〕バリオールアミン・硫酸塩 N−〔(1R,2S)−(2,4/3,5)−2,3,
4−トリヒドロキシ−5−ヒドロキシメチルシク
ロヘキシル〕バリオールアミン(500mg)を水
(20ml)に溶解し、1N硫酸を滴下してPH3に調節
後、約5mlに減圧濃縮する。濃縮液を活性炭のカ
ラムクロマト(100ml)に付し、水で溶出する。
溶出画分を減圧濃縮後、凍結乾燥するとN−
〔(1R,2S)−(2,4/3,5)−2,3,4−ト
リヒドロキシ−5−ヒドロキシメチルシクロヘキ
シル〕バリオールアミン・硫酸塩が得られる。
[Formula] Also, 2,3,4-trihydroxy-5-hydroxymethylcyclohexyl group (N in N-substituted derivatives of validamine and variolamine)
The position number of each carbon atom in (substituents) is represented by the following formula. The N-substituted derivatives of pseudo-amino sugar represented by the above general formula [] are new compounds, and it is not known that these compounds exhibit α-glucosidase inhibitory activity. As a result of research on various pseudo-amino sugars and their various N-substituted derivatives, including validamine, variolamine, etc., the present inventors found that N-substituted derivatives of pseudo-amino sugars represented by the general formula [] The present invention was completed based on the findings that the N-substituted derivative of a pseudo-amino sugar represented by the general formula [] has a stronger α-glucosidase inhibitory activity than the above-mentioned known compounds. That is, the present invention provides (1) a compound represented by the general formula [ ] or a salt thereof; (2) a compound represented by the general formula [In the formula, A represents a hydrogen atom or a hydroxyl group. Any of the hydroxyl groups may be protected] and a compound represented by the formula A general formula characterized by reacting a cyclic ketone represented by [in the formula, any of the hydroxyl groups may be protected], followed by a reduction reaction, and optionally a deprotection reaction. The present invention relates to a method for producing a compound represented by or a salt thereof. The N-substituted derivatives of validamine and variolamine represented by the general formula [] have three hydroxyl groups and one N-substituted 2,3,4-trihydroxy-5-hydroxymethylcyclohexyl group. Various stereoisomers exist due to differences in the configuration of the hydroxymethyl group. Examples of these include: N-[(2,4/3,5)-2,3,4-trihydroxy-5-hydroxymethylcyclohexyl]validamine or variolamine; 5)-2,3,4-trihydroxy-5-hydroxymethylcyclohexyl]validamine or variolamine; N-[(2/3,4,5)-2,3,4-trihydroxy-5-hydroxymethyl cyclohexyl]validamine or variolamine; N-[(2,3,5/4)-2,3,4-trihydroxy-5-hydroxymethylcyclohexyl]validamine or variolamine; N-[(2,4, 5/3)-2,3,4-trihydroxy-5-hydroxymethylcyclohexyl]validamine or variolamine, and the like. A more specific example is the general formula [Symbols in the formula have the same meanings as above] A compound represented by, that is, N-[(2S)-(2,
4/3,5)-2,3,4-trihydroxy-5
-Hydroxymethylcyclohexyl]validamine or N-[(2S)-(2,4/3,5)-2,3,
4-trihydroxy-5-hydroxymethylcyclohexyl]variolamine, and the like. Furthermore, the compound represented by the general formula [] is 2,
N-[(1R) of validamine or variolamine due to the difference in steric configuration at the bonding site between the 3,4-trihydroxy-5-hydroxymethylcyclohexyl group and the amino group of the pseudo amino sugars validamine and variolamine. -2,3,4-trihydroxy-5-hydroxymethylcyclohexyl] derivative and N-[(1S)-2,3,4-trihydroxy-5-hydroxymethylcyclohexyl] derivative. do. Specific examples of these various isomers are shown in the general formula [Symbols in the formula have the same meanings as above] A compound represented by N-[(1R,2S)-
(2,4/3,5)-2,3,4-trihydroxy-5-hydroxymethylcyclohexyl]validamine or N-[(1R,2S)-2,4/3,5)-
2,3,4-trihydroxy-5-hydroxymethylcyclohexyl]variolamine, and the general formula [Symbols in the formula have the same meanings as above] A compound represented by N-[(1S,2S)-
(2,4/3,5)-2,3,4-trihydroxy-5-hydroxymethylcyclohexyl]validamine or N-[(1S,2S)-(2,4/3,5)-
2,3,4-trihydroxy-5-hydroxymethylcyclohexyl]variolamine, and the like. The above compounds [b] and [c] both have α-glucosidase inhibitory activity, but [
b] That is, the (1R, 2S) isomer is more [c]
In other words, α is generally stronger than the (1S, 2S) isomer.
-Has glucosidase inhibitory effect. Further, in the general formulas [], [a], [b], and [c], A represents a hydrogen atom or a hydroxyl group, preferably a hydroxyl group. Any of the hydroxyl groups in the above formula may be protected, and examples of protecting groups for the hydroxyl groups include protecting groups used as hydroxyl protecting groups in sugar chemistry, for example,
Acyl-type protecting groups, ether-type protecting groups, acetal-type or ketal-type protecting groups are used. Examples of acyl protecting groups include benzoyl,
Trifluoromethyl, phenoxy or 1 carbon number
Alkanoyl group having 1 to 5 carbon atoms which may be substituted with ~5 alkoxy; Alkoxycarbonyl group having 2 to 6 carbon atoms; Benzoyl group which may be substituted with nitro or phenyl; Even if substituted with nitro Good phenoxycarbonyl groups; benzyloxycarbonyl groups, etc. are used. Examples of the alkanoyl group having 1 to 5 carbon atoms include formyl, acetyl, propionyl, butyryl, valeryl, isovaleryl, and pivaloyl. The above alkoxy having 1 to 5 carbon atoms or 2 carbon atoms
As the alkoxy in the alkoxycarbonyl of -6, for example, methoxy, ethoxy, propoxy, butoxy, pentyloxy, etc. are used. More specific examples of acyl protecting groups include:
Formyl, acetyl, trifluoroacetyl, methoxyacetyl, phenoxyacetyl, propionyl, isopropionyl, butyryl, valeryl,
Isovaleryl, pivaloyl, benzoyl, p-nitrobenzoyl, p-phenylbenzoyl, ethoxycarbonyl, isobutyloxycarbonyl,
These include benzyloxycarbonyl, p-nitrophenoxycarbonyl, 3-benzoylpropionyl, benzoylformyl, and the like. Examples of ether-type protecting groups include those having 1 to 1 carbon atoms.
5 alkyl group; C2-4 alkenyl group;
Trialkylsilyl group having 3 to 6 carbon atoms; 1 carbon number
A benzyl group which may be substituted with -3 alkoxy or the like is used. More specific examples of ether protecting groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl,
Ethoxyethyl, allyl, trityl, trimethylsilyl, dimethylethylsilyl, benzyl, p-
Such as methoxybenzyl. The acetal type or ketal type protecting group preferably consists of 1 to 10 carbon atoms. Specific examples include methylene, ethylidene, isopropylidene,
These include methoxymethylene, ethoxymethylene, methoxyethylidene, dimethoxymethylene, cyclopropylidene, cyclopentylidene, cyclohexylidene, benzylidene, tetrahydropyranyl, and methoxytetrahydropyranyl. As the salt of the compound [ ] included in the present invention, an acid addition salt of the compound [ ] with a pharmaceutically acceptable acid is used. Such acids include, for example, inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, and organic acids such as acetic acid, malic acid, citric acid, ascorbic acid, mandelic acid, methanesulfonic acid, etc. etc. are used. N- of the pseudo-amino sugar represented by the general formula []
Specifically, substituted derivatives or salts thereof include N-
[(1R,2S)-(2,4/3,5)-2,3,4-trihydroxy-5-hydroxymethylcyclohexyl]variolamine; N-[(1R,2S)-(2,4/ 3,5)-2,3,
4-trihydroxy-5-hydroxymethylcyclohexyl]validamine; N-[(1S,2S)-(2,4/3,5)-2,3,
4-trihydroxy-5-hydroxymethylcyclohexyl]variolamine; N-[(1S,2S)-(2,4/3,5)-2,3,
4-trihydroxy-5-hydroxymethylcyclohexyl]validamine; N-[(1R,2S)-(2,4/3,5)-2,3,
4-trihydroxy-5-hydroxymethylcyclohexyl]variolamine sulfate; N-[(1S,2S)-(2,4/3,5)-2,3,
4-trihydroxy-5-hydroxymethylcyclohexyl]variolamine hydrochloride; N-[(1R,2S)-(2,4/3,5)-2,3,
4-Tribenzyloxy-5-benzyloxymethylcyclohexyl]variolamine; N-[(1R,2S)-(2,4/3,5)-2,3:
4,7-di-O-isopropylidene-2,3,4
-trihydroxy-5-hydroxymethylcyclohexyl]variolamine; N-[(1R,2S)-(2,4/3,5)-4,7-
O-cyclohexylidene-2,3,4-trihydroxy-5-hydroxymethylcyclohexyl]
Validamine; N-[(1S,2S)-(2,4/3,5)-2,3,
4-Triacetoxy-5-acetoxymethylcyclohexyl]variolamine; N-[(1S,2S)-(2,4/3,5)-2,3,
and 4-trihydroxy-5-trityloxymethylcyclohexylvalidamine. The above-mentioned N-substituted derivatives of pseudo-amino sugars [ ] or salts thereof are stable crystals or powders and have almost no toxicity (rat LD 50 500 mg/Kg or more). Compound [ ] or a salt thereof has an α-glucosidase inhibitory effect, and in order to suppress carbohydrate metabolism in humans and non-human animals, it has, for example, a blood sugar rise suppressing effect, and is effective against hyperglycemic symptoms and hyperglycemia. Useful for the prevention of various diseases caused by obesity, such as obesity, hyperlipidemia, hyperlipidemia (arteriosclerosis), diabetes, prediabetes, and diseases caused by sugar metabolism by oral microorganisms, such as dental caries. It is a chemical compound. The compound [ ] of the present invention or a salt thereof can be diluted with a non-toxic carrier such as a liquid carrier such as water, ethanol, ethylene glycol, or polyethylene glycol, or a solid carrier such as starch, cellulose, or polyamide powder, and then prepared into ampules. , granules, tablets,
Pills, capsules, syrups, etc. can be prepared according to conventional methods and used for the various uses mentioned above. In addition, sweeteners, preservatives, dispersants, and coloring agents can also be used. The compound of the present invention [ ] or a salt thereof is administered alone or in combination with a non-toxic carrier, orally or parenterally, preferably orally, with, before or after a meal. Specifically, for example, by taking a preparation containing about 10 to 200 mg of the compound [) or its salt per adult with a meal, before or after a meal, it is possible to increase the concentration of glucose in the blood by eating. It is effective in preventing and treating the above-mentioned diseases. The compound [ ] of the present invention or a salt thereof is useful as an α-glucosidase inhibitor not only as a medicine but also as a food additive and an animal feed additive for obtaining low-fat, high-quality edible meat. The compound [] or its salt may be added to foods. That is, it may be used with liquid or solid foods such as coffee, soft drinks, fruit juices, beer, milk, diam, bean paste, and jelly, seasonings, or various staple foods and side foods. Foods produced by adding the compound [ ] or its salts are suitable as foods for patients with metabolic disorders, and also for healthy people as preventive foods for metabolic disorders. As for the addition amount, for example, the compound [] or its salt may be added to various foods in an amount of about 0.0001 to 1% of the carbohydrate content in the food. When mixed with feed, the carbohydrate content in the feed should be 0.0001~
1% is desirable. N-substituted derivatives of pseudo-amino sugars of the present invention []
Or its salt can be manufactured by the following method. That is, it can be produced by subjecting a Schiff base obtained by reacting a pseudo amino sugar such as validamine or variolamine [ ] with a cyclic ketone represented by the formula [ ] in an appropriate solvent to a reduction reaction. can. The condensation reaction between the amino group of the pseudo-amino sugar [] and the cyclic ketone [] and the subsequent reduction reaction may be carried out continuously in the same reaction vessel, or may be carried out in two stages. . Examples of reaction solvents for the condensation reaction between the pseudo-amino sugar [] and the cyclic ketone [] and the subsequent reduction reaction include water, methanol,
Alcohols such as propanol and butanol, dimethyl sulfoxide, dimethyl formamide, N
- Methyl acetamide, glymes such as methyl cellosolve, dimethyl cellosolve, diethylene glycol dimethyl ether, ethers such as dioxane and tetrahydrofuran, polar solvents such as acetonitrile, or mixed solvents thereof, or these polar solvents and chloroform, dichloromethane Mixtures with non-polar solvents such as can be used. The reaction temperature in the Schiff base formation reaction is not particularly limited, but it is usually carried out at room temperature to about 100°C. Although the reaction time varies depending on the reaction temperature, the purpose can usually be achieved by allowing the reaction to occur for a few minutes to 24 hours. Various metal hydride complex reducing agents such as sodium borohydride, potassium borohydride, lithium borohydride, sodium trimethoxyborohydride, etc. can be used for the reduction reaction of the Schiff base formed. Metals such as alkali metal cyanoborohydrides such as sodium cyanoborohydride, alkali metal aluminum hydrides such as lithium aluminum hydride, dialkylamineboranes such as dimethylamineborane, etc. are advantageously used. In addition, when using an alkali metal cyanoborohydride, for example, sodium cyanoborohydride, it is preferable to carry out the reaction under acidic conditions, for example, in the presence of hydrochloric acid, acetic acid, or the like. The reaction temperature is not particularly limited, but is usually room temperature,
In some cases, especially in the early stages of the reaction, the reaction is carried out under ice-cooling, or in some cases heated to about 100° C., and the reaction varies depending on the Schiff base to be reduced and the type of reducing agent. The reaction time also varies depending on the reaction temperature and the type of Schiff base and reducing agent to be reduced, but the purpose can usually be achieved by allowing the reaction to occur for about several minutes to 24 hours. Catalytic reduction can also be used to reduce the Schiff base formed. That is, the reaction is carried out by shaking or stirring Schiff's base in a suitable solvent in the presence of a catalyst for catalytic reduction in a hydrogen stream. Examples of catalysts used for catalytic reduction include platinum black, platinum dioxide, palladium black, palladium carbon, Raney nickel, etc., and commonly used solvents include water, alcohols such as methanol and ethanol, etc. Ethers such as dioxane and tetrahydrofuran,
Dimethylformamide or a mixed solvent thereof is used. The reaction is usually carried out at room temperature and normal pressure, but may also be carried out under pressure or with heating. When the compound [] has a protected hydroxyl group, the elimination reaction of the protecting group for the hydroxyl group can be carried out using a method known per se. That is,
For example, acetal type or ketal type protecting groups such as cyclohexylidene group, isopropylidene group, benzylidene group, trityl group, etc. can be treated by hydrolyzing with an acid such as hydrochloric acid, acetic acid, or sulfonic acid type ion exchange resin. Acyl type protecting groups such as acetyl group and benzoyl group are treated with ammonia water,
By hydrolysis with an alkali such as barium hydroxide, the benzyl group can also be removed by hydrogenolysis by catalytic reduction. If the compound [] is obtained in the form of a free base,
Hydrochloric acid in a suitable solvent according to a method known per se,
Inorganic acids such as hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid,
A salt of the compound [ ] can be produced by reacting with an organic acid such as acetic acid, malic acid, citric acid, ascorbic acid, mandelic acid, methanesulfonic acid, etc. The compound [] or a salt thereof can also be synthesized by the following method. In other words, the compound [] is prepared with the general formula [In the formula, X represents a halogen such as chlorine, bromine, or iodine. Any of the hydroxyl groups may be protected]. Suitable reaction solvents include, for example, water, lower alkanols such as methanol, ethanol, propanol, butanol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethyl sulfoxide, dimethyl formamide, N-methyl acetamide, such as methyl Glymes such as cellosolve, ethylene glycol dimethyl ether, and diethylene glycol dimethyl ether, ethers such as dioxane and tetrahydrofuran, polar solvents such as acetonitrile, or mixed solvents thereof, or non-polar solvents such as benzene, hexane, chloroform, dichloromethane, and ethyl acetate. A mixed solvent with a solvent is used, and if the mixed solvent is not a homogeneous phase, the reaction may be carried out in the presence of a phase transfer catalyst. To accelerate the reaction, inorganic bases such as alkali metal hydrogen carbonate (e.g., sodium hydrogen carbonate), alkali metal carbonate (e.g., sodium carbonate), alkali metal hydroxide (e.g., potassium hydroxide), trimethylamine, triethylamine, Tributylamine, N-methylmorpholine, N-methylpiperidine, N,N-dimethylaniline, pyridine,
Organic bases such as picoline and lutidine can also be used. Although the reaction temperature is not particularly limited, it is usually carried out by heating from room temperature to about 100°C. The reaction time varies depending on the reaction temperature, but is usually within a few minutes.
The purpose can be achieved by reacting for about 24 hours. Variolamine as a raw material compound used in the present invention (a compound in which A is a hydroxyl group in the general formula [])
For example, by the method of culturing microorganisms belonging to the genus Streptomyces described in Japanese Patent Application No. 56-55907,
It can be produced by an organic chemical synthesis method using valienamine or validamine as a raw material as described in 144309. Validamine as a raw material compound (a compound in which A is a hydrogen atom in the general formula [])
is publicly known, for example, The Journal of Antibiotics, Vol. 33,
1575-1576 (1980)). The cyclic ketone represented by the formula [], which is one of the raw material compounds used in the present invention, can be produced, for example, by oxidizing the primary amine moiety in validamine with an oxidizing agent. For example, as an oxidizing agent, 3,5-di-tert-butyl-1,2-benzoquinone [Corey, Achiwa; Journal of the American Chemical Society (J.Am.Chem.
Soc.) Vol. 91, pp. 1429-1432 (1969)] by oxidizing the primary amine moiety in validamine to convert it into a ketone. Furthermore, the cyclic alkyl halide represented by the general formula
52, pp. 1174-1176 (1979)) from a cyclic alkyl compound. The above general formula obtained in this way [],
Compounds represented by [], [], [] and their synthetic intermediates can be prepared by methods known per se, such as filtration, centrifugation, concentration, vacuum concentration, drying, freeze-drying, adsorption, desorption, and their solubility in various solvents. Methods that utilize differences (e.g., solvent extraction, dissolution, precipitation,
(crystallization, recrystallization, etc.), chromatography (e.g., chromatography using ion exchange resins, activated carbon, high porous polymers, Cephadex, Cephadex ion exchangers, cellulose, ion exchange cellulose, silica gel, alumina, etc.) It can be isolated and purified by methods such as The content of the present invention will be explained in detail by describing test examples, reference examples, and examples below, but the scope of the invention is not limited thereto. Test example Method for measuring glucosidase inhibitory activity Maltase and satucalase prepared from pig small intestine mucosa using maltose and sucrose as substrates [B. Borgstro
m) and Acta Chemica Scandinavica (Acta Chemica Scandinavica) by A. Dahlqvist.
Chem.Scand.) Vol. 12, pp. 1997-2006, 1958]
Add the enzyme solution (0.25 ml) appropriately diluted with 0.02M phosphate buffer solution (PH6.8) and the same buffer solution (0.5 ml) of the inhibitor (compound [] or its salt) to be tested.
and a substrate solution of 0.05M maltose or 0.05M sucrose in the same buffer (0.25 ml), and this mixture is reacted at 37°C for 10 minutes. This includes glucose B
- Add test reagent (glucose oxidase reagent for glucose measurement, manufactured by Wako Pure Chemical Industries, Ltd.) (3 ml), and
505n of the reaction solution heated at 37℃ for 20 minutes to develop color.
It was calculated by measuring the absorbance at m. 50% inhibitory concentration against maltase (pig, intestinal mucosa) [hereinafter abbreviated as IC 50 (maltase)] and 50% inhibitory concentration against satucalase (pig, intestinal mucosa) of the compound [ ] or its salt described in the Examples [ Hereinafter, abbreviated as IC 50 (Satsucalase)] is the inhibition rate (%) measured using the above measurement method at 3 to 5 different concentrations of each inhibitor.
I asked for it from. The elution fraction of column chromatography in the purification process of each compound described in Reference Examples and Examples is usually thin layer chromatography (TLC).
The components contained were examined, and fractions containing the necessary components were collected and used in the next step. Unless otherwise specified, the TLC Rf values for each compound described in the Examples are based on the thin layer plate being pre-coated (pre-coated).
n- coated) TLC plate silica gel 60F 254 (Merck & Co., West Germany) was used as the developing solvent.
Measurement was performed using propyl alcohol, acetic acid, and water (4:1:1). (Rf value of pseudo-amino sugar measured by the above method as a control sample: Valienamine Rf
= 0.42, Validamine Rf = 0.35, Variolamine
Rf=0.30) The symbols used in the reference examples and examples have the following meanings. s, singlet; d, doublet; dd, double doublet; t, triplet; q, quartet; dt, double triplet; m, multiplet; J, coupling constant reference example 1 (2R)-(2,4/3 ,5)-2,3,4-trihydroxy-5-hydroxymethylcyclohexanone Validamine (1.8g) and 3,5-di-tert-butyl-1,2-benzoquinone (2.3g) were dissolved in methanol (100ml). and stir at room temperature for 24 hours under nitrogen flow. After adding water (10ml) to the reaction solution,
Adjust the pH to 1 with 3N sulfuric acid and stir at room temperature for 3 hours.
Add water (500ml) to the reaction solution and dilute with chloroform.
Wash twice. Dowex the resulting aqueous layer 1×8
(OH - type, manufactured by Dow Chemical Co., USA) to adjust the pH to 5.5. The reaction mixture was filtered, the filtrate was concentrated under reduced pressure, and then lyophilized to give (2R)-(2,4/3,5)-
A white powder (1.3 g) of 2,3,4-trihydroxy-5-hydroxymethylcyclohexanone is obtained. Elemental analysis: C7H12O5.3 / 4H2O Calculated value (%): C, 44.33; H, 7.17 Experimental value (% ) : C, 44.33; H, 7.23. IRν KBr nax cm -1 : 1735 (C=O). NMR (D 2 O) δ: 4.51 (1H, d, J = 10Hz, 2-
CH ). Reference example 2 N-[(1R,2S)-(2,4/3,5)-2,3,
Octa-O-acetyl derivative of 4-trihydroxy-5-hydroxymethylcyclohexyl]validamine N-[(1R,2S)-(2,4/3,5)-2,3,
4-trihydroxy-5-hydroxymethylcyclohexylvalidamine (50 mg) was dissolved in pyridine (2
ml), add acetic anhydride (1.0 ml), and leave at room temperature overnight. The reaction solution was concentrated under reduced pressure, the residue was dried under reduced pressure in a desiccator overnight, ethyl ether/petroleum ether (1:2, about 30 ml) was added, and the mixture was left in the refrigerator overnight. The resulting precipitate is collected by filtration and dried to obtain a white powder (75 mg) of the title octa-O-acetyl derivative. [α] 25 D +33.8° (c=0.5, CH 3 OH) Elemental analysis: C 30 H 43 NO 16 Calculated value (%): C, 53.49; H, 6.43; N, 2.08. Experimental values (%): C, 53.13; H, 6.50; N, 1.97. NMR ( CDCl3 ) δ: 1.1~2.5 (6H, m), 1.97~
2.10 (24H, CH 3 COO-×8), 2.5-2.9
(1H, m), 3.43 (1H, m), 3.91 (2H, dd,
J = 3.5Hz, 11Hz), 4.11 (2H, dd, J = 4.8
Hz, 11Hz), 4.73-5.13 (5H, m), 5.43 (1H,
t, J = 10Hz). Reference example 3 N-[(1S, 2S)-(2,4/3,5)-2,3,
Octa-O-acetyl derivative of 4-trihydroxy-5-hydroxymethylcyclohexylvalidamine. N-[(1S, 2S)-(2,4/3,5)-2,3,
When 4-trihydroxy-5-hydroxymethylcyclohexylvalidamine (100 mg) is treated in the same manner as in Reference Example 2, the title octa-O-acetyl derivative (115 mg) is obtained. [α] 25 D +101.2° (c=0.5, CH 3 OH) Elemental analysis: C 30 H 43 NO 16 Calculated value (%): C, 53.49; H, 6.43; N, 2.08. Experimental values (%): C, 53.28; H, 6.57; N, 2.13. NMR ( CDCl3 ) δ: 1.14-2.6 (6H, m), 2.00
~2.07 (24H, CH 3 COO-×8), 3.23 (2H,
m), 3.89 (2H, dd, J=3.5Hz, 11.5Hz),
4.16 (2H, dd, J=5.4Hz, 11.5Hz), 4.88
(2H, dd, J = 4.5Hz, 10.5Hz), 4.96 (2H,
dd, J=9Hz, 10Hz), 5.36(2H, dd, J=
9Hz, 10.5Hz). Reference example 4 N-[(1R, 2S)-(2,4/3,5)-2,3,
Octa-O of 4-trihydroxy-5-hydroxymethylcyclohexyl variolamine
-acetyl derivative N-[(1R,2S)-(2,4/3,5)-2,3,
When 4-trihydroxy-5-hydroxymethylcyclohexyl variolamine (100 mg) was treated in the same manner as in Reference Example 2, the titled octa-O
- Acetyl derivative (124 mg) is obtained. [α] 25 D −3.9° (c=1, CH 3 OH) Elemental analysis: C 30 H 43 NO 17 Calculated value (%): C, 52.25; H, 6.28; N, 2.03. Experimental values (%): C, 51.91; H, 6.36; N, 2.30. NMR ( CDCl3 ) δ: 1.2~2.5 (5H, m), 1.9~
2.2 (24H, CH 3 COO-×8), 2.6-3.2 (1H,
m), 3.3 to 3.6 (1H, m), 3.6 to 4.2 (4H, m),
4.6-5.3 (5H, m), 5.57 (1H, t, J=10
Hz). Reference example 5 N-[(1S, 2S)-(2,4/3,5)-2,3,
Octa-O of 4-trihydroxy-5-hydroxymethylcyclohexyl variolamine
-acetyl derivative N-[(1S,2S)-(2,4/3,5)-2,3,
When 4-trihydroxy-5-hydroxymethylcyclohexyl variolamine (200 mg) was treated in the same manner as in Reference Example 2, the titled octa-O
- Acetyl derivative (330 mg) is obtained. [α] 25 D +79.7° (c=1, CH 3 OH) Elemental analysis: C 30 H 43 NO 17 Calculated value (%): C, 52.25; H, 6.28; N, 2.03. Experimental values (%): C, 52.11; H, 6.36; N, 2.22. NMR ( CDCl3 ) δ: 1.2~2.4 (5H, m), 1.9~
2.07 (24H, CH 3 COO-×8), 3.2-3.46
(2H, m), 3.65 (1H, d, J=11.5Hz),
3.84 (1H, dd, J=3Hz, 11.5Hz), 4.00
(1H, d, J = 11.5Hz), 4.12 (1H, dd, J =
6Hz, 11.5Hz), 4.80 (1H, dd, J=4.5Hz,
10.5Hz), 4.89 (1H, dd, J=9Hz, 10Hz),
5.01 (1H, dd, J=4.5Hz, 10Hz), 5.06 (1H,
d, J = 10Hz), 5.26 (1H, dd, J = 9Hz,
10.5Hz), 5.62 (1H, t, J = 10Hz). Reference example 6 N-[(1R, 2S)- for 200ml of fruit juice beverage
Add 100 mg of (2,4/3,5)-trihydroxy-5-hydroxymethylcyclohexylvalidamine and stir to dissolve uniformly to obtain a fruit juice beverage containing an α-glucosidase inhibitor. Reference example 7 N-[(1R, 2S)-(2,4/3,5)-2,3,
20 parts by weight of 4-trihydroxy-5-hydroxymethylcyclohexyl variolamine sulfate, 80 parts by weight of lactose, and 20 parts by weight of crystalline cellulose are mixed, kneaded with water, dried, and made into a powder or fine granules. Example 1 N-[(1R, 2S)-(2,4/3,5)-2,3,
4-trihydroxy-5-hydroxymethylcyclohexyl]validamine and N-[(1S,
2S)-(2,4/3,5)-2,3,4-trihydroxy-5-hydroxymethylcyclohexyl]validamine Validamine (1.0g) and (2R)-(2,4/3,
5) Dissolve -2,3,4-trihydroxy-5-hydroxymethylcyclohexanone (1.0 g) in dimethylformamide (25 ml) and add 2N hydrochloric acid (0.8
ml) and sodium cyanoborohydride (1.3g)
and stir at room temperature for 19 hours. The reaction solution is concentrated under reduced pressure, toluene is further added, and dimethylformamide is distilled off under reduced pressure under azeotropic distillation. Water (100ml) with residue
Dissolve in Dowex 50W x 8 (H + type, DOWEX
Chemical Co., USA, 100 ml) and stir at room temperature.
Stir for an hour. This mixture is added onto a column previously filled with another Dowex 50W x 8 (H + type, 50 ml), and after washing the column with water, it is eluted with 0.5N aqueous ammonia. The eluted fraction was concentrated under reduced pressure, and the residue was subjected to column chromatography using Amberlite CG-50 (NH 4 + type, manufactured by Rohm and Haas, USA, 550 ml), and when eluted with water, it was separated into two components. Ru.
After concentrating the first eluted fraction (270 to 360 ml) under reduced pressure,
Freeze-drying yields a white powder (1.0 g) of the (1S, 2S) isomer. The fraction eluting later (430~
580ml) was concentrated under reduced pressure and lyophilized (1R,
A white powder (320 mg) of the 2S) isomer is obtained. N-[(1S, 2S)-(2,4/3,5)-2,3,
4-Trihydroxy-5-hydroxymethylcyclohexyl]validamine (isomer obtained from the earlier eluted fraction): [α] 25 D +115.5° (c=1, H 2 O). Elemental analysis: C14H27NO8.H2O Calculated values (%): C, 47.31; H , 8.23; N , 3.94. Experimental values (%): C, 47.32; H, 8.26; N, 4.06. NMR (D 2 O) δ: 1.2-1.75 (2H, m), 1.75-
2.4 (4H, m), 3.2-4.15 (12H, m). TLC: Rf=0.24 N-[(1R, 2S)-(2,4/3,5)-2,3,
4-Trihydroxy-5-hydroxymethylcyclohexyl]validamine (isomer obtained from the later eluted fraction): [α] 25 D +35.5° (c=1, H 2 O). Elemental analysis: C14H27NO8.H2O Calculated values (%): C, 47.31; H , 8.23; N , 3.94. Experimental values (%): C, 47.28; H, 8.01; N, 3.86. NMR (D 2 O) δ: 1.34 (1H, q, J = 12Hz),
1.5~2.5 (5H, m), 2.82 (1H, m), 3.25~
4.15 (11H, m). IC 50 (Satucalase): 2.7×10 -7 M IC 50 (Maltase): 2.2×10 -6 M TLC: Rf=0.25 Example 2 N-[(1R,2S)-(2,4/3,5) -2,3,
4-trihydroxy-5-hydroxymethylcyclohexyl]variolamine and N-
[(1S, 2S) - (2, 4/3, 5) - 2, 3, 4 -
Trihydroxy-5-hydroxymethylcyclohexyl]variolamine Variolamine (2.1g) and (2R)-(2,
4/3,5)-2,3,4-trihydroxy-5
-Hydroxymethylcyclohexanone (1.9g)
Dissolved in dimethylformamide (50ml) and diluted with 2N
Add hydrochloric acid (1.5 ml) and sodium cyanoborohydride (2.6 g) and stir at room temperature for 19 hours. The reaction solution is concentrated under reduced pressure, toluene is further added, and dimethylformamide is distilled off under reduced pressure under azeotropy. Dissolve the residue in water (200 ml) and use Dowex 50W x 8
(H + form, Dow Chemical Co., USA, 250 ml) and stirred at room temperature for 1 hour. Pour this mixture in advance into another Dowex 50W x 8 (H + type, 100ml).
Add on top of the packed column, wash the column with water,
Elute with 0.5N ammonia water. The eluted fraction was concentrated under reduced pressure, and the residue was purified using Amberlite CG-50 (NH 4 +
(Mold, Rohm & Haas, USA, 450ml)
When subjected to column chromatography and eluted with water, it is separated into two components. Fraction eluting first (400-580ml)
Concentrate under reduced pressure and transfer the residue to Dowex 1×2
(OH - type, Dow Chemical Company, USA, 270ml)
column chromatography and elute with water. The eluted fraction (200-550ml) was concentrated under reduced pressure and then lyophilized to obtain a white powder (1.53g) of the (1S, 2S) isomer.
The later eluted fraction (0.63-1.00) is concentrated under reduced pressure and then lyophilized to obtain a white powder (570 mg) of the (1R, 2S) isomer. N-[(1S, 2S)-(2,4/3,5)-2,3,
4-trihydroxy-5-hydroxymethylcyclohexyl]variolamine (isomer obtained from the fraction eluted earlier): [α] 25 D +48.5° (c=1, H 2 O). Elemental analysis: C14H27NO9.1 / 2H2O Calculated values (%): C, 46.40; H , 7.79; N, 3.87. Experimental values (%): C, 46.29; H, 7.94; N, 3.73. NMR (D 2 O) δ: 1.43 (1H, dt, J = 3.3Hz,
13.5Hz, 13.5Hz), 1.67 (1H, dd, J=3.5Hz,
15.5Hz), 1.7~2.7 (2H, m), 2.32 (1H, dd,
J = 3Hz, 15.5Hz), 3.35-4.25 (12H, m). IC 50 (Satsucalase): 5.6×10 -6 M TLC: Rf=0.21 N-[(1R,2S)-(2,4/3,5)-2,3,
4-trihydroxy-5-hydroxymethylcyclohexyl]variolamine (isomer obtained from later eluting fractions): [α] 25 D +5.2° (c=1, H 2 O). Elemental analysis: C14H27NO9.H2O Calculated values (%): C, 45.27; H , 7.87; N , 3.77. Experimental values (%): C, 45.04; H, 7.97; N, 3.59. NMR (D 2 O) δ: 1.1~2.55 (5H, m), 2.65~
3.3 (1H, m), 3.4-4.45 (11H, m). IC 50 (maltase): 4.4×10 -8 M IC 50 (satucalase): 4.8×10 -8 M TLC: Rf=0.23 Example 3 N-[(1R,2S)-(2,4/3,5) -2,3,
4-Trihydroxy-5-hydroxymethylcyclohexyl]variolamine sulfate N-[(1R,2S)-(2,4/3,5)-2,3,
4-Trihydroxy-5-hydroxymethylcyclohexyl]variolamine (500 mg) was dissolved in water (20 ml), 1N sulfuric acid was added dropwise to adjust the pH to 3, and the solution was concentrated under reduced pressure to about 5 ml. The concentrated solution was subjected to activated carbon column chromatography (100 ml) and eluted with water.
After concentrating the eluted fraction under reduced pressure and lyophilizing it, N-
[(1R,2S)-(2,4/3,5)-2,3,4-trihydroxy-5-hydroxymethylcyclohexyl]variolamine sulfate is obtained.

Claims (1)

【特許請求の範囲】 1 一般式 [式中、Aは水素原子または水酸基を示す。]
で表わされる化合物またはその塩。 2 一般式 [式中、Aは水素原子または水酸基を示す。水
酸基はいずれも保護されていてもよい]で表わさ
れる化合物と、式 [式中、水酸基はいずれも保護されていてもよ
い]で表わされる環状ケトンとを反応させ、つい
で還元反応に付し、所望により脱保護基反応に付
することを特徴とする 一般式 [式中、Aは上記と同意義。]で表わされる化
合物またはその塩の製造法。
[Claims] 1. General formula [In the formula, A represents a hydrogen atom or a hydroxyl group. ]
A compound represented by or a salt thereof. 2 General formula [In the formula, A represents a hydrogen atom or a hydroxyl group. Any of the hydroxyl groups may be protected] and a compound represented by the formula A general formula characterized by reacting with a cyclic ketone represented by [in the formula, any of the hydroxyl groups may be protected], then subjecting it to a reduction reaction, and optionally subjecting it to a deprotection reaction. [In the formula, A has the same meaning as above. ] A method for producing a compound represented by or a salt thereof.
JP57100325A 1982-03-19 1982-06-10 N-substituted derivative of pseudo-amino sugar and its preparation Granted JPS58216145A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57100325A JPS58216145A (en) 1982-06-10 1982-06-10 N-substituted derivative of pseudo-amino sugar and its preparation
US06/475,615 US4595678A (en) 1982-03-19 1983-03-15 N-substituted pseudo-aminosugars and pharmaceutical compositions containing same
DE8383301482T DE3366520D1 (en) 1982-03-19 1983-03-17 N-substituted pseudo-aminosugars, their production and use
EP83301482A EP0089812B1 (en) 1982-03-19 1983-03-17 N-substituted pseudo-aminosugars, their production and use
CA000424008A CA1208211A (en) 1982-03-19 1983-03-18 N-substituted pseudo-aminosugars, their production and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57100325A JPS58216145A (en) 1982-06-10 1982-06-10 N-substituted derivative of pseudo-amino sugar and its preparation

Publications (2)

Publication Number Publication Date
JPS58216145A JPS58216145A (en) 1983-12-15
JPH0323537B2 true JPH0323537B2 (en) 1991-03-29

Family

ID=14271016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57100325A Granted JPS58216145A (en) 1982-03-19 1982-06-10 N-substituted derivative of pseudo-amino sugar and its preparation

Country Status (1)

Country Link
JP (1) JPS58216145A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2699912B2 (en) * 1986-03-05 1998-01-19 武田薬品工業株式会社 Process for producing pseudo-aminosugars and their derivatives from novel inosose derivatives

Also Published As

Publication number Publication date
JPS58216145A (en) 1983-12-15

Similar Documents

Publication Publication Date Title
US4803303A (en) N-substituted pseudo-aminosugars, their production and use
EP0666268B1 (en) Novel sphingoglycolipid and use thereof
US9012625B2 (en) Method for the synthesis of a trisaccharide
CA2149160C (en) Propiophenone derivative and a process for preparing the same
JP4553488B2 (en) Carboxymethyl galactose derivative
HU194263B (en) Process for preparing homo-disaccharide derivatives having hypoglycemic activity
EP0089812B1 (en) N-substituted pseudo-aminosugars, their production and use
JPS6340418B2 (en)
FR2556348A1 (en) RETINOIDS, THEIR PREPARATION AND THEIR THERAPEUTIC USES, IN PARTICULAR FOR THE TREATMENT OF NEOPLASIA, ACNE AND PSORIASIS
JP6667008B2 (en) C-Glucoside derivative containing a fused phenyl ring or a pharmaceutically acceptable salt thereof, a method for producing the same, and a pharmaceutical composition containing the same
Spohr et al. Molecular recognition XI. The synthesis of extensively deoxygenated derivatives of the H-type 2 human blood group determinant and their binding by an anti-H-type 2 monoclonal antibody and the lectin 1 of Ulex europaeus
JPH0323537B2 (en)
Juetten et al. Stereoselective. alpha.-glycosylation of nitro sugar evernitrose: synthesis of the terminal AB unit of everninomicin antibiotics
Ogawa et al. Synthesis of several optically active O-methyl-inosamines and-inosadiamines from l-quebrachitol
JPH0238580B2 (en) BARIOORUAMINNONNCHIKANJUDOTAI * SONOSEIZOHOOYOBYOTO
Hayashida et al. Displacement of “pseudoanomeric” hydroxyl groups by using the diethyl azodicarboxylate-triphenylphosphine system
EP1829884A1 (en) Sugar donor
EP3772355A1 (en) Bifunctional compound and its use in immunotherapy
JP4115066B2 (en) Carbohydrate amidine derivatives
JPH0239501B2 (en)
JPH0325412B2 (en)
JPH0372637B2 (en)
JP2795162B2 (en) Dihydrochalcone derivative and method for producing the same
JPH0118904B2 (en)
Pratesi Synthesis of nitrogenated glycomimetics from carbohydrates and renewable feedstocks for biomedical applications