[go: up one dir, main page]

JPH0323647B2 - - Google Patents

Info

Publication number
JPH0323647B2
JPH0323647B2 JP57012863A JP1286382A JPH0323647B2 JP H0323647 B2 JPH0323647 B2 JP H0323647B2 JP 57012863 A JP57012863 A JP 57012863A JP 1286382 A JP1286382 A JP 1286382A JP H0323647 B2 JPH0323647 B2 JP H0323647B2
Authority
JP
Japan
Prior art keywords
layer
hollow fiber
thickness
membrane
void
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57012863A
Other languages
Japanese (ja)
Other versions
JPS58156018A (en
Inventor
Takashi Nomi
Yasuo Hashino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1286382A priority Critical patent/JPS58156018A/en
Priority to EP82902468A priority patent/EP0086235B1/en
Priority to US06/491,340 priority patent/US4822489A/en
Priority to DE8282902468T priority patent/DE3270865D1/en
Priority to PCT/JP1982/000329 priority patent/WO1983000705A1/en
Publication of JPS58156018A publication Critical patent/JPS58156018A/en
Publication of JPH0323647B2 publication Critical patent/JPH0323647B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、限外過膜として有用な、透水性が
大で、破裂強度の大きい、新規構造を有するポリ
スルホン系樹脂中空糸膜に関する。 従来、芳香族ポリスルホン及び芳香族ポリエー
テルスルホン膜に関する文献は多数存在するが、
膜構造について開示する文献は限られている。表
面積及びボイド層よりなる支持層を持つた膜に関
しては、アミコン・コーポレーシヨンの特開昭49
−23183号公報、ガルフ・サウスリサーチインス
チチユートのJ.Appl.Poly.Sci.、20.2377〜2394頁
及び2395〜2406頁(1976年)、同じくJ.Appl.
Poly.Sci.、21、1883〜1900頁(1977年)等があ
る。前者の中空糸膜は、内側に表面層を持つが、
外側には表面層を持たず、重合体が10μm以上の
大きさに欠落した空洞が外表面に開口している。
その為、機械的強度が小で、逆洗ができな
い、目詰まりが生じやすい、等の欠点を持つ。
後者は、逆浸透膜用支持体として開発されたもの
であり、表面に平均孔径250Å〜0.44μmの大きさ
の孔を有するが、その透水率は、高々1.3m3
m2・day・atmと小さく、限外過膜としては実
用性に乏しいものである。 特開昭54−143777号、特開昭54−145379号の公
報に記載されている芳香族ポリスルホン及び芳香
族ポリエーテルスルホン中空糸膜は、いずれも内
外表面層、内外ボイド層、中間層から出来ている
が、機械的性質が弱いし、中間層の連通が不十分
な為に透水性能が劣る。さらに、これらの中空糸
膜は内外ボイド層の厚さの比が1.5倍より大きく、
内側ボイド層の厚さが外側ボイド層の厚さに比べ
大きい。したがつて、ポリマー量が外側に多く、
内側に少ないので外表面近傍の透過抵抗は大き
く、内側からの加圧に体する機械的強度は低い。 本発明の中空糸膜は、基本的には特開昭54−
145379号公報に開示されているものに似た構造を
もつが、内側及び外側のボイド層の厚みに大きな
差がなく、ポリマー量がほぼ均一に分散されてい
るので抵抗が少なく、さらに適当な平均孔直径の
孔が三次元的に連通して良く発達した構造を持
ち、かつ適当な厚みの中間層を有している点で異
なつており、この特徴によつて透水性が大きく、
破裂強度の大きな優れた中空糸膜となつている。 即ち、本発明は、外表面層・外ボイド層・中間
層・内ボイド層・内表面層の5層構造を有し、か
つ内・外ボイド層の厚さの比が1.5以下であり、
中間層の厚みが5μm以上7μm以下であり、全膜
厚が100μm〜600μmであることを特徴とするポ
リスルホン系樹脂中空糸膜に関するものである。 以下に本発明を詳細に説明する。 本発明のポリスルホン系樹脂中空糸膜を形成す
るポリスルホン系樹脂は、下記の一般式()又
は()で表わされる繰り返し単位を有する芳香
族ポリスルホン又は芳香族ポリエーテルスルホン (但し、X、X′、X″、X、X′′′′、X′′′′
′はそれ
ぞれ独立にメチル、エチル、n−プロピル、n−
ブチルより選ばれた低級アルキル基、F、Cl、I
及Brより選ばれたハロゲン基など非解離性置換
基又は−COOH、−SO3H、−NH2等の解離性置換
基、1、m、n、o、p、qは0から4までの整
数を表わす。)で表わされるものである。これら
の芳香族ポリスルホン系樹脂は、浸透圧法によつ
て測定した数平均分子量が5000〜100000のものが
適当である。これらの芳香族ポリスルホン系樹脂
は、耐熱性、耐酸アルカリ性、耐薬品性、機械的
強度の優れた中空糸膜を与え得る。 本発明の中空糸膜は、前記ポリスルホン系樹脂
からなる5層構造、即ち、外表面層(Ap)・外ボ
イド層(Bp)・中間層(C)・内ボイド層(Bi)・内
表面層(Ai)のAp Bp C Bi Aiの5層構造
を有する。膜厚が大となれば破裂強度は大となる
が、透水率は当然低下する。本発明の中空糸は膜
厚は大体100〜600μmであり、好ましくは100〜
500μmであり、本発明による中空糸の外径及び
内径は臨界的ではないが、一般に外径は内径の約
2倍前後であるのが好ましく、したがつて本発明
中空糸の好ましい外径は約300〜5000μmである。
外径、内径は膜厚と中空糸としての形状から適当
な値にきまる。 本発明中空糸の表面層のAp層、Ai層は、その
層構造がほぼ同じものであり、その厚さはAp層、
Ai層でほぼ等しく、0.01〜10μmであり、通常1
〜4μm程度である。例えば、0.01μm程度の小さ
なポリマー粒子の数珠状連結からなり、粒子の間
隔は内外表面近傍では非常に狭く非常に密に詰ま
つており、表面から遠ざかるにつれて粒子間隔が
大きくなると共に粒子の大きさも大きくなる。内
外表面層の表面のごく近くでは走査型電子顕微鏡
で見ても孔が観察できない程平滑に見えるが、
種々の異なるデキストラン水溶液及び蛋白質水溶
液を流した際の透過阻止率の測定により球状蛋白
質で測つた分画分子量13000以下の孔を有し、そ
の孔の大きさはおよそ10Å〜100Åの限外過膜
の領域に存在すると推定される。このことは、平
均分子量7万のデキストランを70%以上カツトす
ることを意味する。このAp層、Ai層は、透過分
子の大きさの選択透過機能を果す層である。この
層が薄い程透水性は良い。本発明の中空糸では、
表面層が内外2層ある為、たとえ一方に何らかの
理由によつて欠陥が生じたとしてもカツトすべき
分子の漏洩が防止できる為、表面層が1層の場合
に比べて中空糸膜使用上の安全性が増し、かつ分
画分子量をシヤープにすることができるという利
点がある。 Ai層に接して、無数のボイドが存在する。ボイ
ドはポリマーが欠落した部分であり、円錐形状を
有している。中空糸横断面で見ると、このボイド
は中空糸中心から半径方向にまつすぐの伸びた細
い円錐縦断面形状を示し、したがつて、中空糸長
さ方向の断面で見るとほぼ円形状に観察される。
Ai層に接したボイドはすべてAi層側に頂点をむ
け、中空糸内部に向かつて太くなり、中空糸内部
側の末端は丸みをおびた形となつている。中空糸
横断面でこれらのボイドの全体としての存在状態
を観察すると、ボイドはAi層をとりまいたほぼ同
一の厚みを有する環状状態をなして存在してい
る。このボイドが形成する環を、本発明ではボイ
ド層(Bi)層とよぶ。Ap層に接して、上記と同
様な無数のボイドが別に存在し、もう一つのボイ
ド層(Bp)層を形成している。このボイド層に
おいては、各ボイドはすべてAp層側に頂点をむ
けて存在している。各ボイド層の厚さとは、中空
糸の糸軸に直角な面で切つた中空糸横断面の走査
型電子顕微鏡写真において、中空糸の中心から半
径方向にひいた直線と、各ボイド層に存在する多
数のボイドが形成する環の内周外周とが交差する
2点間の距離をいう。内周、外周は、以下のよう
に定める。まず、Bi層についてその外周は次の
ようにして求める。中空糸全横断面の走査型電子
顕微鏡写真(50〜300倍において、中空部中心か
ら放射状に延びる60°を1分画とする6つの放射
分画を描き、1つの放射分画中に存在するボイド
の中で最も深く層内に向かつて延びたボイドの層
内側端部と該中空分中心との距離を測定し、これ
を6つの放射分画の各々について行ない6個の値
を得る。次に、各分画の位相を時計方向に20°ず
らせた別の6つの放射分画を描き、上記と同様に
して6個の値を得、さらにもう一度各分画の位相
を時計方向に20°ずらせ、上記と同様にしてさら
に6個の値を得る。このようにして得た合計18個
の値の算術平均を半径とし、上記走査型電子顕微
鏡写真の中空糸横断面の中空部中心を中心として
描いた円をもつてBi層の外周とする。上記と同
様な方法によりBp層の内周を得る。Bi層の内周
及びBp層の外周は、前者についてはAi層との境
界線、後者についてはAp層との境界線をもつて
それぞれの内周及び外周とする。この境界線は明
確であり容易に識別できる。ボイドの厚さは10〜
370μm程度である。このボイド層の厚さは膜厚
において主要な部分を占めているが、余りボイド
が厚すぎると破裂強度は低下する。本発明の中空
糸は中間層がある為に破裂強度は大であるが、内
外ボイド層のボイドは半径方向に長い為、この膜
厚部分では透過液は何らの抵抗なしに短絡して透
過し、表面層から中間層・表面層へと到着するこ
とができるので透水率は大である。したがつて、
このBp層、Bi層は中空糸膜の機械的強度と透水
率の向上に大いに寄与している部分であると言う
ことができよう。 ボイドの内壁表面には無数のCp孔(Cpについ
ては後述する)が開口している。 Bi層、Bp層の厚みの比は1に近い程好ましい。
したがつて、中間層は膜厚の中心付近にある程良
いことになる。この厚みが異なると、機械的強度
が低下するばかりでなく、破裂し易く、かつ、ボ
イド長の長いほうのボイド層が厚密化現象を起こ
し易く好ましくない。内外ボンド層の厚さの比
(lBi/lBp)(以後単に内外ボイド層比という)は
1.5以下であることが好ましく、1.5を超えると機
械的強度の低下が著しいばかりでなく透水率も低
下する。又、内外ボイド層比が0.6未満でも透水
率が低下し使用に耐えない。 本発明の中空糸には、中間層(C層)が存在す
る。C層とは、Bi層に存在するボイドとBp層に
存在するボイドによつて定義される中間の層を意
味し、その層の最も薄い部分の厚さをC層の厚さ
と定義し、そのC層の厚さは5〜70μmである。
C層の厚さの測定は、糸軸に直角な面で切つた中
空糸全横断面の走査型電子顕微鏡写真(50〜3000
倍)において行なわれる。 C層は3次元方向によく連通したCp孔をもつ
網目構造的ポリマー層であり、ポリマーが3次元
的に強固に結びつき破裂強度、圧縮強度、引張強
度、などの機械的特性を著しく増大させるのに貢
献している層である。孔の大きさは独立的に見る
と、平均孔直径で0.1〜9μmである。C層の厚み
は5〜70μmである。この厚さはAp層、Ai層の厚
みに比べると非常に大きい。中空糸膜のボイド以
外のCp孔は連通孔であるが、膜の内外表面から
内部に行くにしたがつて大きくなつて行き中央の
C層で最大となる。したがつて、C層の存在によ
つても中空糸膜の透水率は大きい値に保持し得る
が、それでもC層はB層に比べて透過抵抗で大
で、C層の厚みに比例して透水率がかなり低下す
ることは免れない。C層が70μmを超えた厚みに
なると、透水率は3m3/m2・day・atmを切るよ
うになる。一方、C層の厚みは中空糸膜の破裂強
度と密接な関係を有し、5μm未満になると破裂
強度は15Kg/cm2未満となる。破裂強度が15Kg/cm2
未満では長期連続運転に耐えられない。 前述のAi、Bi、C、Bp、Ap各層の厚さの定義
より明らかなように、Ai、Bi、C、Bp、Ap各層
の厚さの合計は必ずしも膜厚とは一致しない。 従来の中空糸膜の中間層構造と本発明の中間層
構造のCp孔の1単位を模式的に第17図A,B
に示した。本発明の中空糸では、Aに示すように
3次元的連通がBに示す従来のものに比べ著しく
改善されている為、上方矢印から入つてきた透過
液体は、立方体のいずれかの方向の出口(5個所
のCp孔)からも出ることができる。一方、従来
のものでは連通性が悪い為、上方から入つてきた
液体は透過する出口をもとめ限定されたCp孔か
らのみ出ることができる。このような理由で本発
明の中空糸膜の中間層の透過抵抗は著しく減少し
ている。 以上に本発明中空糸の5層構造につき各層の性
質・機能を概説したが、次に後に述べる本発明の
実施例で得られる中空糸膜の断面の走査型電子顕
微鏡写真を示して、本発明中空糸の具体的な姿を
明らかにする。 第1図は本発明の中空糸膜の横断面をモデル的
に示した図である。図にはそれぞれAp、Bp、C、
Bi、Ai層を示している。 第2図は後述する実施例1によつて得られた本
発明中空糸膜の1例の糸軸に直角な面で切つた全
横断面を示す凍結割横断面走査電子顕微鏡写真
(倍率83倍)であり、図下部の直線(約4.7cm)は
500μmを表わす。即ち、1mmは約10.6μmを示す。 第3図は全膜厚の一部を拡大して示した凍結割
断面の走査型電子顕微鏡写真(倍率330倍)であ
り、図下部の直線(約2cm)は50μmを表わす。
即ち、1mmは2.5μmを示す。 第4図はAi層とBi層の一部を拡大して示した凍
結割断面の走査型電子顕微鏡写真(倍率1400倍)
であり、図下部の直線(約8mm)は5μmを表わ
し、即ち1mmは約0.62μmを示す。 第5図は内表面Ai層の1例の凍結割断面走査型
電子顕微鏡写真(倍率14000倍)であり、下部直
線(約8mm)は0.5μmを表わし、即ち、1mmは約
0.06μmを示す。 第6図は外表面Ap層の1例の凍結割断面走査
型電子顕微鏡写真(倍率14000倍)であり、下部
直線(約8mm)は0.5μmを表わし、したがつて1
mmは約0.06μmを示す。 第7図は中空糸を図示のように斜めに凍結割断
した円内部分の走査型電子顕微鏡写真(倍率190
倍)であり、下部直線(約1.0cm)は50μmを表わ
し、したがつて、1mmは約5μmを示す。写真に
見えているのは外ボイドの内壁表面であり、膜の
外部表面から内部に行くにつれてCp孔の孔径が
次第に大きくなつている様子及びCp孔の存在密
度の模様がよく現われている。 第8図は中間層(C層)の1例を示す凍結割断
面走査型電子顕微鏡写真(倍率1400倍)であり、
下部直線(約0.8cm)は5μmを表わし、したがつ
て1mmは約0.62μmを示す。 第9図は中間層(C層)の非常に大きな凍結割
断面の走査型電子顕微鏡写真(倍率14000倍)で
あり、下部直線(約1.3cm)は0.5μmを表わし、
したがつて、1mmは約0.04μmを示す。この写真
によつてC層のCp孔が3次元的に極めて良く発
達した連通孔であり、C層はむしろ3次元的網目
構造をなしていることが分る。 以上の第2〜9図の写真に示した実施例中空糸
について各層の厚さ及び平均孔直径及び膜厚及び
外径のデーターを第1表に示す。
The present invention relates to a polysulfone resin hollow fiber membrane useful as an ultrafiltration membrane, which has high water permeability, high burst strength, and has a novel structure. Conventionally, there are many documents regarding aromatic polysulfone and aromatic polyethersulfone membranes, but
Literature disclosing membrane structures is limited. Regarding membranes having surface areas and support layers consisting of void layers, Amicon Corporation's JP-A-49
-23183, Gulf South Research Institute, J.Appl.Poly.Sci., 20. pp. 2377-2394 and 2395-2406 (1976), also J.Appl.
Poly.Sci., 21 , pp. 1883-1900 (1977), etc. The former hollow fiber membrane has a surface layer on the inside,
There is no surface layer on the outside, and a cavity with a size of 10 μm or more in the polymer is opened on the outside surface.
Therefore, it has disadvantages such as low mechanical strength, inability to backwash, and easy clogging.
The latter was developed as a support for reverse osmosis membranes, and has pores on its surface with an average pore size of 250 Å to 0.44 μm, but its water permeability is at most 1.3 m 3 /
It is small, m2・day・atm, and is of little practical use as an ultrafiltration membrane. The aromatic polysulfone and aromatic polyethersulfone hollow fiber membranes described in JP-A-54-143777 and JP-A-54-145379 are both made of inner and outer surface layers, inner and outer void layers, and an intermediate layer. However, its mechanical properties are weak and its water permeability is poor due to insufficient communication in the intermediate layer. Furthermore, these hollow fiber membranes have a thickness ratio of inner and outer void layers greater than 1.5 times,
The thickness of the inner void layer is greater than the thickness of the outer void layer. Therefore, the amount of polymer is larger on the outside,
Since there is less on the inside, the permeation resistance near the outer surface is high, and the mechanical strength against pressure from the inside is low. The hollow fiber membrane of the present invention is basically
It has a structure similar to that disclosed in Publication No. 145379, but there is no big difference in the thickness of the inner and outer void layers, and the amount of polymer is almost uniformly dispersed, so the resistance is low, and it has a suitable average It differs in that it has a well-developed structure in which pores of the same diameter are connected three-dimensionally, and it also has an intermediate layer of appropriate thickness, and due to this feature, it has high water permeability.
It is an excellent hollow fiber membrane with high bursting strength. That is, the present invention has a five-layer structure of an outer surface layer, an outer void layer, an intermediate layer, an inner void layer, and an inner surface layer, and the ratio of the thickness of the inner and outer void layers is 1.5 or less,
The present invention relates to a polysulfone-based resin hollow fiber membrane characterized in that the thickness of the intermediate layer is 5 μm or more and 7 μm or less, and the total membrane thickness is 100 μm to 600 μm. The present invention will be explained in detail below. The polysulfone resin forming the polysulfone resin hollow fiber membrane of the present invention is an aromatic polysulfone or an aromatic polyether sulfone having a repeating unit represented by the following general formula () or (). (However, X, X', X'', X, X''''', X'''''
' each independently represents methyl, ethyl, n-propyl, n-
Lower alkyl group selected from butyl, F, Cl, I
and non- dissociative substituents such as halogen groups selected from Represents an integer. ). These aromatic polysulfone resins suitably have a number average molecular weight of 5,000 to 100,000 as measured by an osmotic pressure method. These aromatic polysulfone resins can provide hollow fiber membranes with excellent heat resistance, acid-alkali resistance, chemical resistance, and mechanical strength. The hollow fiber membrane of the present invention has a five-layer structure made of the polysulfone resin, namely, an outer surface layer (A p ), an outer void layer (B p ), an intermediate layer (C), an inner void layer (B i ), It has a five-layer structure of A p B p C B i A i of the inner surface layer (A i ). As the membrane thickness increases, the bursting strength increases, but the water permeability naturally decreases. The hollow fiber of the present invention has a thickness of approximately 100 to 600 μm, preferably 100 to 600 μm.
500 μm, and although the outer diameter and inner diameter of the hollow fiber according to the present invention are not critical, it is generally preferred that the outer diameter is around twice the inner diameter, and therefore the preferred outer diameter of the hollow fiber of the present invention is about It is 300 to 5000 μm.
The outer diameter and inner diameter are determined to appropriate values based on the membrane thickness and the shape of the hollow fiber. The A p layer and the A i layer, which are the surface layers of the hollow fiber of the present invention, have almost the same layer structure, and the thicknesses of the A p layer and the A i layer are approximately the same.
The A i layer is approximately equal, 0.01 to 10 μm, and usually 1
It is about ~4 μm. For example, it consists of a bead-like connection of small polymer particles of about 0.01 μm, and the distance between the particles is very narrow near the inner and outer surfaces, and they are packed very densely. growing. The inner and outer surface layers appear so smooth that no pores can be observed even when viewed with a scanning electron microscope very close to the surface.
The ultrafiltration membrane has pores with a molecular weight cut-off of 13,000 or less, which was determined by measuring the permeation rejection rate of globular proteins when various different dextran aqueous solutions and protein aqueous solutions were passed through, and the pore size is approximately 10 Å to 100 Å. It is estimated that it exists in the area of This means that dextran with an average molecular weight of 70,000 is cut by more than 70%. The A p layer and the A i layer are layers that perform a selective permeation function based on the size of permeable molecules. The thinner this layer is, the better the water permeability is. In the hollow fiber of the present invention,
Since there are two surface layers, the inner and outer layers, even if one of the layers is defective for some reason, the molecules to be cut can be prevented from leaking. It has the advantage of increased safety and the ability to sharply cut off molecular weight. There are countless voids in contact with the A i layer. A void is a portion where the polymer is missing and has a conical shape. When viewed in cross-section of the hollow fiber, this void has a narrow conical longitudinal cross-sectional shape extending radially from the center of the hollow fiber, and therefore, when viewed in cross-section along the length of the hollow fiber, it appears almost circular. be done.
All the voids in contact with the A i layer have their apexes facing the A i layer side, become thicker toward the inside of the hollow fiber, and have a rounded end on the inside of the hollow fiber. When observing the overall state of existence of these voids in a cross section of the hollow fiber, the voids exist in an annular state surrounding the A i layer and having approximately the same thickness. The ring formed by this void is referred to as a void layer (B i ) layer in the present invention. In contact with the A p layer, countless voids similar to those described above exist separately, forming another void layer (B p ) layer. In this void layer, all the voids exist with their vertices facing the A p layer side. The thickness of each void layer is defined as the thickness of a straight line drawn in the radial direction from the center of the hollow fiber and the thickness of each void layer in a scanning electron micrograph of a cross section of the hollow fiber cut perpendicular to the fiber axis of the hollow fiber. The distance between two points where the inner and outer peripheries of a ring formed by a large number of voids intersect. The inner and outer circumferences are determined as follows. First, the outer circumference of the Bi layer is determined as follows. Scanning electron micrograph of the entire cross-section of the hollow fiber (at 50 to 300x magnification, six radiation fractions are drawn, one fraction being 60° extending radially from the center of the hollow fiber, and each radiation fraction exists in one radiation fraction. The distance between the inner edge of the void, which extends toward the deepest part of the layer, and the center of the hollow section is measured, and this is done for each of the six radiation fractions to obtain six values.Next: Then draw another 6 radiation fractions with the phase of each fraction shifted by 20° clockwise, obtain 6 values as above, and once again shift the phase of each fraction by 20° clockwise. Then, obtain 6 more values in the same manner as above.The arithmetic mean of the 18 values obtained in this way is set as the radius, and the center of the hollow part of the hollow fiber cross section in the above scanning electron micrograph is used as the radius. The circle drawn as is the outer circumference of the Bi layer.The inner circumference of the B p layer is obtained by the same method as above.The inner circumference of the B i layer and the outer circumference of the B p layer are For the latter, the boundary line with the A p layer is taken as the inner and outer periphery of each.This boundary line is clear and easily identified.The thickness of the void is 10~
It is approximately 370 μm. The thickness of this void layer occupies a major portion of the film thickness, but if the voids are too thick, the bursting strength will decrease. The hollow fiber of the present invention has a high bursting strength due to the intermediate layer, but since the voids in the inner and outer void layers are long in the radial direction, the permeated liquid short-circuits and passes through this membrane thickness area without any resistance. , water can reach the intermediate layer/surface layer from the surface layer, so its permeability is high. Therefore,
It can be said that the B p layer and the B i layer greatly contribute to improving the mechanical strength and water permeability of the hollow fiber membrane. Numerous C p holes (C p will be described later) are opened on the inner wall surface of the void. The ratio of the thicknesses of the B i layer and the B p layer is preferably as close to 1 as possible.
Therefore, the closer the intermediate layer is to the center of the film thickness, the better. If the thicknesses are different, the mechanical strength not only decreases, but also the void layer with the longer void length tends to become thicker and denser, which is not preferable. The ratio of the thickness of the inner and outer bond layers (lB i /lB p ) (hereinafter simply referred to as the inner and outer void layer ratio) is
It is preferable that it is 1.5 or less; if it exceeds 1.5, not only the mechanical strength will decrease significantly but also the water permeability will decrease. Furthermore, if the inner/outer void layer ratio is less than 0.6, the water permeability will decrease and it will not be usable. The hollow fiber of the present invention has an intermediate layer (C layer). The C layer means an intermediate layer defined by the voids existing in the B i layer and the voids existing in the B p layer, and the thickness of the thinnest part of that layer is defined as the thickness of the C layer. , the thickness of the C layer is 5 to 70 μm.
The thickness of the C layer was measured using a scanning electron micrograph (50 to 3000
(times). The C layer is a network-structured polymer layer with C p pores that are well connected in three dimensions, and the polymers are strongly bonded in three dimensions, significantly increasing mechanical properties such as bursting strength, compressive strength, and tensile strength. This is the layer that contributes to the The pore size, when viewed independently, is 0.1 to 9 μm in average pore diameter. The thickness of the C layer is 5 to 70 μm. This thickness is extremely large compared to the thicknesses of the A p layer and the A i layer. The C p pores other than the voids in the hollow fiber membrane are communicating pores, and they become larger from the inner and outer surfaces of the membrane toward the inside, reaching the maximum size in the central C layer. Therefore, the water permeability of the hollow fiber membrane can be maintained at a large value even with the presence of the C layer, but the C layer still has a higher permeation resistance than the B layer, and is proportional to the thickness of the C layer. It is inevitable that the water permeability will decrease considerably. When the thickness of the C layer exceeds 70 μm, the water permeability becomes less than 3 m 3 /m 2 ·day · atm. On the other hand, the thickness of the C layer has a close relationship with the burst strength of the hollow fiber membrane, and when the thickness is less than 5 μm, the burst strength becomes less than 15 Kg/cm 2 . Bursting strength is 15Kg/cm 2
If it is less than that, it will not be able to withstand long-term continuous operation. As is clear from the definition of the thickness of each layer of A i , B i , C, B p , and A p above, the total thickness of each layer of A i , B i , C, B p , and A p is not necessarily the film thickness. does not match. Figures 17A and B schematically illustrate one unit of C p pores in the intermediate layer structure of a conventional hollow fiber membrane and the intermediate layer structure of the present invention.
It was shown to. In the hollow fiber of the present invention, as shown in A, the three-dimensional communication is significantly improved compared to the conventional one shown in B, so that the permeate liquid entering from the upward arrow can be directed to the exit in either direction of the cube. It can also exit through (5 C p holes). On the other hand, in the conventional type, the communication is poor, so the liquid that enters from above can only exit through the limited C p hole, seeking an exit through which it can pass. For these reasons, the permeation resistance of the intermediate layer of the hollow fiber membrane of the present invention is significantly reduced. The properties and functions of each layer of the five-layer structure of the hollow fiber of the present invention have been outlined above.Next, a scanning electron micrograph of a cross section of a hollow fiber membrane obtained in an example of the present invention, which will be described later, will be shown. Clarifying the specific form of hollow fibers. FIG. 1 is a diagram schematically showing a cross section of the hollow fiber membrane of the present invention. The figure shows A p , B p , C, and
B i and A i layers are shown. FIG. 2 is a freeze-fractured cross-sectional scanning electron micrograph (magnification: 83 times ), and the straight line at the bottom of the figure (approximately 4.7cm) is
Represents 500μm. That is, 1 mm represents approximately 10.6 μm. Figure 3 is a scanning electron micrograph (330x magnification) of a frozen fractured surface showing a portion of the total film thickness enlarged, and the straight line (approximately 2 cm) at the bottom of the figure represents 50 μm.
That is, 1 mm indicates 2.5 μm. Figure 4 is a scanning electron micrograph (1400x magnification) of a freeze-fractured cross section showing an enlarged view of part of the A i and B i layers.
The straight line (approximately 8 mm) at the bottom of the figure represents 5 μm, that is, 1 mm represents approximately 0.62 μm. Figure 5 is a scanning electron micrograph (magnification: 14,000 times) of a freeze-fractured cross section of an example of the inner surface A i layer, and the lower straight line (approximately 8 mm) represents 0.5 μm, that is, 1 mm is approximately
Indicates 0.06μm. Figure 6 is a scanning electron micrograph (magnification: 14,000 times) of a freeze-fractured cross section of an example of the outer surface A p layer, and the lower straight line (approximately 8 mm) represents 0.5 μm, so 1
mm indicates approximately 0.06 μm. Figure 7 is a scanning electron micrograph (magnification: 190
times), and the lower straight line (approximately 1.0 cm) represents 50 μm, so 1 mm represents approximately 5 μm. What is visible in the photo is the inner wall surface of the outer void, and the pore diameter of the C p pores gradually increases from the outer surface to the inside of the membrane, and the pattern of the density of C p pores is clearly visible. . FIG. 8 is a scanning electron micrograph (1400x magnification) of a frozen fractured cross section showing an example of the intermediate layer (C layer).
The lower straight line (approximately 0.8 cm) represents 5 μm, so 1 mm represents approximately 0.62 μm. Figure 9 is a scanning electron micrograph (14,000x magnification) of a very large freeze-fractured cross section of the intermediate layer (C layer), where the lower straight line (approximately 1.3 cm) represents 0.5 μm.
Therefore, 1 mm represents approximately 0.04 μm. This photograph shows that the C p pores of the C layer are communicating pores that are extremely well developed three-dimensionally, and that the C layer has a rather three-dimensional network structure. Table 1 shows data on the thickness, average pore diameter, membrane thickness, and outer diameter of each layer for the hollow fibers of the examples shown in the photographs of FIGS. 2 to 9 above.

【表】 (但し、Bi、Bp層の平均孔直径は、ボイド層中
のボイド間に存在するCp孔を走査型電子顕微鏡
写真により測定したものである。) 第10図には、2つの実施例中空糸について
Cp孔の半径が中空糸内表面から外表面にかけて
どのように変つているかを示した。内外表面より
中央に行くに従つて孔径が増大していることが分
る。本発明中空糸の製造法については後記する
が、曲線−○−はポリマー濃度17.0重量%、曲線
−×−はポリマー濃度20.0重量%の場合を示して
いる。ポリマー濃度の高い20重量%のほうか孔径
が小さく、中空糸膜の細孔が緻密なことが分る。
この為、ポリマー濃度をあげると機械的性質は向
上する。 第11図には、本発明及び比較例の芳香族ポリ
スルホン中空糸につき、種々の膜厚のものを作つ
て膜厚と透水率との関係をプロツトしてある。第
11図において曲線−○−ポリマー濃度20.0重量
%、曲線−△−はポリマー濃度15.0重量%の場合
を示し、本発明の中空糸についてのものである。
一方、曲線−●−はポリマー濃度15.0重量%で、
グリコール類を添加せず紡糸して得た比較例の中
空糸についてのものである。 第12図には、本発明の芳香族ポリエーテルス
ルホン中空糸につき、膜厚と透水率との関係をプ
ロツトした。 第11図及び第12図から、本発明の中空糸の
場合には膜厚と透水率の間に正比例的関係が成り
立つことは分る。 第13図には、本発明の中空糸につき、種々の
中間層厚みのものを作つて、中間層厚みと透水率
及び破裂強度との関係を示した。第13図におい
て、曲線−×−は透水率、曲線−○−は破裂強度
を示す。中間層の厚みが増すにつれて破裂強度は
増加し、透水率は厚みが増すと共に減少し、特に
ある厚さからその減少が顕著になることが示され
ている。 なお、前記Cp孔とは、高分子論文集Vo1.34、
No.3 205〜216(1977)に記載されている水中油
滴型(Oil in Water)のような100Å位の非常に
小さなエマルジヨンを考え、Oil又はWaterをポ
リマー農厚相又は希薄相が占めている場合に形成
される孔溝造で、表面又は断面から見た形が丸い
円である孔を言う。これに対して、細長い孔の場
合をUp孔と呼ぶ。 本発明において、内外ボイド層比とは、本発明
の芳香族ポリスルホン系樹脂中空糸膜の内ボイド
層の厚さ(lBi)と外ボイド層の厚さ(lBpの比、即
ち、lBi/lBpのことである。lBi及びlBpは前述の方法
によつて求められる。本発明の芳香族ポリスルホ
ン系樹脂中空糸膜の内外ボイド層比は1.5〜0.6で
あり、好ましくは1.4〜1.0である。 以上に本発明の中空糸膜についての具体的実施
例につき、具体的な構造写真及びデーダーを示し
たが、これらの具体的データーは、本発明中空糸
膜の製造法と無関係ではない。 次に、本発明の中空糸膜を製造する方法の例に
ついて記載する。 本発明のポリスルホン系樹脂中空糸膜は、グリ
コール類を含むポリスルホン樹脂濃度が15〜35重
量%の芳香族ポリスルホン系樹脂の極性有機溶媒
溶液を、吐出面におけるポリマー吐出環状溝の内
のり幅が110〜700μmである環状ノズルから空気
中に中空糸状に吐出させ、同時に上記溶媒と混和
するが、ポリスルホン系樹脂を溶解しない液体を
内部凝固液としてノズル内側から注入し、その後
上記溶媒と混和するが、芳香族ポリスルホン系樹
脂を溶解しない液体からなる凝固液浴中へ該中空
糸状吐出体を導くことを包含する芳香族ポリスル
ホン系樹脂中空糸膜の製造法が提供される。 本製造法においては、グリコール類の紡糸原液
への添加、紡糸原液のポリマー濃度、空中走行距
離、中空糸膜厚等の各因子が相互に密接に関連
し、その結合が極めて重要であり、その一つが欠
けても本発明の中空糸膜は得られない。 極性有機媒溶としては、ポリスルホン系樹脂を
溶解し得るものなら用いるが、N−メチルピロリ
ドン、ジメチルホルムアミド、特にジメチルアセ
トアミド、ジエチルアセトアミドが好ましく用い
られる。 本発明中空糸の製造法においては、紡糸原液へ
のグリコール類の添加は極めて重要である。ポリ
スルホン系重合体と極性有機溶媒とだけからなる
ポリマー溶液の場合は勿論、特開昭54−143777
号、特開昭54−145379号公報の発明におけるよう
な無機酸の金属塩、又は有機酸の金属塩の水溶液
を添加する場合やポリビニルピロリドンを加える
場合には、5層構造の中空糸が得られても、本発
明の中空糸膜が持つような内外ボイド層比が1.5
以下で連通性の極めて良い中間層を持ち、破裂強
度が大きく透水性の格段に優れた中空糸膜は得ら
れない。又、グリコール類の添加は透過抵抗の著
しく低い構造の中間層の形成に関係している。こ
れにより従来技術に比べて高濃度ポリマーの原液
から中空糸膜の紡糸ができるようになり中空糸膜
の機械的強度も著しく向上させることができたも
のである。 このようにして得られる本発明による中空糸膜
は、透水率3m3/m2・day・atm以上、破裂強度
15Kg/cm2以上、引張り強度20Kg/cm2以上〔島津オ
ートグラフIM−100(日本国島津製作所製引張り
試験機)で測定〕の優れた特性を有する。 本発明の方法で用いられるグリコール類として
は、エチレングリコール、ジエチレングリコー
ル、トリエチレングリコール、テトラエチレング
リコール、ポリエチレングリコール(分子量200
〜6000)など、プロピレングリコール、ジプロピ
レングリコール、トリプロピレングリコール、ポ
リプロピレングリコール(分子量200〜6000)な
ど、グリセリン、トリメチロールプロパン及びエ
チレングリコールモノメチルエーテル、エチレン
グリコールジメチルエーテル、ジエチレングリコ
ールモノメチルエーテル、ジエチレングリコール
ジメチルエーテル、トリエチレングリコールモノ
メチルエーテル等のエチレングリコールメチルエ
ーテル誘導体、プロピレングリコールモノメチル
エーテル等のプロピレングリコール誘導体が挙げ
られる。上記グリコール類は単独あるいは混合物
であつてもよい。中でもテトラエチレングリコー
ル程度の分子量のものが好ましい。 グリコール類の添加割合は、ポリマー溶液の均
一な溶解状態を保持できる範囲ならどのような割
合でも良く、ポリマー濃度、用いる極性溶媒の種
類等によつても変るが、約0.5〜30重量%の範囲
で用いられる。0.5%未満では効果が少なく、30
%を超えると原液が不安定となり失透したり製膜
が困難となつたりし、良い膜は得られない。好ま
しくは3〜20重量%であり、さらに好ましくは5
〜15重量%である。 製膜用原液のポリマー濃度は15〜35重量%以
上、住ましくは18〜25重量%である。35重量%を
超えると、得られる半透膜の透水性能が実用的な
意味を持たない程度に小さくなり、又、15重量%
より低い濃度では中間層の厚みが十分でなく、さ
らに中間層の平均孔直径が9μmを超え、機械的
強度の弱いものしか得ることができない。 製膜用原液中のポリマー濃度は、それから得ら
れる中空糸構造と密接な関係を持つている。即ち
平膜の場合、15重量%未満の低濃度原液を用いる
と、ボイド層が長く膜の厚み方向に発達した表面
層(A)とボイド層(B)からなる構造を持つ膜が得られ
る。一方、15重量%以上の高濃度原液を用いる
と、ポリマー濃度の増大と共に中間層が発達し、
表面層(A)、ボイド層(B)及び中間層(C)よりなる3層
構造が形成される。この構造を走査型電子顕微鏡
写真の第14図に示した。しかし、いずれの構造
においても平膜では透水性が著しく低く、大きな
透水性を持つ膜を得ることはできない。第15図
にABC3層構造平膜の膜厚と透水率との関係を示
した。第15図から膜厚が100μm以上の場合、
透水率は非常に小さいことがわかる。 一方、中空糸では低濃度原液を使用し、中空糸
の内外表面から両面凝固させると、極端に中間層
の薄いボイドが不規則に並んだ表面層(A)とボイド
層(B)よりなるAi Bi Bp Apの順に並んだ中空
糸が得られるが、このような中空糸は、機械的強
度が弱く逆洗を用いた連続運転には耐え得ない。 又、両面凝固ではなく片側のみ凝固液と接触さ
せることにより、内側又は外側に表面層のある表
面層(A)とボイド層(B)よりなるAB又はBAの順に
並んだ構造を持つ2層構造の中空糸が得られる。
しかし、これらの2層構造を持つ中空糸はいずれ
も機械的強度が弱く、逆洗を用いな長期運転には
耐えられない、15重量%以上の高濃度原液を用
い、両面から凝固させることにより2つの表面
層、2つのボイド層及び適当な厚みの1つの中間
層を持つ5層構造で、適当な機械的強度及び高い
透水性を合わせ持つ中空糸を得ることができる。
なお第16図には、Ap Bp C Bi Aiの5層
構造とAB構造及びBA構造の中空糸の膜厚と破
裂強度との関係を示した。5層構造中空糸の破裂
強度が断然優れていることが分る。 製膜用原液は、吐出面におけるポリマー吐出環
状溝の内のり幅が110〜700μmである環状ノズル
から空気中に中空糸状に吐出される。中空糸の膜
厚は、使用する環状ノズルの吐出環状溝幅により
ほぼ決定され、他の紡糸条件によつてはあまり影
響をうけない。膜厚は、通常、上記溝幅より薄い
幅となるのが普通であり、上記110〜700μmのポ
リマー吐出環状溝の内のり幅を有する環状ノズル
を用いることにより100〜600μmの膜厚を有する
中空糸を得ることができる。 凝固液としては、水が最も一般的に用いられる
が、ポリマーを溶解しない有機溶媒メタノール、
エタノールなどを用いてもよく、又、これらの非
溶媒を2種以上混合して用いてもよい。又、内部
及び外部凝固液を異なつた液体又は異なつた液体
組成の凝固浴を用いることも可能であるが、好ま
しくは内部凝固液と凝固浴液は同じものが用いら
れる。 中空糸紡糸の際には、凝固浴は中空糸内外に用
い、両面凝固を行なわなければならない。内外ボ
イド層比を0.6〜1.5に保持するには、外側凝固浴
との接触を遅らせる為空中走行距離を設けること
が必要であり、空中走行距離は他の紡糸条件によ
つて多少変化し、例えば、中空糸径が太く、膜厚
が厚くなればなる程小さくする必要があり、ほぼ
0.1〜30cmの範囲が好ましい。0.1cm未満では内外
ボイド層比が1.5を超え易く、30cmを超えると変
形のない中空糸を製膜することが困難となる。本
発明の5層構造を有する中空糸を得る為には、膜
厚は100〜600μm、好ましくは100〜400μmに設
計される。上記各条件を規定範囲内にして中空糸
の製造を行なつても、中空糸の厚みを100μm未
満にすると、本発明の製造法によつては、本発明
の5層構造を有する中空糸は得られない。 第10図は、より具体的には、ポリスルホン
(ユニオン・カーバイド社製)をジメチルアセト
アミド−テトラエチレングリコール系溶媒に溶解
し、ポリスルホン濃度を17.0重量%及び20重量%
とした原液を紡糸した膜厚300μmの中空糸につ
いて内外表面からの距離(l)と存在している細孔の
径(r)との関係をプロツトした1例の示したもので
ある。Cp孔半径は表面から中央に行くにつれて
次第に大きくなつていること、及びポリマー濃度
17.0%孔径に比べて20%の場合の孔径が相対的に
かなり小さくなつていることが分る。 本発明に係る芳香族ポリスルホン系樹脂中空糸
膜は、球状蛋白質で分子量13000未満のものは通
すことができるが、それ以上のもの、例えば、体
液中に含まれるアルブミン、グロブリン、パイロ
ジエン物質、細菌(1〜2μm)、酵母(2〜4μ
m)、病理性ウイールス(分子量240万)は通さな
い性質を持つ為、注射液中、輪液中からのパイロ
ジエン物質の除去、超純水製造、蛋白物質の濃縮
などに用いられ、又、膜による精製に際して膜の
高温殺菌、酸、アルカリなどによる殺菌をくりか
えし行なう必要のある用途、即ち、医薬、食品の
精製や超純水製造などに特に有利に用いられる。 次に実施例として、製造条件とその条件で得ら
れた中空糸の性質を示す。本発明は、これら多数
の実施例によつてより具体的に理解される筈であ
るが、本発明の範囲は勿論これらの実施例のみに
限定されるものではない。 なお、本実施例中における芳香族ポリスルホン
系樹脂中空糸膜の透水率、分画分子量及び破裂強
度は次の方法により測定した。 (1) 透水率の測定 外径及び内径をあらかじめ測定した中空糸束
の一端部を封じてモジユールを作り、他端部分
を接着し、接着した側を注水側とする。有効長
さを25cmとし、中空糸内外の圧力差を1気圧と
して25℃の蒸留水の透過量(m3/m2・day・
atm)を測定する。 (2) 分画分子量の測定 分画分子量の測定は、外径、内径をあらかじ
め測定した1本の中空糸の両端をそれぞれ注水
側及び排水側とする。 有効長さを25cm、入口圧力1.2Kg/cm2以下、
出口圧力0.8Kg/cm2以上、入口及び出口圧力の
平均値1.0Kg/cm2、線速度1.0m/secで、蒸留水
に溶かした各種分子の水溶液25℃を注水側より
導入し、10分後水0.5mlをとり、この中に含
まれる各種分子の量よりカツト率を求める。分
画分子量の測定にデキストラン分子を用いる場
合には5重量%の濃度のものを、又、球状蛋白
質を用いる場合には0.25重量%の濃度のものを
用いる。 但し、球状蛋白質を中空糸に注入する前に、
中空糸を注入する分子水溶液(5℃)であらか
じめ12時間浸漬し吸着の影響をなくした後、測
定を行なう。 (3) 破裂強度の測定 中空糸両端をループ状に曲げ固定する。25℃
で両端より同一空気圧力をかけ、その後10Kg/
cm2/minで昇圧してゆく。中空糸の破裂した圧
力を破裂強度(Kg/cm2)とする。 実施例 1 溶媒としてジメチルアセトアミド、添加剤とし
てテトラエチレングリコールを選定し、ポリマー
として、 で表わされる繰返し単位を有するボリスルホン
(以下ポリスルホンと記す)をぞれぞれ、71:
9:20重量%の割合で混合し均一な溶液とした。
本ポリマー溶液を中空糸製造用の環状ノズル
(330μm)から押し出し、内部及び外部凝固液と
して精製水を用い、該ポリマー溶液を内外面から
凝固させ、中空状多孔膜を紡糸した。この時、中
空糸紡糸条件は以下のとおりとした。 ノゼルから外部凝固液までの距離(以下空中走
行距離と記す)1.5cm。 得られた中空糸の性質は以下のとおり、内径
0.75mm、外径1.35mm、膜厚0.3mm、透水率12m3
m2・day・atm・水温25℃、破裂強度31Kg/cm3、 デキストラン分子量104、4×104、7×104
対するカツト率は、それぞれ24.0%、80.0%、
83.0%であり、又、球状蛋白質チトクロームC
(分子量13000)を95%以上のカツト率を示した。 得られた中空糸の断面構造は本発明の5層構造
(Ap Bp C Bi Ai)を示しており、内外ボイ
ド層比は1.3であつた。 得られた中空糸のCp孔の半径が中空糸内表面
から外表面にかけてどのように変化しているかを
調べた結果を第10図の曲線…×…に示す。 ジメチルアセトアミド、テトラエチレングリコ
ール、ポリスルホン(Udel)を74:9:17の重
量比で混合し均一なポリマー溶液としたものを用
いた以外は上記と同様な方法で中空糸を得た。得
られた中空糸のCp孔の半径が中空糸内表面から
外表面にかけてどのように変化しているかを調べ
た結果を第10図の曲線−○−に示す。 実施例 2〜15 実施例1と同様なやり方で、種々の添加剤を加
え中空糸紡糸を行なつた。中空糸原液に加えた添
加剤及び得られた中空糸の性質を第2表に示す。
得られた中空糸の断面構造はすべて本発明の5層
構造であり、内外ボイド層比は1.0〜1.3であつ
た。
[Table] (However, the average pore diameters of the B i and B p layers are those measured by scanning electron micrographs of C p pores existing between voids in the void layer.) Figure 10 shows the following: About the hollow fibers of two examples
It was shown how the radius of the C p pore changes from the inner surface to the outer surface of the hollow fiber. It can be seen that the pore diameter increases from the inner and outer surfaces toward the center. The method for manufacturing the hollow fibers of the present invention will be described later, and the curve -○- shows the case where the polymer concentration is 17.0% by weight, and the curve -x- shows the case where the polymer concentration is 20.0% by weight. It can be seen that the pore diameter is smaller at 20% by weight, which has a higher polymer concentration, and the pores of the hollow fiber membrane are denser.
Therefore, increasing the polymer concentration improves the mechanical properties. FIG. 11 plots the relationship between membrane thickness and water permeability for aromatic polysulfone hollow fibers of the present invention and comparative examples prepared with various membrane thicknesses. In FIG. 11, the curve -◯ shows the case where the polymer concentration is 20.0% by weight, and the curve -△- shows the case where the polymer concentration is 15.0% by weight, and is for the hollow fiber of the present invention.
On the other hand, the curve −●− has a polymer concentration of 15.0% by weight;
This is about a hollow fiber of a comparative example obtained by spinning without adding glycols. FIG. 12 plots the relationship between membrane thickness and water permeability for the aromatic polyether sulfone hollow fiber of the present invention. It can be seen from FIGS. 11 and 12 that in the case of the hollow fiber of the present invention, a directly proportional relationship exists between the membrane thickness and the water permeability. FIG. 13 shows the relationship between the intermediate layer thickness, water permeability, and bursting strength for hollow fibers of the present invention made with various intermediate layer thicknesses. In FIG. 13, the curve -×- shows the water permeability, and the curve -○- shows the bursting strength. It has been shown that the bursting strength increases as the thickness of the intermediate layer increases, and that the water permeability decreases as the thickness increases, and that the decrease becomes particularly noticeable from a certain thickness. Note that the above-mentioned C p pore refers to the Polymer Proceedings Vol. 1.34,
Considering a very small emulsion of about 100 Å such as the oil in water type described in No. 3 205-216 (1977), the oil or water is occupied by a polymer thick phase or a dilute phase. Refers to a hole that is formed in a hole and has a circular shape when viewed from the surface or cross section. On the other hand, a long and narrow hole is called an U p hole. In the present invention, the inner and outer void layer ratio refers to the ratio of the inner void layer thickness (l Bi ) to the outer void layer thickness (l Bp ) of the aromatic polysulfone resin hollow fiber membrane of the present invention, i.e., l Bi /l Bp . l Bi and l Bp are determined by the method described above. The ratio of the inner and outer void layers of the aromatic polysulfone resin hollow fiber membrane of the present invention is 1.5 to 0.6, preferably 1.4 to 1.0. Although specific structural photographs and data have been shown above for specific examples of the hollow fiber membrane of the present invention, these specific data are not unrelated to the manufacturing method of the hollow fiber membrane of the present invention. Next, an example of the method for manufacturing the hollow fiber membrane of the present invention will be described.The polysulfone resin hollow fiber membrane of the present invention is made of an aromatic polysulfone resin containing glycols with a polysulfone resin concentration of 15 to 35% by weight. A polar organic solvent solution of the resin is discharged into the air in the form of a hollow fiber from an annular nozzle whose inner width of the polymer discharge annular groove on the discharge surface is 110 to 700 μm, and at the same time it is mixed with the above solvent, but does not dissolve the polysulfone resin. An aromatic polysulfone comprising injecting a liquid as an internal coagulation liquid from inside a nozzle, and then guiding the hollow fiber-shaped discharged body into a coagulation liquid bath consisting of a liquid that is mixed with the above solvent but does not dissolve the aromatic polysulfone resin. Provided is a method for manufacturing a resin hollow fiber membrane.In this manufacturing method, various factors such as addition of glycols to the spinning dope, polymer concentration in the spinning dope, aerial travel distance, and hollow fiber membrane thickness are closely related to each other. The bond is extremely important, and if one of them is missing, the hollow fiber membrane of the present invention cannot be obtained.As the polar organic solvent, any solvent that can dissolve the polysulfone resin can be used, but N- Methylpyrrolidone, dimethylformamide, and especially dimethylacetamide and diethylacetamide are preferably used. In the method for producing hollow fibers of the present invention, the addition of glycols to the spinning stock solution is extremely important. Of course, in the case of a polymer solution consisting of
When adding an aqueous solution of a metal salt of an inorganic acid or a metal salt of an organic acid as in the invention of JP-A-54-145379, or when adding polyvinylpyrrolidone, a hollow fiber with a five-layer structure can be obtained. Even if the hollow fiber membrane of the present invention has an inner and outer void layer ratio of 1.5,
In the following, it is impossible to obtain a hollow fiber membrane having an intermediate layer with extremely good continuity, high burst strength, and extremely excellent water permeability. The addition of glycols is also associated with the formation of an intermediate layer of structure with significantly lower permeation resistance. This makes it possible to spin hollow fiber membranes from a high-concentration polymer stock solution, and significantly improves the mechanical strength of the hollow fiber membranes, compared to conventional techniques. The hollow fiber membrane of the present invention thus obtained has a water permeability of 3 m 3 /m 2 ·day · atm or more and a burst strength of
It has excellent properties of 15 kg/cm 2 or more and tensile strength of 20 kg/cm 2 or more [measured with Shimadzu Autograph IM-100 (tensile testing machine manufactured by Shimadzu Corporation, Japan)]. Glycols used in the method of the present invention include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol (molecular weight 200
~6000), etc., propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol (molecular weight 200 ~ 6000), etc., glycerin, trimethylolpropane and ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, triethylene Examples include ethylene glycol methyl ether derivatives such as glycol monomethyl ether, and propylene glycol derivatives such as propylene glycol monomethyl ether. The above glycols may be used alone or as a mixture. Among them, those having a molecular weight of approximately the same as tetraethylene glycol are preferred. The addition ratio of glycols may be any ratio as long as it maintains a uniform dissolution state of the polymer solution, and varies depending on the polymer concentration, the type of polar solvent used, etc., but is in the range of approximately 0.5 to 30% by weight. used in Less than 0.5% has little effect; 30
If it exceeds %, the stock solution becomes unstable, devitrification occurs, and film formation becomes difficult, making it impossible to obtain a good film. Preferably 3 to 20% by weight, more preferably 5% by weight.
~15% by weight. The polymer concentration of the film forming stock solution is 15 to 35% by weight or more, preferably 18 to 25% by weight. If it exceeds 35% by weight, the water permeability of the resulting semipermeable membrane becomes so small that it has no practical meaning;
At lower concentrations, the thickness of the intermediate layer is not sufficient, and furthermore, the average pore diameter of the intermediate layer exceeds 9 μm, and only a weak mechanical strength can be obtained. The polymer concentration in the membrane-forming stock solution has a close relationship with the hollow fiber structure obtained from it. That is, in the case of a flat film, if a low concentration stock solution of less than 15% by weight is used, a film having a structure consisting of a surface layer (A) and a void layer (B) in which the void layer is long and developed in the thickness direction of the film can be obtained. On the other hand, when a high concentration stock solution of 15% by weight or more is used, an intermediate layer develops as the polymer concentration increases,
A three-layer structure consisting of a surface layer (A), a void layer (B) and an intermediate layer (C) is formed. This structure is shown in FIG. 14, a scanning electron micrograph. However, in either structure, a flat membrane has extremely low water permeability, and a membrane with high water permeability cannot be obtained. Figure 15 shows the relationship between the membrane thickness and water permeability of the ABC three-layer flat membrane. From Figure 15, when the film thickness is 100 μm or more,
It can be seen that the water permeability is very low. On the other hand, when using a low-concentration stock solution for hollow fibers and coagulating both the inner and outer surfaces of the hollow fibers, A consists of a surface layer (A) in which extremely thin voids in the intermediate layer are arranged irregularly and a void layer (B). Hollow fibers arranged in the order of i B i B p A p are obtained, but such hollow fibers have weak mechanical strength and cannot withstand continuous operation using backwashing. In addition, by contacting only one side with the coagulating liquid instead of solidifying both sides, a two-layer structure with a surface layer (A) with a surface layer on the inside or outside and a void layer (B) arranged in the order of AB or BA is created. A hollow fiber is obtained.
However, these hollow fibers with a two-layer structure have weak mechanical strength and cannot withstand long-term operation using backwashing. With a five-layer structure including two surface layers, two void layers, and one intermediate layer of appropriate thickness, a hollow fiber having appropriate mechanical strength and high water permeability can be obtained.
In addition, FIG. 16 shows the relationship between the membrane thickness and bursting strength of hollow fibers of the five-layer structure of A p B p C B i A i , AB structure, and BA structure. It can be seen that the bursting strength of the five-layer hollow fiber is by far superior. The film-forming stock solution is discharged into the air in the form of a hollow fiber from an annular nozzle having an inner width of a polymer discharge annular groove on the discharge surface of 110 to 700 μm. The thickness of the hollow fiber is almost determined by the width of the discharge annular groove of the annular nozzle used, and is not affected much by other spinning conditions. The membrane thickness is usually thinner than the above groove width, and by using an annular nozzle having an inner width of the polymer discharge annular groove of 110 to 700 μm, a hollow fiber having a membrane thickness of 100 to 600 μm can be obtained. can be obtained. Water is most commonly used as the coagulation liquid, but methanol, an organic solvent that does not dissolve the polymer,
Ethanol or the like may be used, or a mixture of two or more of these nonsolvents may be used. It is also possible to use different internal and external coagulating liquids or coagulating baths with different liquid compositions, but preferably the internal coagulating liquid and the coagulating bath liquid are the same. During hollow fiber spinning, a coagulation bath must be used inside and outside the hollow fiber to effect coagulation on both sides. In order to maintain the inner and outer void layer ratio between 0.6 and 1.5, it is necessary to provide an air travel distance to delay contact with the outer coagulation bath, and the air travel distance varies somewhat depending on other spinning conditions, such as , the larger the hollow fiber diameter and membrane thickness, the smaller it needs to be.
A range of 0.1 to 30 cm is preferred. If it is less than 0.1 cm, the inner/outer void layer ratio tends to exceed 1.5, and if it exceeds 30 cm, it becomes difficult to form a hollow fiber without deformation. In order to obtain the hollow fiber having the five-layer structure of the present invention, the membrane thickness is designed to be 100 to 600 μm, preferably 100 to 400 μm. Even if hollow fibers are manufactured with each of the above conditions within the specified ranges, if the thickness of the hollow fibers is less than 100 μm, depending on the manufacturing method of the present invention, the hollow fibers with the five-layer structure of the present invention I can't get it. More specifically, FIG. 10 shows that polysulfone (manufactured by Union Carbide) is dissolved in a dimethylacetamide-tetraethylene glycol solvent, and the polysulfone concentration is 17.0% by weight and 20% by weight.
This is an example of a plot of the relationship between the distance (l) from the inner and outer surfaces and the diameter (r) of existing pores for a hollow fiber with a membrane thickness of 300 μm spun from the stock solution. The C p pore radius gradually increases from the surface to the center, and the polymer concentration
It can be seen that the pore size in the 20% case is relatively much smaller than the 17.0% pore size. The aromatic polysulfone-based resin hollow fiber membrane according to the present invention can pass through globular proteins with a molecular weight of less than 13,000, but it can pass through more than that, such as albumin, globulin, pyrodiene substances contained in body fluids, and bacteria ( 1-2μm), yeast (2-4μm)
m), because it has the property of not passing pathological viruses (molecular weight 2.4 million), it is used for removing pyrogen substances from injection solutions and ring fluids, producing ultrapure water, concentrating protein substances, etc. It is particularly advantageously used in applications that require repeated high-temperature sterilization of membranes and sterilization with acids, alkalis, etc. during purification, ie, purification of pharmaceuticals and foods, and production of ultrapure water. Next, as an example, manufacturing conditions and properties of hollow fibers obtained under those conditions will be shown. Although the present invention will be understood more specifically through these numerous examples, the scope of the present invention is of course not limited to these examples. The water permeability, molecular weight cutoff, and bursting strength of the aromatic polysulfone resin hollow fiber membrane in this example were measured by the following methods. (1) Measurement of water permeability Make a module by sealing one end of a hollow fiber bundle whose outer and inner diameters have been measured in advance, then glue the other end, and use the glued side as the water injection side. Assuming that the effective length is 25 cm and the pressure difference between the inside and outside of the hollow fiber is 1 atm, the amount of permeation of distilled water at 25°C (m 3 /m 2・day・
atm). (2) Measurement of molecular weight fraction To measure the molecular weight fraction, use both ends of a hollow fiber whose outer and inner diameters have been measured in advance as the water injection side and drainage side, respectively. Effective length 25cm, inlet pressure 1.2Kg/ cm2 or less,
An aqueous solution of various molecules dissolved in distilled water at 25°C was introduced from the water injection side at an outlet pressure of 0.8 Kg/cm 2 or more, an average value of inlet and outlet pressures of 1.0 Kg/cm 2 , and a linear velocity of 1.0 m/sec for 10 minutes. Take 0.5ml of the water and calculate the cutting rate from the amount of various molecules contained therein. When using dextran molecules to measure the molecular weight fraction, a concentration of 5% by weight is used, and when globular proteins are used, a concentration of 0.25% by weight is used. However, before injecting the globular protein into the hollow fiber,
The hollow fibers are immersed in an aqueous molecular solution (5°C) for 12 hours to eliminate the effects of adsorption, and then measurements are taken. (3) Measurement of bursting strength Bend both ends of the hollow fiber into a loop and fix. 25℃
Apply the same air pressure from both ends, then 10Kg/
The pressure is increased at a rate of cm 2 /min. The pressure at which the hollow fiber bursts is defined as the bursting strength (Kg/cm 2 ). Example 1 Dimethylacetamide was selected as the solvent, tetraethylene glycol was selected as the additive, and as the polymer, Borisulfone (hereinafter referred to as polysulfone) having a repeating unit represented by 71:
They were mixed at a ratio of 9:20% by weight to form a uniform solution.
This polymer solution was extruded from an annular nozzle (330 μm) for producing hollow fibers, and purified water was used as the internal and external coagulating liquids to coagulate the polymer solution from the inner and outer surfaces, thereby spinning a hollow porous membrane. At this time, the hollow fiber spinning conditions were as follows. The distance from the nozzle to the external coagulating liquid (hereinafter referred to as air travel distance) is 1.5 cm. The properties of the hollow fibers obtained are as follows:
0.75mm, outer diameter 1.35mm, membrane thickness 0.3mm, water permeability 12m3 /
m2・day・ATM・water temperature 25℃, bursting strength 31Kg/ cm3 , cut rate for dextran molecular weight 104 , 4× 104 , 7× 104 is 24.0%, 80.0%, respectively.
83.0%, and globular protein cytochrome C
(molecular weight 13000) showed a cutting rate of over 95%. The cross-sectional structure of the obtained hollow fiber showed a five-layer structure (A p B p C B i A i ) of the present invention, and the inner and outer void layer ratio was 1.3. The results of investigating how the radius of the C p pores of the obtained hollow fibers changed from the inner surface to the outer surface of the hollow fibers are shown in the curves in FIG. 10. Hollow fibers were obtained in the same manner as above, except that a homogeneous polymer solution obtained by mixing dimethylacetamide, tetraethylene glycol, and polysulfone (Udel) at a weight ratio of 74:9:17 was used. The results of examining how the radius of the C p pores of the obtained hollow fibers changed from the inner surface to the outer surface of the hollow fibers are shown in the curve -◯- in Fig. 10. Examples 2 to 15 Hollow fiber spinning was carried out in the same manner as in Example 1 with the addition of various additives. Table 2 shows the additives added to the hollow fiber stock solution and the properties of the hollow fibers obtained.
The cross-sectional structure of the obtained hollow fibers was all the five-layer structure of the present invention, and the ratio of inner and outer void layers was 1.0 to 1.3.

【表】【table】

【表】 比較例 1 実施例1と同一のポリマー溶液を用い、原液温
度25℃にてドクターブレイド膜厚400μmでガラ
ス板上にキヤストした後、1分間放置し、25℃の
水中で凝固させた。得られた多孔膜平膜の諸性質
は以下のとおり、膜厚300μm、透水率0.01m3
m2・day・atm・水温25℃、弾性率1311Kg/cm2
強度60Kg/cm2以下。得られた平膜の構造はABC
の3層構造であつた。又、上記と同様のポリマー
溶液を用い種々の膜厚の平膜を上記と同様の方法
でキヤストして得た。得られた平膜の膜厚と透水
率との関係を第15図に示す。これらの平膜の構
造はABCの3層構造であつた。 比較例 2、3 ポリスルホン10g、N−メチルピロリドン90g
を30℃にて混合し均一な溶液とした。この流し込
み液をガラス板上に、ドクターブレイドを用い膜
厚250μmで流延し水中で凝固させた。得られた
多孔膜平膜の諸性質は以下のとおり、膜厚100μ
m、透水率5m3/m2・day・atm・水温25℃、弾
性率238Kg/cm2、強度10Kg/cm2以下。得られた平
膜の構造はAB構造であつた。 本溶液を用い内部凝固液に水を用いて中空糸紡
糸用環状ノズル(330μm)から空中に紡糸し、
ポリマーを中空糸内側により水により凝固させ、
空中走行距離1.5cmで中空糸を紡糸した。得られ
た中空糸膜は、内径0.75mm、外径1.35mm、膜厚0.3
mm、透水率5m3/m2・day・atm・水温25℃、破
裂強度13Kg/cm2、強度10Kg/cm2、弾性率252Kg/
cm2であつた。又、得られた中空糸膜の構造を走査
型電子顕微鏡で調べたところ、本発明に特有の5
層構造を有する中空糸ではなかつた。 比較例 4、5 ポリマーとしてポリスルホン20g、溶媒として
ジメチルアセトアミド80gを混合し均一な溶液と
した。本溶液を溶い原液温度25℃にてドクターブ
レイドを用いて膜厚350μmでガラス板上にキヤ
ストした後、1分間放置し25℃水中で凝固させ
た。 得られた多孔膜平膜は、膜厚300μm、透水率
0.005m3/m2・day・atm・水温25℃であり、膜構
造はABC構造であつた。 本溶液を用いて実施例1と同一の中空糸紡糸条
件下で中空糸を紡糸したところ、得られた中空糸
の諸性質は、内径0.75mm、外径1.35mm、膜厚0.3
mm、透水率0.01m3/m2・day・atm・水温25℃、
破裂強度21Kg/cm2、強度55Kg/cm2、弾性率1521
Kg/cm2であつた。本中空糸の構造はAp Bp
Bi Aiの5層構造であつたが、本発明の5層構
造ではなかつた。内外ボイド層比は1.7であつた。 比較例 6 ポリスルホンとしてUdelを用い溶媒としてジ
メチルアセトアミド、添加剤としてテトラエチレ
ングリコールをそれぞれ10:81:9重量%の割合
で混合し均一な溶液とした。本溶液のドクターブ
レイドを用いてガラス板上にキヤストした後、1
分間放置し25℃水中で凝固させた。得られた多孔
膜平膜は膜厚300μm、透水率5m3/m2・day・
atm・水温25℃、弾性率215Kg/cm2、強度9Kg/
cm2であつた。得られた平膜の構造はAB構造であ
つた。 比較例 7 50重量%の硝酸ナトリウム水溶液80mlをジメチ
ルアセトアミド2620mlとジメチルスルホキシド
1300mlの混合溶媒に加え、さらに実施例のポリス
ルホン(Udel)750gを加え均一な溶液とした。
本ポリマー溶液から実施例1と同様な方法で、中
空糸状半透膜を得た。中空糸の内径0.75mm、外径
1.35mm、透水率3.0m3/m2・day・atm・水温25
℃、破裂強度15Kg/cm2、弾性率821Kg/cm2、強度
30Kg/cm2であつた。又、分子量7×104のデキス
トランに対するカツト率は48%であつた。脈構造
はAp Bp C Bi Aiの5層構造であつたが、
内外ボイド層比は1.7で、本発明のものではなか
つた。 上記と同様の組成のポリマー溶液を溶いて種々
の膜厚の中空糸を紡糸しその膜厚と透水率と関係
を第11図の曲線−●−で示す。 実施例 16 ポリスルホン(PS)、ジメチルアセトアミド
(DMAc)、テトラエチレングリコール(TEG)
をそれぞれ、20:71:9wt%の割合で混合し均一
な溶液とした後、種々の孔径のノズルから押し出
すことにより、内径0.75mmで外径が種々異なる膜
厚変化した中空糸を紡糸した。その他の条件は、
実施例1と同様である。 得られた中空糸膜はいずれも本発明の5層構造
を示し、内外ボイド層比は1.0〜1.3で、優れた破
裂強度、弾性率及び強度を示した。これらの中空
糸の膜厚と透水率の関係を第11図に−○−で示
す。又、ポリスルホン(Udel)、ジメチルアセト
アミド、テトラエチレングリコールをそれぞれ
15:70:15の重量比で混合した均一なポリマー溶
液を上記と同様な方法で紡糸した得た中空糸の膜
厚と透水率の関係を第11図の曲線−△−で示
す。 実施例 17〜21 ポリマーとしてポリスルホン(Udel)、添加剤
としてテトラエチレングリコール、各種溶媒を
20:71:9の重量比で混合して均一な紡糸用原液
を作り中空糸を紡糸した。紡糸条件は実施例1と
同様であつた。得られた中空糸の各種分子量の異
なるデキストランに対するカツト率は実施例1と
ほぼ同等であつた。他の性質を第3表に示す。中
空糸の構造は本発明の5層構造(Ap Bp
Bi Ai)であり、内外ボイド層比は1.0〜1.3であ
つた。
[Table] Comparative Example 1 Using the same polymer solution as in Example 1, it was cast onto a glass plate with a doctor blade film thickness of 400 μm at a stock solution temperature of 25°C, and then left for 1 minute to solidify in water at 25°C. . The properties of the obtained porous flat membrane are as follows: thickness 300 μm, water permeability 0.01 m 3 /
m2・day・atm・water temperature 25℃, elastic modulus 1311Kg/ cm2 ,
Strength 60Kg/ cm2 or less. The structure of the obtained flat membrane is ABC
It had a three-layer structure. Flat films of various thicknesses were also cast using the same polymer solution as above and in the same manner as above. FIG. 15 shows the relationship between the thickness and water permeability of the obtained flat membrane. The structure of these flat membranes was an ABC three-layer structure. Comparative Examples 2 and 3 Polysulfone 10g, N-methylpyrrolidone 90g
were mixed at 30°C to form a homogeneous solution. This pouring liquid was cast onto a glass plate using a doctor blade to a film thickness of 250 μm and solidified in water. The properties of the obtained porous flat membrane are as follows.The film thickness is 100μ.
m, water permeability 5m3 / m2・day・atm, water temperature 25℃, elastic modulus 238Kg/ cm2 , strength 10Kg/ cm2 or less. The structure of the obtained flat membrane was AB structure. Using this solution and using water as the internal coagulation liquid, spin the fibers in the air from a circular nozzle (330 μm) for hollow fiber spinning.
The polymer is coagulated with water inside the hollow fiber,
Hollow fibers were spun with an aerial travel distance of 1.5 cm. The obtained hollow fiber membrane has an inner diameter of 0.75 mm, an outer diameter of 1.35 mm, and a membrane thickness of 0.3 mm.
mm, water permeability 5m 3 /m 2・day・atm, water temperature 25℃, bursting strength 13Kg/cm 2 , strength 10Kg/cm 2 , elastic modulus 252Kg/
It was warm in cm2 . In addition, when the structure of the obtained hollow fiber membrane was examined using a scanning electron microscope, it was found that 5
It was not a hollow fiber with a layered structure. Comparative Examples 4 and 5 20 g of polysulfone as a polymer and 80 g of dimethylacetamide as a solvent were mixed to form a uniform solution. This solution was dissolved and cast onto a glass plate with a film thickness of 350 μm using a doctor blade at a stock solution temperature of 25°C, and then allowed to stand for 1 minute to solidify in water at 25°C. The obtained porous flat membrane has a thickness of 300 μm and a water permeability.
The area was 0.005m 3 /m 2・day・atm, water temperature was 25℃, and the membrane structure was ABC structure. When this solution was used to spin hollow fibers under the same hollow fiber spinning conditions as in Example 1, the properties of the obtained hollow fibers were as follows: inner diameter 0.75 mm, outer diameter 1.35 mm, membrane thickness 0.3
mm, water permeability 0.01m3 / m2・day・atm・water temperature 25℃,
Bursting strength 21Kg/cm 2 , Strength 55Kg/cm 2 , Elastic modulus 1521
It was Kg/ cm2 . The structure of this hollow fiber is A p B p C
Although it had a five-layer structure of B i A i , it was not the five-layer structure of the present invention. The ratio of inner and outer void layers was 1.7. Comparative Example 6 Udel was used as polysulfone, dimethylacetamide was used as a solvent, and tetraethylene glycol was mixed as an additive in a ratio of 10:81:9% by weight, respectively, to form a uniform solution. After casting this solution on a glass plate using a doctor blade, 1
It was left to stand for a minute and solidified in water at 25°C. The resulting porous flat membrane had a thickness of 300 μm and a water permeability of 5 m 3 /m 2・day・
ATM, water temperature 25℃, elastic modulus 215Kg/cm 2 , strength 9Kg/
It was warm in cm2 . The structure of the obtained flat membrane was AB structure. Comparative Example 7 80 ml of 50% by weight aqueous sodium nitrate solution was mixed with 2620 ml of dimethylacetamide and dimethyl sulfoxide.
In addition to 1300 ml of the mixed solvent, 750 g of the polysulfone (Udel) of the example was added to form a homogeneous solution.
A hollow fiber semipermeable membrane was obtained from this polymer solution in the same manner as in Example 1. Hollow fiber inner diameter 0.75mm, outer diameter
1.35mm, water permeability 3.0m3 / m2・day・atm・water temperature 25
°C, bursting strength 15Kg/cm 2 , elastic modulus 821Kg/cm 2 , strength
It was 30Kg/ cm2 . Moreover, the cutting rate for dextran having a molecular weight of 7×10 4 was 48%. The vein structure was a five-layered structure of A p B p C B i A i ,
The inner/outer void layer ratio was 1.7, which was not the one of the present invention. A polymer solution having the same composition as above was dissolved to spin hollow fibers of various thicknesses, and the relationship between the membrane thickness and water permeability is shown by the curve -●- in FIG. Example 16 Polysulfone (PS), dimethylacetamide (DMAc), tetraethylene glycol (TEG)
were mixed at a ratio of 20:71:9wt% to form a uniform solution, and then extruded through nozzles with various hole diameters to spin hollow fibers with an inner diameter of 0.75 mm and an outer diameter of various thicknesses. Other conditions are
This is the same as in Example 1. The obtained hollow fiber membranes all exhibited the five-layer structure of the present invention, had an inner/outer void layer ratio of 1.0 to 1.3, and exhibited excellent bursting strength, elastic modulus, and strength. The relationship between the membrane thickness and water permeability of these hollow fibers is shown in FIG. 11 by -○-. Also, polysulfone (Udel), dimethylacetamide, and tetraethylene glycol, respectively.
The relationship between the membrane thickness and water permeability of the hollow fiber obtained by spinning a homogeneous polymer solution mixed at a weight ratio of 15:70:15 in the same manner as above is shown by the curve -Δ- in FIG. Examples 17-21 Polysulfone (Udel) as a polymer, tetraethylene glycol as an additive, and various solvents
They were mixed at a weight ratio of 20:71:9 to prepare a uniform spinning stock solution, and hollow fibers were spun. The spinning conditions were the same as in Example 1. The cutting rates of the obtained hollow fibers for various dextrans having different molecular weights were almost the same as in Example 1. Other properties are shown in Table 3. The structure of the hollow fiber is the five-layer structure of the present invention (A p B p C
B i A i ), and the inner and outer void layer ratios were 1.0 to 1.3.

【表】 実施例22〜25、比較例8 ポリスルホン溶媒としてDMAc、添加剤とし
てTEGを用い、ポリスルホン及びDMAc、割合
を変化させて、ポリスルホン濃度の異なる製膜用
原液を作り、実施例1と同様な方法で、中空糸を
紡糸した。得られた中空糸の諸性質を第4表に示
す。膜構造はいずれもAp Bp C Bi Aiの5
層構造であつたが、比較例8のみはC層の厚さが
2μmと薄く、C層が均一でなく、ボイド層(Bi
層、Bp層)がC層と接する付近ではボイド層の
乱れが生じていた。 実施例22〜25のものは、C層の厚みがいずれも
10〜70μmと比較例8のものに比べて厚く、ボイ
ド層、C層共にポリマー部分は均一な構造であ
り、内外ボイド層比は1.0〜1.4であつた。
[Table] Examples 22 to 25, Comparative Example 8 Using DMAc as a polysulfone solvent and TEG as an additive, the proportions of polysulfone and DMAc were changed to prepare film-forming stock solutions with different concentrations of polysulfone, and the same as in Example 1 was used. Hollow fibers were spun using this method. Table 4 shows the properties of the hollow fibers obtained. The membrane structure is A p B p C B i A i 5
However, only in Comparative Example 8, the thickness of the C layer was
The C layer is as thin as 2 μm, is not uniform, and has a void layer (B i
Disturbances of the void layer were observed in the vicinity where the B layer and the B p layer) were in contact with the C layer. In Examples 22 to 25, the thickness of the C layer was
It was thicker than that of Comparative Example 8 at 10 to 70 μm, and the polymer portions of both the void layer and the C layer had a uniform structure, and the inner and outer void layer ratios were 1.0 to 1.4.

【表】 実施例26〜31、比較例9、10 ポリスルホン(PS)、ジメチルアセトアミド
(DMAc)、テトラエチレングリコール(TEG)
をそれぞれ20:71:9の割合で混合し均一な溶液
とした後、ポリマー溶液を環状ノズルから押し出
し、内部及び外部凝固液として精製水を用い、該
ポリマーを内外面から凝固させ中空状多孔膜を紡
糸した。この時中空糸紡糸用ノズルから外部凝固
液までの空中走行距離を種々変化させ、得られた
糸の性質を検討した。結果を第5表に示す。得ら
れた中空糸の膜構造はいずれも5層構造(Ap
Bp C Bi Ai)であつたが、比較例9のもの
は内外ボイド層比が2.0と大きく、C層の厚みも
82μmで大きかつた。比較例10のものは空中走行
距離が長すぎた為糸形状が中空とはならなかつ
た。実施例26〜31で得られたC層の厚みは5〜
70μmの範囲内であつた。
[Table] Examples 26 to 31, Comparative Examples 9 and 10 Polysulfone (PS), dimethylacetamide (DMAc), tetraethylene glycol (TEG)
After mixing in a ratio of 20:71:9 to make a homogeneous solution, the polymer solution is extruded through an annular nozzle, and purified water is used as an internal and external coagulating liquid to coagulate the polymer from the inside and outside to form a hollow porous membrane. was spun. At this time, the air travel distance from the hollow fiber spinning nozzle to the external coagulation liquid was varied, and the properties of the obtained fibers were examined. The results are shown in Table 5. The membrane structure of the hollow fibers obtained was a five-layer structure (A p
B p C B i A i ), but in Comparative Example 9, the inner and outer void layer ratio was as large as 2.0, and the thickness of the C layer was also
It was large at 82 μm. In Comparative Example 10, the air travel distance was too long, so the yarn shape did not become hollow. The thickness of the C layer obtained in Examples 26 to 31 was 5 to
It was within the range of 70 μm.

【表】 実施例 32、33 実施例26〜31と同一の紡糸用原液を用い、環境
ノズルにて空中走行距離1.5cm、内部及び外部凝
固液としてメタノールを用い、ポリマーを凝固さ
せた。得られた中空糸は、内外径0.75mm、1.35
mm、破裂強度、透水率、弾性率、強度共に良好な
ものが得られた。膜構造はいずれも本発明の5層
構造であつた。 同様に内部凝固液にメタノール、外部凝固液に
水を用いても破裂強度、透水率、弾性率、強度共
に良好なものが得られた。膜構造はいずれも本発
明の5層構造であつた。 比較例 11 ポリスルホン、ジメチルアセトアミド、テトラ
エチレングリコールをそれぞれ、20:65:15重量
%の割合で混合した均一な溶液を製膜用原液とし
て、本ポリマーの種々の大きさの中空糸製造用環
状ノズルから押し出し、凝固液に水を用いて両面
凝固(内部及び外部より凝固)させ、Ap Bp
C Bi Aiの5層構造を持つ膜厚の種々異なる中
空糸を、内側に空気、外側に水を用いた片面凝固
によりBi、Ap、内側に水、外側に空気を用いる
ことによりAi Bpの2層構造を持つ膜厚の種々
異なる中空糸を製膜し、その破裂強度を測定し、
第16図に示した。 実施例 34 溶媒としてジメチルアセトアミド(DMAc)、
添加剤としてテトラエチレングリコール(TEG)
を選定し、ポリマーとして
[Table] Examples 32, 33 Using the same spinning stock solution as in Examples 26 to 31, the polymer was coagulated using an environmental nozzle at an air travel distance of 1.5 cm, using methanol as the internal and external coagulation liquid. The obtained hollow fiber has an inner and outer diameter of 0.75 mm and a diameter of 1.35 mm.
Good results were obtained in mm, bursting strength, water permeability, elastic modulus, and strength. The membrane structure in each case was the five-layer structure of the present invention. Similarly, even when methanol was used as the internal coagulating liquid and water was used as the external coagulating liquid, good bursting strength, water permeability, elastic modulus, and strength were obtained. The membrane structure in each case was the five-layer structure of the present invention. Comparative Example 11 A homogeneous solution of polysulfone, dimethylacetamide, and tetraethylene glycol mixed in a ratio of 20:65:15% by weight, respectively, was used as a stock solution for film forming, and a circular nozzle for manufacturing hollow fibers of various sizes of this polymer was used. A p B p
By coagulating hollow fibers with various film thicknesses with a five-layer structure of C B i A i on one side using air on the inside and water on the outside, B i , A p , using water on the inside and air on the outside Hollow fibers with a two-layer structure of A i B p of various thicknesses were formed, and their burst strength was measured.
It is shown in FIG. Example 34 Dimethylacetamide (DMAc) as solvent,
Tetraethylene glycol (TEG) as an additive
was selected as a polymer.

【式】で表わされる 繰返し単位を有するポリエーテルスルホン(以下
ポリエーテルスルホン ICI社製 VICTREXと
記す)をそれぞれ65:15:20(%)の割合で混合
し均一な溶液とした。このポリマー溶液の中空糸
製造用の環状ノズル(330μm)から押し出し、
内部及び外部凝固液として精製水を用い、該ポリ
マー溶液を内外面から凝固させ、中空状多孔膜を
紡糸した。この時、中空糸紡糸条件は以下のとお
りとした。 ノズルから外部凝固液までの距離(以下空中走
行距離と記す)1.5cm。 得られた中空糸の性質は以下のとおりであつ
た。内径0.75mm、外径1.35mm、膜厚0.3mm、透水率
1.5m3/m2・day・atm・水温25℃、破裂強度33
Kg/cm2、引張弾性率1700Kg/cm2、強度70Kg/cm2
デキストラン分子量104、4×104、7×104に対
するカツト率は、それぞれ20%、65%、82%。膜
構造は本発明の5層構造であり、内外ボイド比は
1.3であつた。 実施例 35〜48 実施例34と同様な条件で、種々の添加剤を加え
中空糸紡糸を行なつた。中空糸原液に加えた添加
剤及び得られた中空糸の性質を第6表に示す。膜
構造はいずれも本発明の5層構造であり、内外ボ
イド層比は1.0〜1.5であつた。
Polyether sulfone (hereinafter referred to as polyether sulfone VICTREX manufactured by ICI) having a repeating unit represented by the following formula was mixed in a ratio of 65:15:20 (%) to form a uniform solution. Extrude this polymer solution from an annular nozzle (330 μm) for hollow fiber production,
Purified water was used as the internal and external coagulating liquids to coagulate the polymer solution from the inside and outside, and a hollow porous membrane was spun. At this time, the hollow fiber spinning conditions were as follows. The distance from the nozzle to the external coagulating liquid (hereinafter referred to as aerial travel distance) is 1.5 cm. The properties of the hollow fibers obtained were as follows. Inner diameter 0.75mm, outer diameter 1.35mm, film thickness 0.3mm, water permeability
1.5m 3 /m 2・day・atm・water temperature 25℃, bursting strength 33
Kg/cm 2 , tensile modulus 1700Kg/cm 2 , strength 70Kg/cm 2 ,
The cutting rates for dextran molecular weights of 10 4 , 4×10 4 and 7×10 4 were 20%, 65% and 82%, respectively. The membrane structure is the five-layer structure of the present invention, and the internal and external void ratio is
It was 1.3. Examples 35 to 48 Hollow fiber spinning was carried out under the same conditions as in Example 34 with the addition of various additives. Table 6 shows the additives added to the hollow fiber stock solution and the properties of the hollow fibers obtained. The membrane structure was the five-layer structure of the present invention, and the ratio of inner and outer void layers was 1.0 to 1.5.

【表】【table】

【表】 比較例 12 実施例34のポリマー溶液を用い、原液温度25℃
にてドクターブレイド膜厚400μmでガラス板上
にキヤストした後1分間放置し、25℃水中で凝固
させた。得られた多孔膜平膜の諸性質は以下のと
おりであつた。膜厚300μm、透水率0.001m3
m2・day・atm・水温25℃。平膜の構造はABC構
造であつた。 比較例 13、14 ポリエーテルスルホン10g、N−メチルピロリ
ドン90gを30℃にて混合し均一な溶液とした。こ
の流し込みを液をガラス板上にドクターブレイド
を用い膜厚250μmで流延した。得らえた多孔膜
平膜の諸性質は以下のとおりであつた。膜厚
100μm、透水率5m3/m2・day・atm・水温25
℃、弾性率221Kg/cm2、強度10Kg/cm2以下。平膜
の構造はAB構造であつた。 この溶液を用い内部凝固液に水を用いて中空糸
紡糸用環状ノズルから空中に紡糸し、ポリマーを
中空系内側より凝固させ、中空糸を紡糸した。 得られた中空糸膜は、内径0.75mm、外径1.35
mm、膜厚0.3mm、透水率5m3/m2・day・atm・水
温25℃、弾性率323Kg/cm2、破裂強度10Kg/cm2
下であつた。走査型電気顕微鏡で調べた結果、こ
の中空糸は本発明に特有の5層構造を有する中空
系ではなかつた。 比較例 15、16 ポリマーとしてポリエーテルスルホン20g、溶
媒としてジメチルアセトアミド80gを混合し均一
な溶液とした。この溶液を用い原液温度25℃にて
ドクターブレイド膜厚400μmでガラス板上にキ
ヤストした後1分間放置し、25℃水中で凝固させ
た。 得られた多孔膜平膜は、膜厚300μm、透水率
0.005m3/m2・day・atm・水温25℃であつた。平
膜構造はABC構造であつた。 この溶液を用いて実施例34と同一の中空糸紡糸
条件下で中空糸を紡糸したところ、得られた中空
糸の諸性質は、内径0.75mm、外径1.35mm、膜厚0.3
mm、透水率0.01m3/m2・day・atm・水温25℃、
破裂強度30Kg/cm2であつた。内外ボイド層比は
1.7であり、本発明に特有の5層構造ではなかつ
た。 実施例 49 実施例34と同一のポリマー溶液を用いて、種々
の環状ノズルを用いて内径が0.75μmで外径、膜
厚の異なる中空糸膜を紡糸した。この中空糸膜の
透水率と膜厚の関係を第12図に示す。中空糸膜
構造はいずれも本発明の5層構造であり、内外ボ
イド層比は1.3であつた。 比較例 17 30%の硫酸ナトリウム水溶液10mlをジメチルス
ルホキシド490mlに加え、均一溶液とする。この
溶液に、式
[Table] Comparative Example 12 Using the polymer solution of Example 34, stock solution temperature 25℃
After casting on a glass plate with a doctor blade film thickness of 400 μm, the mixture was left to stand for 1 minute and solidified in water at 25°C. The properties of the obtained porous flat membrane were as follows. Film thickness 300μm, water permeability 0.001m3 /
m2・day・atm・water temperature 25℃. The structure of the flat membrane was ABC structure. Comparative Examples 13 and 14 10 g of polyether sulfone and 90 g of N-methylpyrrolidone were mixed at 30°C to form a uniform solution. This solution was cast onto a glass plate using a doctor blade to a film thickness of 250 μm. The properties of the obtained porous flat membrane were as follows. Film thickness
100μm, water permeability 5m3 / m2・day・atm・water temperature 25
℃, elastic modulus 221Kg/cm 2 , strength 10Kg/cm 2 or less. The structure of the flat membrane was AB structure. Using this solution and using water as an internal coagulation liquid, fibers were spun in the air from an annular nozzle for hollow fiber spinning to coagulate the polymer from the inside of the hollow system and spin hollow fibers. The obtained hollow fiber membrane has an inner diameter of 0.75 mm and an outer diameter of 1.35 mm.
mm, membrane thickness 0.3 mm, water permeability 5 m 3 /m 2 ·day · atm, water temperature 25°C, elastic modulus 323 Kg/cm 2 , and bursting strength of 10 Kg/cm 2 or less. As a result of examination with a scanning electric microscope, this hollow fiber was not a hollow system having the five-layer structure unique to the present invention. Comparative Examples 15 and 16 20 g of polyether sulfone as a polymer and 80 g of dimethylacetamide as a solvent were mixed to form a uniform solution. This solution was cast onto a glass plate with a doctor blade film thickness of 400 μm at a stock solution temperature of 25°C, and then left for 1 minute to solidify in water at 25°C. The obtained porous flat membrane has a thickness of 300 μm and a water permeability.
0.005m 3 /m 2・day・atm・Water temperature was 25℃. The flat membrane structure was an ABC structure. When this solution was used to spin hollow fibers under the same hollow fiber spinning conditions as in Example 34, the properties of the obtained hollow fibers were as follows: inner diameter 0.75 mm, outer diameter 1.35 mm, membrane thickness 0.3
mm, water permeability 0.01m3 / m2・day・atm・water temperature 25℃,
The bursting strength was 30 kg/cm 2 . The inner and outer void layer ratio is
1.7, and was not a five-layer structure unique to the present invention. Example 49 Using the same polymer solution as in Example 34, hollow fiber membranes with an inner diameter of 0.75 μm and different outer diameters and membrane thicknesses were spun using various annular nozzles. The relationship between water permeability and membrane thickness of this hollow fiber membrane is shown in FIG. Both hollow fiber membrane structures had the five-layer structure of the present invention, and the ratio of inner and outer void layers was 1.3. Comparative Example 17 Add 10 ml of 30% aqueous sodium sulfate solution to 490 ml of dimethyl sulfoxide to make a homogeneous solution. In this solution, the formula

【式】で表わ される繰返し単位を有するポリエーテルスルホン
125gを溶解しポリマー溶液とした。このポリマ
ー溶液粘度は1900センチポイズ(20℃)である。
このポリマー溶液を中空糸製造用環状ノズル
(330μm)から押し出し、水を凝固液として内外
側から凝固させた。 中空糸の内外径は0.75mm、1.35mmで、透水率2
m3/m2・day・atm・水温25℃、破裂強度14Kg/
cm2であつた。又、分子量70000のデキストランに
対するカツト率は70%であつた。中級糸膜構造は
5層構造であつたが、内外ボイド層比は1.7であ
つた 実施例 50〜55 実施例34と同様な方法で、ポリマー溶液とし
てポリエーテスルホン、添加剤テトラエチレング
リコールに各種溶媒を用いて中空糸紡糸した。 得られた中空糸の諸性質を第7表に示す。中空
糸膜構造はいずれも本発明の5層構造であり、内
外ボイド層比は1.0〜1.3であつた
Polyether sulfone having a repeating unit represented by [Formula]
125g was dissolved to obtain a polymer solution. The viscosity of this polymer solution is 1900 centipoise (20°C).
This polymer solution was extruded from a hollow fiber manufacturing annular nozzle (330 μm) and coagulated from the inside and outside using water as a coagulating liquid. The inner and outer diameters of the hollow fiber are 0.75mm and 1.35mm, and the water permeability is 2.
m 3 / m 2 / day / ATM / water temperature 25℃, bursting strength 14Kg /
It was warm in cm2 . Furthermore, the cutting rate for dextran having a molecular weight of 70,000 was 70%. Examples 50 to 55 The intermediate yarn membrane structure had a five-layer structure, but the inner and outer void layer ratio was 1.7. Examples 50 to 55 In the same manner as in Example 34, various types of polyether sulfone as a polymer solution and tetraethylene glycol as an additive were added. Hollow fiber spinning was performed using a solvent. Table 7 shows the properties of the hollow fibers obtained. The hollow fiber membrane structure was the five-layer structure of the present invention, and the inner and outer void layer ratio was 1.0 to 1.3.

【表】 実施例56〜59、比較例18 ポリエーテルスルホン溶媒としせDMAc、添
加剤としてTEGを用い、ポリエーテルスルホン
及びDMAcの割合を変化させて、ポリエーテル
スホン濃度の異なる製膜用原液を作り、実施例34
と同様な方法で、中空糸を防糸した。得られら中
空糸の諸性質を第8表に示す。実施例56〜59の中
空糸膜構造はいずれも本発明の5層構造を示し、
内外ボイド層比は1.0〜1.5であつた。 比較例18の中空糸はC層の厚さが2μmと薄く
C層が均一でなく、ボイド層(Bi層、Bp層)が
C層と接する付近では、ボイド層の乱れが生じて
いた。実施例56〜59のものは、C層の厚みがいず
れも10〜70μmの範囲内で比較例18のものに比し
て厚く、ボイド層、C層共にポリマー部分は均一
な構造であつた。
[Table] Examples 56 to 59, Comparative Example 18 Using DMAc as a polyethersulfone solvent and TEG as an additive, the proportions of polyethersulfone and DMAc were changed to create film-forming stock solutions with different concentrations of polyethersulfone. Making, Example 34
The hollow fibers were thread-proofed in the same manner. Table 8 shows the properties of the hollow fibers obtained. The hollow fiber membrane structures of Examples 56 to 59 all show the five-layer structure of the present invention,
The ratio of inner and outer void layers was 1.0 to 1.5. In the hollow fiber of Comparative Example 18, the thickness of the C layer was as thin as 2 μm, and the C layer was not uniform, and the void layer was disordered near where the void layer (B i layer, B p layer) was in contact with the C layer. . In Examples 56 to 59, the thickness of the C layer was within the range of 10 to 70 μm, which was thicker than that of Comparative Example 18, and the polymer portion of both the void layer and the C layer had a uniform structure.

【表】 実施例60〜65、比較例19、20 ポリエーテルスルホンDMAc、TEGを、それ
ぞれ20:71:9(%)の割合で混合し均一な溶液
とした後、ポリマー溶液を環状ノズルから押し出
し、内部及び外部凝固液として精製水を用い、該
ポリマーを内外面から凝固させ中空状多孔膜を紡
糸した。この時、中空糸紡糸用ノズルから外部凝
固液までの空中走行距離を種々変化させ、得られ
た糸の性質を検討した。結果を第9表に示す。実
施例60〜65の中空膜構造は本発明の5層構造であ
つた。一方、実施例60〜65の中空糸のC層の厚み
は5〜70μmの範囲内であつた。
[Table] Examples 60 to 65, Comparative Examples 19 and 20 Polyether sulfone DMAc and TEG were mixed in a ratio of 20:71:9 (%), respectively, to form a homogeneous solution, and then the polymer solution was extruded through an annular nozzle. Using purified water as the internal and external coagulating liquids, the polymer was coagulated from the inside and outside, and a hollow porous membrane was spun. At this time, the air travel distance from the hollow fiber spinning nozzle to the external coagulation liquid was varied, and the properties of the resulting fibers were examined. The results are shown in Table 9. The hollow membrane structures of Examples 60 to 65 were the five-layer structure of the present invention. On the other hand, the thickness of the C layer of the hollow fibers of Examples 60 to 65 was within the range of 5 to 70 μm.

【表】 実施例 66、67 実施例60〜65と同一の紡糸用原液を用い、環状
ノズルにて空中走行距離1.5cm、内部及び外部凝
固液としてメタノールを用い、ポリマーを凝固さ
せた。得られた中空糸は、内外径0.75mm、1.35
mm、破裂強度、透水率、弾性率、強度共に良好な
ものが得られた。膜構造は本発明の5層構造であ
り、内外ボイド層比は1.0〜1.5であつた。 同様に内部凝固液にメタノール、外部凝固液に
水を用いても破裂強度、透水率、弾性率、強度共
に良好なものが得られた。膜構造は本発明の5層
構造であり、内外ボイド層比は1.0〜1.5であつ
た。
[Table] Examples 66 and 67 Using the same spinning stock solution as in Examples 60 to 65, the polymer was coagulated using an annular nozzle with an air travel distance of 1.5 cm, and methanol was used as the internal and external coagulation liquid. The obtained hollow fiber has an inner and outer diameter of 0.75 mm and a diameter of 1.35 mm.
Good results were obtained in mm, bursting strength, water permeability, elastic modulus, and strength. The membrane structure was a five-layer structure according to the present invention, and the ratio of inner and outer void layers was 1.0 to 1.5. Similarly, even when methanol was used as the internal coagulating liquid and water was used as the external coagulating liquid, good bursting strength, water permeability, elastic modulus, and strength were obtained. The membrane structure was a five-layer structure according to the present invention, and the ratio of inner and outer void layers was 1.0 to 1.5.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の中空糸膜の横断面をモデル的
に示した図である。図にはそれぞれAp、Bp、C、
Bi、Ai各層を示す。第2図は本発明中空糸膜の糸
軸に直角な面で切つた全横断面を示す凍結割断面
の走査型電子顕微鏡写真(倍率82倍)である。第
3図は第2図の中空糸膜の横断面の一部を拡大し
て示した走査型電子顕微鏡写真(倍率330倍)で
ある。第4図は第2図の中空糸膜の横断面のAi
とBiの層の一部を拡大して示した走査型電子顕微
鏡写真倍率(1400倍)である。第5図は第2図の
中空糸膜の横断面の内表面Ai層の走査型電子顕微
鏡写真(倍率14000倍)である。第6図は第2図
の中空糸膜の横断面の外表面Ap層の凍結割断面
走査型電子顕微鏡写真(倍率14000倍)である。
第7図は本発明の中空糸を図示のように斜めに凍
結割断した円内部分の走査型電子顕微鏡写真(倍
率190倍)である。第8図は第2図の中空糸膜の
横断面の中間層(C層)を示す走査型電子顕微鏡
写真(倍率1400倍)である。第9図は第8図の中
間層(C層)の倍率を非常に大きくした走査型電
子顕微鏡写真(倍率14000倍)である。第10図
は中空糸内外表面からの距離と存在Cp孔半径と
の関係を示すグラフである。第11図は本発明及
び比較例の芳香族ポリスルホン中空糸の膜厚と透
水率との関係を示すグラフである。第12図は本
発明の芳香族ポリエーテルスルホン中空糸の膜厚
と透水率との関係を示すグラフである。第13図
は本発明の中空糸中間層の厚みと透水率及び破裂
強度の関係を示すグラフである。第14図は
ABC3層構造の平膜の断面の走査型電子顕微鏡写
真である。第15図はABC平膜の膜厚と透水率
との関係を示す図である。第16図はAp Bp
C Bi Ai5層構造中空糸膜とAB又はBAの2
層構造中空糸膜についての膜厚と破裂強度との関
係を示す図である。第17図は本発明中空糸の中
間層構造のCp孔の1単位を、従来のものとの比
較において模式的に示した斜視図であり、Aは本
発明、Bは従来のものを示す。
FIG. 1 is a diagram schematically showing a cross section of the hollow fiber membrane of the present invention. The figure shows A p , B p , C, and
Each layer of B i and A i is shown. FIG. 2 is a scanning electron micrograph (magnification: 82 times) of a freeze-fractured cross section showing the entire cross section of the hollow fiber membrane of the present invention taken along a plane perpendicular to the fiber axis. FIG. 3 is a scanning electron micrograph (330x magnification) showing an enlarged part of the cross section of the hollow fiber membrane shown in FIG. FIG. 4 is a scanning electron micrograph magnified (1400 times) showing part of the A i layer and B i layer of the cross section of the hollow fiber membrane shown in FIG. 2. FIG. 5 is a scanning electron micrograph (magnification: 14,000 times) of the inner surface A i layer of the cross section of the hollow fiber membrane shown in FIG. FIG. 6 is a scanning electron micrograph (magnification: 14,000 times) of a freeze-fractured cross section of the outer surface A p layer of the cross section of the hollow fiber membrane shown in FIG.
FIG. 7 is a scanning electron micrograph (190x magnification) of the circular inner part of the hollow fiber of the present invention obtained by freezing and cutting the hollow fiber diagonally as shown. FIG. 8 is a scanning electron micrograph (magnification: 1400 times) showing the intermediate layer (C layer) in the cross section of the hollow fiber membrane shown in FIG. FIG. 9 is a scanning electron micrograph (14,000 times magnification) of the intermediate layer (C layer) shown in FIG. 8 at a very high magnification. FIG. 10 is a graph showing the relationship between the distance from the inner and outer surfaces of the hollow fiber and the radius of existing C p pores. FIG. 11 is a graph showing the relationship between membrane thickness and water permeability of aromatic polysulfone hollow fibers of the present invention and comparative examples. FIG. 12 is a graph showing the relationship between the membrane thickness and water permeability of the aromatic polyethersulfone hollow fiber of the present invention. FIG. 13 is a graph showing the relationship between the thickness, water permeability, and bursting strength of the hollow fiber intermediate layer of the present invention. Figure 14 is
This is a scanning electron micrograph of a cross section of a flat membrane with an ABC three-layer structure. FIG. 15 is a diagram showing the relationship between the film thickness and water permeability of the ABC flat membrane. Figure 16 shows A p B p
C B i A i 5-layer hollow fiber membrane and AB or BA 2
FIG. 3 is a diagram showing the relationship between membrane thickness and bursting strength for a layered hollow fiber membrane. FIG. 17 is a perspective view schematically showing one unit of C p holes in the intermediate layer structure of the hollow fiber of the present invention in comparison with a conventional one, where A shows the invention and B shows the conventional one. .

Claims (1)

【特許請求の範囲】 1 外表面層・外ボイド層・中間層・内ボイド
層・内表面層の5層構造を有し、かつ内・外ボイ
ド層の厚さの比が1.5以下であり、中間層の厚み
が5μm以上70μm以下であり、全膜厚が100μm〜
600μmであることを特徴とするポリスルホン系
樹脂中空糸膜。 2 膜の透水率が3m3/m2・day・atm以上であ
る特許請求の範囲第1項記載のポリスルホン系樹
脂中空糸膜。 3 分画分子量が13000以下である特許請求の範
囲第1項記載のポリスルホン系樹脂中空糸膜。 4 ポリスルホン系樹脂が芳香族ポリスルホン又
は芳香族ポリエーテルスルホンである特許請求の
範囲第1項記載のポリスルホン系樹脂中空糸膜。 5 内外ボイド最の厚さの比が0.6以上1.5以下で
ある特許請求の範囲第1項記載のポリスルホン系
樹脂中空糸膜。
[Claims] 1. It has a five-layer structure of an outer surface layer, an outer void layer, an intermediate layer, an inner void layer, and an inner surface layer, and the ratio of the thickness of the inner and outer void layers is 1.5 or less, The thickness of the intermediate layer is 5 μm or more and 70 μm or less, and the total film thickness is 100 μm or more.
A polysulfone resin hollow fiber membrane characterized by a thickness of 600 μm. 2. The polysulfone resin hollow fiber membrane according to claim 1, wherein the membrane has a water permeability of 3 m 3 /m 2 ·day · atm or more. 3. The polysulfone resin hollow fiber membrane according to claim 1, which has a molecular weight cut-off of 13,000 or less. 4. The polysulfone resin hollow fiber membrane according to claim 1, wherein the polysulfone resin is aromatic polysulfone or aromatic polyethersulfone. 5. The polysulfone resin hollow fiber membrane according to claim 1, wherein the ratio of inner and outer void maximum thickness is 0.6 or more and 1.5 or less.
JP1286382A 1981-08-22 1982-01-29 Polysulfone resin hollow fiber Granted JPS58156018A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1286382A JPS58156018A (en) 1982-01-29 1982-01-29 Polysulfone resin hollow fiber
EP82902468A EP0086235B1 (en) 1981-08-22 1982-08-23 Aromatic polysulfone resin hollow yarn membrane and process for manufacturing same
US06/491,340 US4822489A (en) 1981-08-22 1982-08-23 Aromatic polysulfone type resin hollow fiber membrane and a process for producing the same
DE8282902468T DE3270865D1 (en) 1981-08-22 1982-08-23 Aromatic polysulfone resin hollow yarn membrane and process for manufacturing same
PCT/JP1982/000329 WO1983000705A1 (en) 1981-08-22 1982-08-23 Aromatic polysulfone resin hollow yarn membrane and process for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1286382A JPS58156018A (en) 1982-01-29 1982-01-29 Polysulfone resin hollow fiber

Publications (2)

Publication Number Publication Date
JPS58156018A JPS58156018A (en) 1983-09-16
JPH0323647B2 true JPH0323647B2 (en) 1991-03-29

Family

ID=11817245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1286382A Granted JPS58156018A (en) 1981-08-22 1982-01-29 Polysulfone resin hollow fiber

Country Status (1)

Country Link
JP (1) JPS58156018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2566033A2 (en) 2011-09-01 2013-03-06 Kabushiki Kaisha Yaskawa Denki Power conversion apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246812A (en) * 1984-05-18 1985-12-06 Daicel Chem Ind Ltd Hollow polysulfone based resin fiber
DE3426331A1 (en) * 1984-07-17 1986-01-30 6380 Bad Homburg Fresenius AG ASYMMETRIC MICROPOROUS HOLLOW FIBER FOR HAEMODIALYSIS AND METHOD FOR THE PRODUCTION THEREOF
JP2512909B2 (en) * 1986-09-30 1996-07-03 エヌオーケー株式会社 Method for producing hollow fiber porous membrane
JP2905208B2 (en) * 1988-12-20 1999-06-14 旭化成工業株式会社 Polysulfone hollow fiber separation membrane
EP1886863B1 (en) 2005-05-20 2014-03-05 Yanmar Co., Ltd. Traveling vehicle
US11883786B2 (en) 2019-10-10 2024-01-30 Entegris, Inc. Porous polymeric membrane and related filters and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143777A (en) * 1978-05-01 1979-11-09 Asahi Chem Ind Co Ltd Aromatic polyether sulfone hollow yarn semipermeable membrane
JPS56152704A (en) * 1980-04-25 1981-11-26 Kanegafuchi Chem Ind Co Ltd Hollow fiber membrane and its manufacture
JPS5834009A (en) * 1981-08-22 1983-02-28 Asahi Chem Ind Co Ltd Preparation of aromatic polysulfone hollow semi-permeable membrane
JPS58114702A (en) * 1981-12-28 1983-07-08 Kuraray Co Ltd polysulfone hollow fiber membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143777A (en) * 1978-05-01 1979-11-09 Asahi Chem Ind Co Ltd Aromatic polyether sulfone hollow yarn semipermeable membrane
JPS56152704A (en) * 1980-04-25 1981-11-26 Kanegafuchi Chem Ind Co Ltd Hollow fiber membrane and its manufacture
JPS5834009A (en) * 1981-08-22 1983-02-28 Asahi Chem Ind Co Ltd Preparation of aromatic polysulfone hollow semi-permeable membrane
JPS58114702A (en) * 1981-12-28 1983-07-08 Kuraray Co Ltd polysulfone hollow fiber membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2566033A2 (en) 2011-09-01 2013-03-06 Kabushiki Kaisha Yaskawa Denki Power conversion apparatus

Also Published As

Publication number Publication date
JPS58156018A (en) 1983-09-16

Similar Documents

Publication Publication Date Title
US4351860A (en) Polyaryl ether sulfone semipermeable membrane and process for producing same
US4481260A (en) Aromatic polysulfone type resin hollow fiber membrane and process for producing the same
US4772391A (en) Composite membrane for reverse osmosis
EP0086235B1 (en) Aromatic polysulfone resin hollow yarn membrane and process for manufacturing same
EP2902095B1 (en) Composite semipermeable membrane
CN100457242C (en) Dialysis membrane having improved average molecular distance
CN100446845C (en) A blend film of polysulfone and polyvinyl polymer, its preparation method and application
JP6694326B2 (en) Composite membrane
JPS6356802B2 (en)
CA2202969C (en) Selectively permeable hollow fiber membrane and process for producing same
JPH0323647B2 (en)
JPH0478729B2 (en)
JP3386904B2 (en) Cellulose acetate hollow fiber separation membrane and method for producing the same
JP2688564B2 (en) Cellulose acetate hollow fiber separation membrane
JP3594946B2 (en) High performance microfiltration membrane
JP3431622B1 (en) High-performance plasma purification membrane
JPH0364176B2 (en)
KR20010061733A (en) A polysulfone typed hollow fiber membrane, and a process of preparing for the same
JPS6214322B2 (en)
JP4164730B2 (en) Selective separation membrane
JPS59209611A (en) Hollow yarn like membrane and preparation thereof
JP2905208B2 (en) Polysulfone hollow fiber separation membrane
JP2000107577A (en) Production of permselective hollow fiber membranes
JP4164774B2 (en) Method for producing selective separation membrane
JPS5834009A (en) Preparation of aromatic polysulfone hollow semi-permeable membrane