JP3386904B2 - Cellulose acetate hollow fiber separation membrane and method for producing the same - Google Patents
Cellulose acetate hollow fiber separation membrane and method for producing the sameInfo
- Publication number
- JP3386904B2 JP3386904B2 JP27282094A JP27282094A JP3386904B2 JP 3386904 B2 JP3386904 B2 JP 3386904B2 JP 27282094 A JP27282094 A JP 27282094A JP 27282094 A JP27282094 A JP 27282094A JP 3386904 B2 JP3386904 B2 JP 3386904B2
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- hollow fiber
- cellulose acetate
- range
- separation membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、浄水処理、下水処理お
よび排水処理等の水処理や化学工業および医薬品工業に
おける溶液の分離精製および濃縮操作において限外濾過
に用いられる酢酸セルロース中空糸分離膜ならびにその
製造方法に関するものである。特に、機械的物性のバラ
ンスに優れ、透水速度の改良された、酢酸セルロース中
空糸分離膜ならびにその製造方法に関するものである。FIELD OF THE INVENTION The present invention relates to a cellulose acetate hollow fiber separation membrane used for ultrafiltration in water treatment such as water purification treatment, sewage treatment and wastewater treatment, and separation / purification and concentration operation of solution in chemical industry and pharmaceutical industry. And the manufacturing method thereof. In particular, the present invention relates to a cellulose acetate hollow fiber separation membrane having an excellent balance of mechanical properties and an improved water permeation rate, and a method for producing the same.
【0002】[0002]
【従来の技術】近年、分離操作において分離膜を用いた
技術の進展はめざましく、各種の用途で実用化されてい
る。2. Description of the Related Art In recent years, a technique using a separation membrane in a separation operation has made remarkable progress and has been put to practical use in various applications.
【0003】かかる分離膜の素材としては、例えば、ポ
リスルホン系、ポリアクリロニトリル系、ポリビニルア
ルコール系、ポリイミド系樹脂等が使用されているが、
特にポリスルホン系樹脂は、耐熱性、耐酸性、耐アルカ
リ性等の物理的および化学的性質に優れ、また製膜も容
易な点から、盛んに使用されている。As a material for such a separation membrane, for example, polysulfone-based, polyacrylonitrile-based, polyvinyl alcohol-based, polyimide-based resin, etc. are used.
In particular, polysulfone-based resins are widely used because of their excellent physical and chemical properties such as heat resistance, acid resistance, and alkali resistance, and their ease of film formation.
【0004】しかし、ポリスルホン系樹脂のような疎水
性素材からなる分離膜を水処理用途に用いた場合は、被
処理水中の高分子物質、コロイドおよび微粒子等が、膜
面や膜孔内部に吸着しやすく膜の汚染や目詰まり(膜フ
ァウリング)を起こして濾過速度が経時的に著しく低下
する等の問題がある。そこで、これらの溶質物質が膜面
および膜孔内に吸着するのを防ぐために疎水性高分子で
ある膜素材に親水性高分子をブレンドする(特開昭56-1
55243 号公報)、あるいは、疎水性物質の表面に親水性
高分子をコーティングする(特開昭61-268302 号公報)
等の分離膜の改質方法が提案されている。However, when a separation membrane made of a hydrophobic material such as a polysulfone resin is used for water treatment, polymer substances, colloids and fine particles in the water to be treated are adsorbed on the membrane surface or inside the membrane pores. However, there is a problem that the filtration rate is remarkably decreased over time due to contamination of the membrane and clogging (membrane fouling). Therefore, in order to prevent these solute substances from adsorbing on the membrane surface and the membrane pores, a hydrophilic polymer is blended with the membrane material which is a hydrophobic polymer (Japanese Patent Laid-Open No. 56-1).
55243), or coating the surface of a hydrophobic substance with a hydrophilic polymer (JP-A-61-268302).
A method for modifying the separation membrane has been proposed.
【0005】これに対して、従来より知られた親水性高
分子素材であるセルロース系樹脂の分離膜を用いた場
合、溶質物の膜への吸着が起こりにくいため、水系での
濾過速度の経時低下が小さいという特徴を有する。例え
ば、酢酸セルロースや再生セルロース膜は、血漿の濾過
を行った場合の濾過速度の経時低下が小さく、血漿、蛋
白質等の吸着が少ないことから、血液透析膜として利用
されている。また同様に、酢酸セルロース逆浸透膜は、
海水淡水化用途として古くから用いられており、濾過速
度の経時低下が小さいことが確かめられている(合成膜
の基礎、Synthetic Polymeric Membranes など)。On the other hand, when a separation membrane of cellulose resin, which is a conventionally known hydrophilic polymer material, is used, adsorption of solute to the membrane is difficult to occur, so that the filtration rate in the water system with time elapses. It has the characteristic that the decrease is small. For example, a cellulose acetate or a regenerated cellulose membrane is used as a hemodialysis membrane because it has a small decrease in filtration rate with time when plasma is filtered and has little adsorption of plasma, proteins and the like. Similarly, the cellulose acetate reverse osmosis membrane is
It has been used for a long time for desalination of seawater, and it has been confirmed that the decrease in filtration rate over time is small (basic of synthetic membrane, Synthetic Polymeric Membranes, etc.).
【0006】しかし、このようなセルロース系樹脂を膜
素材としても、膜の分離活性層が非常に緻密で、膜孔径
が 0.001μm 以下と極めて小さい逆浸透膜の場合では、
膜の透水抵抗が大きく、従って濾過速度が著しく小さく
なってしまう。逆浸透膜として特公昭58-24164号公報等
に開示のものがあるが、一般にかかる緻密構造を有する
膜を用い、濾過速度を増大させるには、操作圧力を10kg
/cm2 以上の高圧にしなければならず、エネルギーコス
トが増加するのみならず、濾過運転中に膜が圧密化され
て透水速度の低下をもたらしたり、機械的な膜破損を引
き起こしたりする等の問題が生じる。However, even if such a cellulosic resin is used as a membrane material, in the case of a reverse osmosis membrane in which the separation active layer of the membrane is very dense and the pore size of the membrane is as small as 0.001 μm or less,
The water resistance of the membrane is high and therefore the filtration rate is significantly reduced. There is a reverse osmosis membrane disclosed in Japanese Examined Patent Publication No. 58-24164, etc., but generally, a membrane having such a dense structure is used, and in order to increase the filtration rate, the operating pressure is 10 kg.
/ Cm 2 or more must be in a high pressure, not only the energy cost is increased, or result in a decrease in the water permeation speed film is compacted during filtration operation, such as or cause mechanical membrane damage The problem arises.
【0007】また、被処理液の分離が高分子物質やコロ
イド微粒子およびウイルスなどを対象とする限外濾過膜
の場合においても、逆浸透膜ほど緻密な膜構造を有さな
いものの、最も小さな膜孔径を有する分離活性層が最も
透水抵抗が大きくなるため充分に大きな濾過速度を得る
ことが困難な場合がある。Further, even when the liquid to be treated is separated by an ultrafiltration membrane for polymer substances, colloidal fine particles and viruses, it is the smallest membrane, although it does not have a dense membrane structure as a reverse osmosis membrane. It may be difficult to obtain a sufficiently high filtration rate because the separation active layer having a pore size has the highest water permeation resistance.
【0008】[0008]
【発明が解決しようとする課題】本発明は上述のような
従来の膜構造の欠点を克服し、低い濾過圧力の下でも長
期にわたり高い濾過速度を維持できる、中空糸分離膜を
得ることを目的として、親水性高分子膜素材である酢酸
セルロースを膜素材とする限外濾過中空糸分離膜の新規
な膜構造ならびにその製造方法を提供するものである。SUMMARY OF THE INVENTION It is an object of the present invention to overcome the drawbacks of the conventional membrane structure as described above and to obtain a hollow fiber separation membrane capable of maintaining a high filtration rate for a long time even under a low filtration pressure. The present invention also provides a novel membrane structure of an ultrafiltration hollow fiber separation membrane using cellulose acetate, which is a hydrophilic polymer membrane material, as a membrane material, and a method for producing the same.
【0009】酢酸セルロース限外濾過中空糸分離膜の構
造についてはこれまでに特公昭62-29524号公報、特公平
3-5847号公報等に開示されているが、いずれも膜の断面
構造が均一な三次元網目状構造であり、ボイド層が存在
しないために透水抵抗が非常に大きくなり、高い濾過速
度は得られない。また、特公昭56-58005号公報などに開
示されるように膜断面にボイドを含む場合でもこれらの
中空糸膜の内外両表面近傍の緻密層部分の厚さが3μm
より大きいために濾過速度は小さくなってしまう。ま
た、特公昭58-58005号公報には膜の内表面に多孔スポン
ジ構造とこれと併存する円形ボイドを有する中空糸膜が
提示されているが、純粋の透水速度が 500リットル/
(m2・hr)/(kg/cm2)以上の高い透水性能は得られな
い。酢酸セルロース中空糸分離膜の製法についてはこれ
まで多くの提案がなされており、特に製膜溶液に金属を
含む添加物を加えた例として特公昭57-59253号公報、特
公昭59-4164 号公報、特公昭60-43442号公報等が開示さ
れているが、いずれもボイド層の存在しない均一な膜構
造を有するため、純粋透水速度が 500リットル/(m2・
hr)/(kg/cm2)以上の高い分離膜を得るには至ってい
ない。The structure of the cellulose acetate ultrafiltration hollow fiber separation membrane has hitherto been disclosed in JP-B-62-29524.
Although disclosed in Japanese Patent No. 3-5847, all of them have a uniform three-dimensional network structure in cross-section, and because of the absence of a void layer, the water permeation resistance becomes extremely large, and a high filtration rate can be obtained. I can't. Further, as disclosed in Japanese Patent Publication No. 56-58005, etc., even when voids are included in the membrane cross section, the thickness of the dense layer portion near both the inner and outer surfaces of these hollow fiber membranes is 3 μm.
Since it is larger, the filtration rate becomes smaller. Also, Japanese Patent Publication No. 58-58005 discloses a hollow fiber membrane having a porous sponge structure and circular voids coexisting with the porous sponge structure on the inner surface of the membrane.
High water permeability of (m 2 · hr) / (kg / cm 2 ) or more cannot be obtained. Many proposals have been made so far regarding a method for producing a cellulose acetate hollow fiber separation membrane. Particularly, as an example of adding a metal-containing additive to a membrane forming solution, Japanese Patent Publication Nos. 57-59253 and 59-4164 are disclosed. , JP-B-60-43442, etc., but all have a uniform membrane structure without a void layer, so that the pure water permeation rate is 500 liters / (m 2 ·
It has not been possible to obtain a separation membrane having a high value of hr) / (kg / cm 2 ) or more.
【0010】[0010]
【課題を解決するための手段】本発明者らは、前記目的
を達成するため鋭意検討を重ねた結果、中空糸膜断面の
空孔率を増大し、透水抵抗を減少させ、透水速度を増大
させるために膜断面にボイド部分を設けるとともに、膜
の内外両表面の緻密層に連続する三次元網目状多孔質構
造部分の空孔率を該膜の内外両表面の近傍からただちに
40〜80%とし、かつすべての部分でこの範囲に平均化す
るように空孔率を増大させ、かつ該多孔質の空隙が比較
的均一な孔径分布を有する分離膜を得るに至った。Means for Solving the Problems As a result of intensive studies to achieve the above-mentioned object, the present inventors increased the porosity of the hollow fiber membrane cross section, decreased the water permeation resistance, and increased the water permeation rate. In order to achieve this, a void portion is provided on the membrane cross section, and the porosity of the three-dimensional mesh-like porous structure portion continuous with the dense layers on both the inner and outer surfaces of the membrane is immediately measured from the vicinity of both the inner and outer surfaces of the membrane.
The porosity was increased to 40 to 80%, and the porosity was increased so as to be averaged in this range in all parts, and a separation membrane having a relatively uniform pore size distribution in the porous voids was obtained.
【0011】即ち、本発明は、膜厚が50〜500 μm の中
空糸膜の断面が、実質的に0.05〜1μm の平均孔径を有
する三次元網目状多孔質部分と10〜200 μm の大きさの
ボイド部分とからなり、該膜の全断面積に対するボイド
部分の占める面積が5〜70%の範囲にあり、かつ中空糸
膜内外両表面に不定形または円形状の微孔を有し、該膜
の断面の三次元網目状多孔質部分は該中空糸膜の内外両
表面から全膜厚の50分の1以内の部分をそれぞれ除くす
べての範囲で40〜80%のほぼ均一な空孔率を有し、分画
分子量が1万〜50万の範囲にあり、膜の引張破断点強度
が30kg/cm2 以上あり、かつ膜間差圧1kg/cm2 、温度
25℃における純水の透過速度が 500リットル/(m2・h
r)以上あることを特徴とする酢酸セルロース中空糸分
離膜である。That is, according to the present invention, the cross section of the hollow fiber membrane having a membrane thickness of 50 to 500 μm has a three-dimensional reticulated porous portion having an average pore diameter of 0.05 to 1 μm and a size of 10 to 200 μm. The void area of the membrane is in the range of 5 to 70% with respect to the total cross-sectional area of the membrane, and the inner and outer surfaces of the hollow fiber membrane have irregular or circular micropores. The three-dimensional mesh-like porous portion of the cross section of the membrane has a substantially uniform porosity of 40 to 80% in all ranges except both the inner and outer surfaces of the hollow fiber membrane within 1/50 of the total membrane thickness. With a molecular weight cut-off in the range of 10,000 to 500,000, a tensile strength at break of the membrane of 30 kg / cm 2 or more, and a transmembrane pressure difference of 1 kg / cm 2 , temperature
Permeation rate of pure water at 25 ℃ is 500 liters / (m 2 · h
r) A cellulose acetate hollow fiber separation membrane having the above characteristics.
【0012】また、本発明は、酢化度が53〜62%の範囲
にあり、かつ、平均重合度が 100〜500 の範囲にある酢
酸セルロース10〜30重量%と周期律表I〜III 族に属す
る金属化合物0.05〜5mol/kgを該酢酸セルロースと該添
加物をともに溶解する沸点 100℃以上の水溶性極性有機
溶媒に溶解して製膜溶液を作成し、該製膜溶液を二重管
型紡糸口金の外管より80〜140 ℃で吐出するとともに紡
糸口金の中央部より30〜80℃の内部凝固液を吐出し、30
〜80℃の凝固浴中で凝固させることを特徴とする上記の
酢酸セルロース中空糸分離膜の製造方法を提供するもの
である。Further, according to the present invention, 10 to 30% by weight of cellulose acetate having an acetylation degree of 53 to 62% and an average degree of polymerization of 100 to 500 and Group I to III of the periodic table. 0.05 to 5 mol / kg of a metal compound belonging to the above are dissolved in a water-soluble polar organic solvent having a boiling point of 100 ° C. or more to dissolve both the cellulose acetate and the additive to prepare a film-forming solution, and the film-forming solution is a double tube. Discharge from the outer tube of the mold spinneret at 80 to 140 ° C and the internal coagulation liquid at 30 to 80 ° C from the center of the spinneret.
The present invention provides a method for producing the above cellulose acetate hollow fiber separation membrane, which comprises coagulating in a coagulation bath at -80 ° C.
【0013】本発明における三次元網目状多孔質構造と
は、中空糸膜表面に形成される緻密層の微孔孔径よりも
大きく、実質的には0.05〜1μm のサイズを有する空隙
が膜内部に立体的な網目状として形成された構造を指す
ものであり、中空糸分離膜に大きな物理的強度と伸度と
を与えることができる。The three-dimensional network porous structure in the present invention means that pores having a size of 0.05 to 1 μm, which are larger than the micropore diameter of the dense layer formed on the surface of the hollow fiber membrane, are substantially inside the membrane. It refers to a structure formed as a three-dimensional network, and can give the hollow fiber separation membrane a large physical strength and elongation.
【0014】本発明においては、均一な孔径を有する三
次元網目状多孔質構造が膜の内外両表面近傍までの範
囲、実質的には、内外両表面から全膜厚の50分の1以内
の部分をそれぞれ除く全ての範囲においてほぼ均一な高
空孔率(40〜80%)を有しているので、従来膜の三次元
網目状多孔質構造部分の孔径が膜表面から膜内部に向か
って漸次連続的に大きくなっている傾斜型多孔質層を少
なくとも片側表面に有するものに比べて、両表面側の緻
密層の濾過抵抗が両表面側で同時に極端に減少するもの
であり、膜の機械的強度を損なうことなく、透水速度を
上げることができる。In the present invention, the three-dimensional mesh-like porous structure having a uniform pore size extends to the vicinity of both the inner and outer surfaces of the membrane, substantially within 1/50 of the total thickness from the inner and outer surfaces. It has a high porosity (40-80%) that is almost uniform in all areas except the area, so that the pore size of the three-dimensional mesh-like porous structure of the conventional membrane gradually increases from the membrane surface to the inside. The filtration resistance of the dense layers on both surface sides is extremely reduced at the same time on both surface sides, compared to the one having a continuously increasing inclined type porous layer on at least one surface side. The water permeation rate can be increased without deteriorating the strength.
【0015】本発明では、内外両表面部分と三次元網目
状多孔質構造部分との間に極端な空孔率の落差を形成し
ている点に特徴を有し、ボイドの存在とともに高透水率
を達成している。The present invention is characterized in that an extreme porosity drop is formed between the inner and outer surface portions and the three-dimensional network-like porous structure portion. The presence of voids and high water permeability are characteristic. Has been achieved.
【0016】また、本発明におけるボイドとは、上記の
三次元網目状の空隙よりもさらに大きく、実質的には10
〜200 μm の大きさを有し、透過流体に、濾過抵抗をほ
とんど示さない円形または楕円形の空孔を意味する。こ
のボイドは、外表面側または内表面側のどちらかに貫通
していてもよいが、膜強度の点から、貫通していない方
が好ましい。ボイドが三次元網目状多孔質構造内に存在
する場合、ボイドが膜内部に多く存在し、中空糸膜の断
面に存在する全ボイドの占める面積が増加するとともに
透水速度を増加させることができるが、一方、膜の引張
り強度や内圧破裂圧力等の機械的強度を下げてしまう。
従って、中空糸膜の断面に存在する全ボイドの占める面
積は、中空糸膜の断面積に対して5〜70%であればよ
く、透水速度と膜の機械的強度とのバランスを考慮する
と20〜50%の範囲のものがより好ましい。The void in the present invention is larger than the above-mentioned three-dimensional mesh-like void, and is substantially 10
It means circular or elliptical pores having a size of ˜200 μm and showing almost no filtration resistance to the permeated fluid. The void may penetrate either the outer surface side or the inner surface side, but it is preferable that it does not penetrate from the viewpoint of film strength. When the voids are present in the three-dimensional mesh-like porous structure, many voids are present inside the membrane, and the area occupied by all the voids present in the cross section of the hollow fiber membrane can be increased and the water permeation rate can be increased. On the other hand, the mechanical strength such as tensile strength and internal pressure burst pressure of the membrane is lowered.
Therefore, the area occupied by all voids present in the cross section of the hollow fiber membrane may be 5 to 70% with respect to the cross sectional area of the hollow fiber membrane, and if the balance between the water permeation rate and the mechanical strength of the membrane is considered, It is more preferably in the range of up to 50%.
【0017】また、本発明の中空糸分離膜は、膜内部に
被処理液中の懸濁粒子が侵入して閉塞し、透水速度の減
少をもたらすことを防ぐために、膜の内外両表面に不定
形または円形状の微孔をもつ緻密層を有するが、この微
孔の平均孔径が小さすぎる場合、実用的な透水速度が得
られず、表面平均孔径が大きすぎる場合には懸濁物質の
阻止が不充分となる。このため緻密層の表面平均孔径は
実質的に 0.001〜0.05μm であればよく、好ましくは
0.005〜0.03μm の範囲であればよい。本発明の中空糸
分離膜の総合的な分離特性としては、分画分子量にして
1万〜50万が適当である。Further, in the hollow fiber separation membrane of the present invention, in order to prevent suspended particles in the liquid to be treated from entering the inside of the membrane to be clogged, resulting in a decrease in the water permeation rate, the inner and outer surfaces of the membrane are not covered. It has a dense layer with regular or circular micropores, but if the average pore size of these micropores is too small, a practical water permeation rate cannot be obtained, and if the surface average pore size is too large, it will prevent suspended substances. Will be insufficient. Therefore, the surface average pore diameter of the dense layer may be substantially 0.001 to 0.05 μm, preferably
It may be in the range of 0.005 to 0.03 μm. As a comprehensive separation characteristic of the hollow fiber separation membrane of the present invention, a molecular weight cutoff of 10,000 to 500,000 is suitable.
【0018】また、本発明の中空糸分離膜の膜厚は、よ
り大きな膜の機械的強度とより大きな透水速度を得るた
めに、50〜500 μm の範囲に調整される。膜厚が50μm
未満の場合では、機械的強度に劣り、濾過処理中の機械
的衝撃によってリークを引き起こすという重大なトラブ
ルを生じる恐れがある。また 500μm を超えると膜の機
械的強度は増すが、膜圧の増加とともに濾過抵抗が上昇
するため透水性能が小さくなってしまい、実用性に欠け
ることから、膜厚は50〜500 μm がよく、 100〜400 μ
m の範囲がより好ましい。The membrane thickness of the hollow fiber separation membrane of the present invention is adjusted in the range of 50 to 500 μm in order to obtain a larger membrane mechanical strength and a larger water permeation rate. Film thickness is 50 μm
If it is less than the above range, the mechanical strength is inferior, and there is a possibility of causing a serious trouble of causing a leak due to a mechanical impact during the filtration process. If it exceeds 500 μm, the mechanical strength of the membrane will increase, but as the membrane pressure increases, the filtration resistance will increase and the water permeability will decrease. 100 to 400 μ
The range of m is more preferable.
【0019】本発明により得られた中空糸分離膜が、膜
破損を起こすことなく、長期間にわたる使用に耐えるた
めに必要な機械的強度は、引張破断点強度が30kg/cm2
以上であり、かつ引張破断点伸度が20%以上であること
が望ましく、また、膜間差圧1kg/cm2 、温度25℃にお
ける純水の透過速度が 500リットル/(m2・hr)以上で
あることが望ましい。The mechanical strength necessary for the hollow fiber separation membrane obtained by the present invention to withstand long-term use without causing membrane damage is that the tensile strength at break is 30 kg / cm 2.
It is desirable that the tensile elongation at break is 20% or more, and the permeation rate of pure water at a transmembrane pressure difference of 1 kg / cm 2 and a temperature of 25 ° C is 500 liters / (m 2 · hr). The above is desirable.
【0020】なお、三次元網目状多孔質構造、ボイドの
空孔径の大きさ及び膜断面積あたりのボイドの占有面積
%は、電子顕微鏡写真により評価される。また、緻密層
の平均孔径および厚さは、電子顕微鏡写真により評価さ
れるが、緻密層の厚さは通常0.1〜5μm の範囲であ
る。。The three-dimensional network porous structure, the pore size of voids, and the occupied area% of voids per membrane cross-sectional area are evaluated by electron micrographs. The average pore diameter and thickness of the dense layer are evaluated by electron micrographs, and the thickness of the dense layer is usually in the range of 0.1 to 5 μm. .
【0021】上述の酢酸セルロース中空糸分離膜は下記
のようにして製造できる。酢酸セルロースは、通常の有
機溶剤に溶解するものであれば、酢化度として通常40〜
62%の範囲にあるが、本発明においては、中でも、耐微
生物分解性、化学的性質に優れている53〜62%の範囲の
酢化度のものが好適に用いられる。また、平均重合度は
100〜500 、好ましくは 150〜350 のものが用いられ
る。The above-mentioned cellulose acetate hollow fiber separation membrane can be manufactured as follows. Cellulose acetate, as long as it is soluble in an ordinary organic solvent, usually has an acetylation degree of 40 to
Although it is in the range of 62%, those having an acetylation degree in the range of 53 to 62%, which are excellent in microbial decomposition resistance and chemical properties, are preferably used in the present invention. The average degree of polymerization is
The one used is 100 to 500, preferably 150 to 350.
【0022】本発明において、中空糸分離膜を製造する
ための製膜溶液として、酢酸セルロースの添加重量を製
膜溶液の総重量に対して10〜30重量%になるように極性
有機溶剤に溶解させることが、目的とする膜を得るため
に好ましい。酢酸セルロースの添加重量の増加は製膜溶
液の粘度が増加し、その製膜溶液は長期保存に際して相
分離の生じる恐れがある。また、この場合に得られる膜
構造は、一般に空孔率の小さい緻密な構造となるため、
その透水速度は小さくなる。一方、酢酸セルロースの添
加濃度が小さい場合では、膜断面におけるボイドの占め
る割合が大きく充分な膜の機械的強度が得られない。以
上の点から製膜溶液中の酢酸セルロースの重量組成は15
〜23重量%の範囲にあることが望ましい。In the present invention, as a membrane forming solution for producing a hollow fiber separation membrane, cellulose acetate is dissolved in a polar organic solvent so that the added weight thereof is 10 to 30% by weight based on the total weight of the membrane forming solution. It is preferable to obtain the desired film. Increasing the added weight of cellulose acetate increases the viscosity of the membrane forming solution, and the membrane forming solution may cause phase separation during long-term storage. In addition, since the film structure obtained in this case is generally a dense structure with a small porosity,
Its permeation rate becomes smaller. On the other hand, when the concentration of cellulose acetate added is low, the proportion of voids in the cross section of the film is large and sufficient mechanical strength of the film cannot be obtained. From the above points, the weight composition of cellulose acetate in the film forming solution is 15
It is desirable to be in the range of up to 23% by weight.
【0023】酢酸セルロースの溶剤は、水溶性の極性有
機溶剤であり、その沸点が 100℃以上の溶剤から選ばれ
る。例えば、 1,4−ジオキサン、ジメチルスルホキシ
ド、 N,N−ジメチルホルムアミド、 N−メチル−2−ピ
ロリドン、2−ピロリドン、γ−ブチルラクトン等、及
びこれらの混合溶液があり、中でも目的とする構造を得
るには溶解性のよい、ジメチルスルホキシド、 N−メチ
ル−2−ピロリドンを用いることが望ましい。The solvent of cellulose acetate is a water-soluble polar organic solvent, and its boiling point is selected from the solvents having a boiling point of 100 ° C. or higher. For example, 1,4-dioxane, dimethyl sulfoxide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidone, γ-butyl lactone, and the like, and mixed solutions thereof, among which the target structure is To obtain it, it is desirable to use dimethylsulfoxide and N-methyl-2-pyrrolidone, which have good solubility.
【0024】また、酢酸セルロースを上記の溶剤を用い
て溶解するときに添加する金属化合物としては、周期律
表I〜III 族に属する金属からなり、アルカリ金属、ア
ルカリ土類金属、ホウ素、アルミニウムより選ばれた金
属の酢酸塩、硝酸塩、塩素酸塩、チオシアン酸塩、ハロ
ゲン化物およびそれらの水和物等が挙げられる。このよ
うな金属化合物の例として、塩化カルシウム、硝酸カル
シウム、臭化カルシウム、酢酸カルシウム、ヨウ化カル
シウム、硝酸カリウム、臭化カリウム、塩化バリウム、
硝酸バリウム、塩化アルミニウム、塩化リチウム、硝酸
リチウム、酢酸リチウム、塩化マグネシウム、硝酸マグ
ネシウム、酢酸マグネシウム等が挙げられるが、このう
ち、特に溶解度の大きい塩化リチウム、塩化マグネシウ
ム、酢酸リチウム、酢酸マグネシウムが望ましい。The metal compound added when the cellulose acetate is dissolved using the above-mentioned solvent is composed of a metal belonging to Group I to III of the periodic table, and includes alkali metal, alkaline earth metal, boron and aluminum. Examples include selected metal acetates, nitrates, chlorates, thiocyanates, halides and hydrates thereof. Examples of such metal compounds include calcium chloride, calcium nitrate, calcium bromide, calcium acetate, calcium iodide, potassium nitrate, potassium bromide, barium chloride,
Examples thereof include barium nitrate, aluminum chloride, lithium chloride, lithium nitrate, lithium acetate, magnesium chloride, magnesium nitrate, and magnesium acetate. Of these, lithium chloride, magnesium chloride, lithium acetate, and magnesium acetate having particularly high solubility are preferable.
【0025】これらの金属化合物が製膜原液中に存在す
るとミクロ相分離時に陽イオンが求核的な酢酸セルロー
スの水酸基またはエステル基と相互作用により結合し、
酢酸セルロース分子の球状の集合体が正の荷電を帯びる
ことになって集合体がお互いに反撥しあう。このような
集合体はすでにかなり均一なサイズを持っており、これ
らが相分離によってゲル化すると均一な孔径を有する三
次元網目状構造が膜内部に形成されると考えられる。When these metal compounds are present in the stock solution for film formation, cations are bonded to the hydroxyl groups or ester groups of cellulose acetate, which is nucleophilic, during microphase separation,
The spherical aggregates of cellulose acetate molecules are positively charged, and the aggregates repel each other. Such aggregates already have a fairly uniform size, and it is considered that when they are gelled by phase separation, a three-dimensional network structure having a uniform pore size is formed inside the membrane.
【0026】金属化合物の添加量が少ない場合、空孔率
の増加による透水速度の向上は望めない。また、添加量
の増加とともに製膜溶液の粘度は増加し、しだいに製膜
が困難となる。従って、添加量は製膜溶液の総重量に対
して0.05〜5mol/kg、好ましくは 0.1〜2mol/kgであ
る。後者は製膜溶液の全重量に対して約 0.3〜10重量%
に相当する。When the amount of the metal compound added is small, it is not possible to improve the water permeation rate by increasing the porosity. Moreover, the viscosity of the film-forming solution increases as the amount of addition increases, and film formation gradually becomes difficult. Therefore, the addition amount is 0.05 to 5 mol / kg, preferably 0.1 to 2 mol / kg, based on the total weight of the film forming solution. The latter is about 0.3-10% by weight, based on the total weight of the film-forming solution.
Equivalent to.
【0027】上記製膜溶液から中空糸分離膜を製造する
にあたっては、従来から用いられている分離膜の製造法
を採用することができる。すなわち、製膜溶液を二重管
型ノズルの外管から押し出し、内管から内部凝固液を流
出させ、乾湿式紡糸または湿式紡糸により、凝固浴中で
凝固させて中空糸膜を得ることができる。製膜溶液のノ
ズルからの紡出温度は、原料樹脂の種類により異なり、
通常30〜150 ℃であるが、高重合度、高酢化度のものほ
ど、粘度が高くなるため、比較的高い温度で紡糸する必
要があることから、酢化度が53〜62%で、重合度が 150
〜350 の範囲にあるものでは80〜140 ℃が好ましい。内
部凝固液温度または凝固浴温度は30〜80℃が好ましく、
30℃未満では膜表面に緻密層が厚く生成し、目的とする
濾過速度が得られず、80℃を超えると紡糸が困難となり
製膜効率が悪くなり、正常な中空糸が得られない。乾湿
式紡糸の場合のノズル吐出面と凝固浴表面との乾部距離
は0.1〜50cmがよく、 0.5〜30cmが好適であり、 0.2秒
以上空気中を通過させた後、凝固浴中に導入すればよ
い。In producing a hollow fiber separation membrane from the above membrane forming solution, a conventionally used separation membrane production method can be adopted. That is, the hollow fiber membrane can be obtained by extruding the membrane forming solution from the outer tube of the double-tube nozzle, causing the inner coagulating liquid to flow out from the inner tube, and coagulating in a coagulating bath by dry-wet spinning or wet spinning. . The spinning temperature of the film-forming solution from the nozzle varies depending on the type of raw resin,
Usually, the temperature is 30 to 150 ° C, but the higher the degree of polymerization and the higher the degree of acetylation, the higher the viscosity, so it is necessary to spin at a relatively high temperature. Degree of polymerization is 150
In the range of to 350, 80 to 140 ° C is preferable. The internal coagulating liquid temperature or coagulating bath temperature is preferably 30 to 80 ° C,
If it is lower than 30 ° C, a dense layer is thickly formed on the surface of the membrane, and the desired filtration rate cannot be obtained. If it exceeds 80 ° C, spinning becomes difficult and the membrane-forming efficiency is deteriorated, so that a normal hollow fiber cannot be obtained. In the case of dry-wet spinning, the dry portion distance between the nozzle discharge surface and the coagulation bath surface is preferably 0.1 to 50 cm, preferably 0.5 to 30 cm, and after passing in air for 0.2 seconds or longer, it is introduced into the coagulation bath. Good.
【0028】製膜に用いられる内部凝固液または外部凝
固液としては、酢酸セルロースの非溶剤であり、酢酸セ
ルロースの溶剤と相溶するもので製膜溶液を凝固させる
作用を有するものである。内部凝固液としては、水、エ
チレングリコール、ポリエチレングリコール、グリセリ
ン等およびこれらの2種以上の混合溶液が用いられる
が、外部凝固液としては、上記のものの他、特に水が好
ましく用いられる。The internal coagulation liquid or the external coagulation liquid used for film formation is a non-solvent of cellulose acetate, is compatible with the solvent of cellulose acetate, and has a function of coagulating the film formation solution. As the internal coagulation liquid, water, ethylene glycol, polyethylene glycol, glycerin, or the like and a mixed solution of two or more thereof are used. As the external coagulation liquid, in addition to the above-mentioned ones, water is particularly preferably used.
【0029】[0029]
【実施例】以下に、実施例に基づいて本発明をより詳細
に説明する。EXAMPLES The present invention will be described in more detail based on the following examples.
【0030】なお、本発明の中空糸分離膜の性能は、透
水速度、分画分子量および引張破断点強度・伸度を以下
の方法により測定し、評価した。The performance of the hollow fiber separation membrane of the present invention was evaluated by measuring the water permeation rate, molecular weight cutoff and tensile strength at break / elongation by the following methods.
【0031】(1) 透水速度
有効長50cmの中空糸膜に25℃の純水で1kg/cm2 の水圧
を内側からかけ、濾過した純水の量を測定した (内表面
積基準) 。(1) A water pressure of 1 kg / cm 2 was applied from the inside to a hollow fiber membrane having an effective length of water permeation rate of 50 cm with pure water at 25 ° C., and the amount of filtered pure water was measured (based on the inner surface area).
【0032】(2) 分画分子量
分子量の異なる各種蛋白質を標準溶質とし、膜に対する
それぞれの排除率を測定して分子量と排除率との関係を
グラフにプロットし、得られた分子量排除率曲線より、
排除率95%に相当する分子量を求めてそれを分画分子量
とした。(2) Fractionated molecular weight Various proteins having different molecular weights were used as standard solutes, the exclusion rate for each membrane was measured, and the relationship between the molecular weight and the exclusion rate was plotted in a graph. From the obtained molecular weight exclusion rate curve, ,
The molecular weight corresponding to the exclusion rate of 95% was determined and used as the molecular weight cutoff.
【0033】(3) 引張破断点強度・伸度
有効試料長5cmの中空糸膜試験片をクロスヘッドを10mm
/分で引張試験を行った際の破断点強度を試料断面積1
cm2 当たりに換算し、かつその伸びを測定した。(3) Tensile breaking strength / elongation A hollow fiber membrane test piece with an effective sample length of 5 cm was applied to a crosshead of 10 mm.
Cross-sectional area of the sample 1
It was converted per cm 2 and its elongation was measured.
【0034】実施例1
酢酸セルロース(酢化度:61.3%、平均重合度280 、ダ
イセル化学工業社製)20重量%、塩化リチウム1重量%
(0.32mol/kg)、ジメチルスルホキシド80重量%を80℃
で撹拌溶解した後、濾過により製膜溶液を得た。この製
膜溶液を二重管型口金の外管から吐出すると共に内管か
ら、水を内部凝固液として吐出し、7m/分の巻き取り
速度で紡糸した。 1.7秒間空気中を通過した後、70℃の
凝固水浴中においてその両表面から凝固させ、次に水中
に浸漬、脱溶剤して、内径 0.8mm、外径 1.3mmの中空糸
分離膜を得た。得られた膜は、内表面平均孔径は、0.09
μm 、引張り破断点強度44kg/cm2の膜を得た。評価結果
を表1に示す。また、得られた膜の平均孔径及び空孔率
を図1及び図2に示し、得られた膜断面の倍率 200倍及
び1万倍の電子顕微鏡写真を図3〜7に示す。Example 1 Cellulose acetate (acetylation degree: 61.3%, average degree of polymerization 280, manufactured by Daicel Chemical Industries, Ltd.) 20% by weight, lithium chloride 1% by weight
(0.32mol / kg), dimethyl sulfoxide 80% by weight at 80 ℃
After dissolving with stirring with, a membrane-forming solution was obtained by filtration. This film-forming solution was discharged from the outer tube of the double-tube type spinneret and water was discharged from the inner tube as an internal coagulating solution, and spinning was performed at a winding speed of 7 m / min. After passing through air for 1.7 seconds, it was solidified from both surfaces in a coagulating water bath at 70 ° C, then immersed in water and desolvated to obtain a hollow fiber separation membrane with an inner diameter of 0.8 mm and an outer diameter of 1.3 mm. . The obtained membrane has an inner surface average pore diameter of 0.09.
A film having a thickness of μm and a tensile strength at break of 44 kg / cm 2 was obtained. The evaluation results are shown in Table 1. The average pore diameter and porosity of the obtained membrane are shown in FIGS. 1 and 2, and electron micrographs of the obtained membrane cross section at magnifications of 200 and 10,000 are shown in FIGS.
【0035】実施例2
実施例1において酢酸セルロース(酢化度:61.3%、平
均重合度280 、ダイセル化学工業社製)19重量%、塩化
マグネシウム1重量%(0.14mol/kg)、ジメチルスルホ
キシド80重量%の製膜溶液を用いた以外は実施例1と同
様にして中空糸膜を製造した。得られた膜の評価結果を
表1に示す。Example 2 In Example 1, 19% by weight of cellulose acetate (acetylation degree: 61.3%, average degree of polymerization 280, manufactured by Daicel Chemical Industries, Ltd.), magnesium chloride 1% by weight (0.14 mol / kg), dimethyl sulfoxide 80 A hollow fiber membrane was produced in the same manner as in Example 1 except that a weight% membrane-forming solution was used. The evaluation results of the obtained film are shown in Table 1.
【0036】実施例3
実施例1において酢酸セルロース(酢化度:61.3%、平
均重合度280 、ダイセル化学工業社製)19重量%、酢酸
マグネシウム1重量%(0.20mol/kg)、ジメチルスルホ
キシド80重量%の製膜溶液を用いた以外は実施例1と同
様にして中空糸膜を製造した。得られた膜の評価結果を
表1に示す。Example 3 In Example 1, 19% by weight of cellulose acetate (acetylation degree: 61.3%, average degree of polymerization 280, manufactured by Daicel Chemical Industries, Ltd.), magnesium acetate 1% by weight (0.20 mol / kg), dimethyl sulfoxide 80 A hollow fiber membrane was produced in the same manner as in Example 1 except that a weight% membrane-forming solution was used. The evaluation results of the obtained film are shown in Table 1.
【0037】比較例1
実施例1において酢酸セルロース(酢化度:61.3%、平
均重合度280 、ダイセル化学工業社製)19重量%、ジメ
チルスルホキシド81重量%の製膜溶液を用いた以外は実
施例1と同様にして中空糸分離膜を製造した。得られた
膜の評価結果を表1に示す。また、得られた膜の平均孔
径及び空孔率を図1及び図2に示し、得られた膜断面の
倍率 200倍及び1万倍の電子顕微鏡写真を図8〜12に示
す。Comparative Example 1 Carried out in Example 1 except that cellulose acetate (acetylation degree: 61.3%, average degree of polymerization 280, manufactured by Daicel Chemical Industries, Ltd.) 19% by weight and dimethylsulfoxide 81% by weight were used. A hollow fiber separation membrane was produced in the same manner as in Example 1. The evaluation results of the obtained film are shown in Table 1. The average pore size and porosity of the obtained membrane are shown in FIGS. 1 and 2, and electron micrographs of the obtained membrane cross section at magnifications of 200 and 10,000 are shown in FIGS.
【0038】比較例2
実施例1において酢酸セルロース(酢化度:61.3%、平
均重合度280 、ダイセル化学工業社製)19重量%、クエ
ン酸マグネシウム1重量%(0.02mol/kg)、ジメチルス
ルホキシド80重量%の製膜溶液を用いた以外は実施例1
と同様にして中空糸膜を製造した。得られた膜の評価結
果を表1に示す。Comparative Example 2 In Example 1, 19% by weight of cellulose acetate (acetylation degree: 61.3%, average degree of polymerization: 280, manufactured by Daicel Chemical Industries, Ltd.), 1% by weight of magnesium citrate (0.02 mol / kg), dimethyl sulfoxide. Example 1 except that a film forming solution of 80% by weight was used.
A hollow fiber membrane was produced in the same manner as in. The evaluation results of the obtained film are shown in Table 1.
【0039】比較例3
酢酸セルロース(酢化度:61.3%、平均重合度280 、ダ
イセル化学工業社製)18重量%、セロソルブアセテート
14重量%、NMP 63重量%、水5重量%の製膜溶液を用
い、内部凝固液として水を用いた以外は実施例1と同様
にしてボイドの比率が44%の中空糸分離膜を製造した。
得られた膜の評価結果を表1に示す。Comparative Example 3 Cellulose acetate (acetylation degree: 61.3%, average degree of polymerization 280, manufactured by Daicel Chemical Industries, Ltd.) 18% by weight, cellosolve acetate
A hollow fiber separation membrane with a void ratio of 44% was produced in the same manner as in Example 1 except that a membrane forming solution containing 14% by weight, 63% by weight of NMP and 5% by weight of water was used and water was used as an internal coagulating liquid. did.
The evaluation results of the obtained film are shown in Table 1.
【0040】比較例4
酢酸セルロース(酢化度:56.1%、平均重合度180 )19
重量%、ジメチルスルホキシド40.5重量%、リン酸トリ
エチル40.5重量%の製膜溶液を用い、凝固浴温度を70℃
にした以外は実施例2と同様にして中空糸分離膜を製造
した。得られた膜の評価結果を表1に示す。Comparative Example 4 Cellulose acetate (acetylation degree: 56.1%, average degree of polymerization: 180) 19
%, Dimethylsulfoxide 40.5% by weight, triethyl phosphate 40.5% by weight, a coagulation bath temperature of 70 ° C. is used.
A hollow fiber separation membrane was produced in the same manner as in Example 2 except that The evaluation results of the obtained film are shown in Table 1.
【0041】[0041]
【表1】 [Table 1]
【図1】図(a)は比較例1の酢酸セルロース中空糸膜
の平均孔径を示すグラフであり、図(b)は実施例1の
酢酸セルロース中空糸膜の平均孔径を示すグラフであ
る。FIG. 1 (a) is a graph showing an average pore diameter of a cellulose acetate hollow fiber membrane of Comparative Example 1, and FIG. 1 (b) is a graph showing an average pore diameter of a cellulose acetate hollow fiber membrane of Example 1.
【図2】図(c)は比較例1の酢酸セルロース中空糸膜
の空孔率を示すグラフであり、図(d)は実施例1の酢
酸セルロース中空糸膜の空孔率を示すグラフである。FIG. 2 (c) is a graph showing the porosity of the cellulose acetate hollow fiber membrane of Comparative Example 1, and FIG. 2 (d) is a graph showing the porosity of the cellulose acetate hollow fiber membrane of Example 1. is there.
【図3】実施例1で得られた本発明の酢酸セルロース中
空糸膜の外表面の繊維の形状を示す電子顕微鏡写真 (1
0,000倍)である。FIG. 3 is an electron micrograph showing the shape of fibers on the outer surface of the cellulose acetate hollow fiber membrane of the present invention obtained in Example 1 (1
0,000 times).
【図4】実施例1で得られた本発明の酢酸セルロース中
空糸膜の外表面近傍断面の繊維の形状を示す電子顕微鏡
写真 (10,000倍)である。FIG. 4 is an electron micrograph (10,000 times) showing the shape of fibers in a cross section near the outer surface of the cellulose acetate hollow fiber membrane of the present invention obtained in Example 1.
【図5】実施例1で得られた本発明の酢酸セルロース中
空糸膜の内表面の繊維の形状を示す電子顕微鏡写真 (1
0,000倍)である。5 is an electron micrograph showing the shape of fibers on the inner surface of the cellulose acetate hollow fiber membrane of the present invention obtained in Example 1 (1
0,000 times).
【図6】実施例1で得られた本発明の酢酸セルロース中
空糸膜の内表面近傍断面の繊維の形状を示す電子顕微鏡
写真 (10,000倍)である。FIG. 6 is an electron micrograph (10,000 times) showing the shape of fibers in a cross section near the inner surface of the cellulose acetate hollow fiber membrane of the present invention obtained in Example 1.
【図7】実施例1で得られた本発明の酢酸セルロース中
空糸膜の断面の繊維の形状を示す電子顕微鏡写真(200
倍)である。7 is an electron micrograph (200) showing the fiber shape of the cross section of the cellulose acetate hollow fiber membrane of the present invention obtained in Example 1. FIG.
Times).
【図8】比較例1で得られた本発明の酢酸セルロース中
空糸膜の外表面の繊維の形状を示す電子顕微鏡写真 (1
0,000倍)である。8 is an electron micrograph showing the shape of fibers on the outer surface of the cellulose acetate hollow fiber membrane of the present invention obtained in Comparative Example 1 (1
0,000 times).
【図9】比較例1で得られた本発明の酢酸セルロース中
空糸膜の外表面近傍断面の繊維の形状を示す電子顕微鏡
写真 (10,000倍)である。FIG. 9 is an electron micrograph (10,000 times) showing the shape of fibers in a cross section near the outer surface of the cellulose acetate hollow fiber membrane of the present invention obtained in Comparative Example 1.
【図10】比較例1で得られた本発明の酢酸セルロース
中空糸膜の内表面の繊維の形状を示す電子顕微鏡写真
(10,000倍)である。10 is an electron micrograph showing the shape of fibers on the inner surface of the cellulose acetate hollow fiber membrane of the present invention obtained in Comparative Example 1. FIG.
(10,000 times).
【図11】比較例1で得られた本発明の酢酸セルロース
中空糸膜の内表面近傍断面の繊維の形状を示す電子顕微
鏡写真 (10,000倍)である。FIG. 11 is an electron micrograph (× 10,000) showing the shape of fibers in a cross section near the inner surface of the cellulose acetate hollow fiber membrane of the present invention obtained in Comparative Example 1.
【図12】比較例1で得られた本発明の酢酸セルロース
中空糸膜の断面の繊維の形状を示す電子顕微鏡写真(200
倍)である。12 is an electron micrograph (200) showing the shape of fibers in the cross section of the cellulose acetate hollow fiber membrane of the present invention obtained in Comparative Example 1.
Times).
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01D 69/08,71/16 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) B01D 69 / 08,71 / 16
Claims (2)
が、実質的に0.05〜1μm の平均孔径を有する三次元網
目状多孔質部分と10〜200 μm の大きさのボイド部分と
からなり、該膜の全断面積に対するボイド部分の占める
面積が5〜70%の範囲にあり、かつ中空糸膜内外両表面
に不定形または円形状の微孔を有し、該膜の断面の三次
元網目状多孔質部分は該中空糸膜の内外両表面から全膜
厚の50分の1以内の部分をそれぞれ除くすべての範囲で
40〜80%のほぼ均一な空孔率を有し、分画分子量が1万
〜50万の範囲にあり、膜の引張破断点強度が30kg/cm2
以上あり、かつ膜間差圧1kg/cm2 、温度25℃における
純水の透過速度が 500リットル/(m2・hr)以上あるこ
とを特徴とする酢酸セルロース中空糸分離膜。1. A hollow fiber membrane having a membrane thickness of 50 to 500 μm has a three-dimensional mesh-like porous portion having an average pore diameter of substantially 0.05 to 1 μm and a void portion having a size of 10 to 200 μm. The area occupied by the void portion with respect to the total cross-sectional area of the membrane is in the range of 5 to 70%, and the inner and outer surfaces of the hollow fiber membrane have irregular or circular micropores, and the cross-sectional area of the membrane is The three-dimensional mesh-like porous portion is in the entire range except both the inner and outer surfaces of the hollow fiber membrane which are within 1/50 of the total thickness.
It has a nearly uniform porosity of 40 to 80%, a molecular weight cut-off in the range of 10,000 to 500,000, and a tensile strength at break of the membrane of 30 kg / cm 2
A cellulose acetate hollow fiber separation membrane characterized by having the above, and having a transmembrane differential pressure of 1 kg / cm 2 and a pure water permeation rate at a temperature of 25 ° C. of 500 liters / (m 2 · hr) or more.
平均重合度が 100〜500 の範囲にある酢酸セルロース10
〜30重量%と周期律表I〜III 族に属する金属化合物0.
05〜5mol/kgを該酢酸セルロースと該添加物をともに溶
解する沸点 100℃以上の水溶性極性有機溶媒に溶解して
製膜溶液を作成し、該製膜溶液を二重管型紡糸口金の外
管より80〜140 ℃で吐出するとともに紡糸口金の中央部
より30〜80℃の内部凝固液を吐出し、30〜80℃の凝固浴
中で凝固させることを特徴とする請求項1記載の酢酸セ
ルロース中空糸分離膜の製造方法。2. The degree of acetylation is in the range of 53 to 62%, and
Cellulose acetate with an average degree of polymerization in the range 100-500 10
.About.30% by weight and metal compounds belonging to groups I to III of the periodic table.
Dissolve 05 to 5 mol / kg in a water-soluble polar organic solvent having a boiling point of 100 ° C. or more, which dissolves both the cellulose acetate and the additive to prepare a film-forming solution, and the film-forming solution is added to a double-tube type spinneret. 2. The composition as claimed in claim 1, wherein the inner tube is discharged from the outer tube at 80 to 140 ° C. and the inner coagulating solution at 30 to 80 ° C. is discharged from the central portion of the spinneret to coagulate in a coagulating bath at 30 to 80 ° C. A method for producing a cellulose acetate hollow fiber separation membrane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27282094A JP3386904B2 (en) | 1994-10-12 | 1994-10-12 | Cellulose acetate hollow fiber separation membrane and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27282094A JP3386904B2 (en) | 1994-10-12 | 1994-10-12 | Cellulose acetate hollow fiber separation membrane and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08108053A JPH08108053A (en) | 1996-04-30 |
JP3386904B2 true JP3386904B2 (en) | 2003-03-17 |
Family
ID=17519218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27282094A Expired - Lifetime JP3386904B2 (en) | 1994-10-12 | 1994-10-12 | Cellulose acetate hollow fiber separation membrane and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3386904B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000009247A1 (en) | 1998-08-11 | 2000-02-24 | Daicel Chemical Industries, Ltd. | Cellulose acetate semipermeable membrane and method for producing the same |
EP1127608A4 (en) * | 1999-05-31 | 2005-11-16 | Daicel Chem | HOLLOW FIBER MEMBRANE FROM CELLULOSE DERIVATIVES |
CN1309461C (en) * | 2004-01-13 | 2007-04-11 | 中国科学院生态环境研究中心 | Acetyl cellulose/Fe-Al oxide composite membrane, and its preparing method and use |
JP4618538B2 (en) * | 2004-07-09 | 2011-01-26 | 株式会社ウェルシィ | Water scale adhesion prevention method |
AU2007223448B2 (en) * | 2006-03-02 | 2011-10-20 | Sei-Ichi Manabe | Pore diffusion type flat membrane separating apparatus, flat membrane concentrating apparatus, regenerated cellulose porous membrane for pore diffusion, and method of non-destructive inspection of flat membrane |
WO2011004786A1 (en) | 2009-07-06 | 2011-01-13 | 積水化学工業株式会社 | Polymer membrane for water treatment |
AU2011221916B2 (en) | 2010-03-04 | 2015-07-23 | Sekisui Chemical Co., Ltd. | Polymer membrane for water treatment and method for manufacture of same, and water treatment method |
US9193815B2 (en) | 2010-03-04 | 2015-11-24 | Sekisui Chemical Co., Ltd. | Polymer membrane for water treatment and method for manufacture of same |
JP6018790B2 (en) * | 2011-07-22 | 2016-11-02 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Separation membrane, manufacturing method thereof, and water treatment apparatus including separation membrane |
EP3603780A4 (en) * | 2017-03-30 | 2020-12-16 | Toray Industries, Inc. | Separation film and production method therefor |
-
1994
- 1994-10-12 JP JP27282094A patent/JP3386904B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08108053A (en) | 1996-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110079887B (en) | Performance enhancing additives for fiber formation and polysulfone fibers | |
CN1829597A (en) | Defect free composite membranes, method for producing said membranes and use of the same | |
CN105120992A (en) | Polyvinylidene fluoride hollow fiber membranes and preparation thereof | |
CN109310956B (en) | Porous film and method for producing porous film | |
JP3386904B2 (en) | Cellulose acetate hollow fiber separation membrane and method for producing the same | |
JPS6356802B2 (en) | ||
WO2019066061A1 (en) | Porous hollow fiber membrane and method for producing same | |
JP4299468B2 (en) | Cellulose derivative hollow fiber membrane | |
US20010047959A1 (en) | Polyacrylonitrile-based filtration membrane in a hollow fiber state | |
JP4781497B2 (en) | Cellulose acetate hollow fiber separation membrane | |
AU715033B2 (en) | Polyacrylonitrile-based filtration membrane in a hollow fiber state | |
JP2688564B2 (en) | Cellulose acetate hollow fiber separation membrane | |
JP4757396B2 (en) | Cellulose derivative hollow fiber membrane | |
WO2022249839A1 (en) | Separation membrane and method for producing same | |
JPH053335B2 (en) | ||
EP0824960A1 (en) | Hollow-fiber membrane of polysulfone polymer and process for the production thereof | |
JPH0929078A (en) | Hollow fiber membrane manufacturing method | |
JPH0832295B2 (en) | Method for producing composite hollow fiber membrane | |
JP3169404B2 (en) | Method for producing semipermeable membrane with high water permeability | |
JPH07155570A (en) | Composite membrane | |
JP2020171923A (en) | Porous film | |
JP2010075851A (en) | Porous film and method for manufacturing the same | |
KR102306426B1 (en) | Composite porous membrane of acetylated alkyl cellulose and polyolefinketone | |
JP4380380B2 (en) | Method for producing liquid separation membrane | |
JP2646562B2 (en) | Method for producing permselective composite hollow fiber membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080110 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080110 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090110 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100110 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100110 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110110 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120110 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120110 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120110 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120110 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130110 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130110 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140110 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |